Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 600(7890): 701-706, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34673755

RESUMEN

Following severe adverse reactions to the AstraZeneca ChAdOx1-S-nCoV-19 vaccine1,2, European health authorities recommended that patients under the age of 55 years who received one dose of ChAdOx1-S-nCoV-19 receive a second dose of the Pfizer BNT162b2 vaccine as a booster. However, the effectiveness and the immunogenicity of this vaccination regimen have not been formally tested. Here we show that the heterologous ChAdOx1-S-nCoV-19 and BNT162b2 combination confers better protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection than the homologous BNT162b2 and BNT162b2 combination in a real-world observational study of healthcare workers (n = 13,121). To understand the underlying mechanism, we conducted a longitudinal survey of the anti-spike immunity conferred by each vaccine combination. Both combinations induced strong anti-spike antibody responses, but sera from heterologous vaccinated individuals displayed a stronger neutralizing activity regardless of the SARS-CoV-2 variant. This enhanced neutralizing potential correlated with increased frequencies of switched and activated memory B cells that recognize the SARS-CoV-2 receptor binding domain. The ChAdOx1-S-nCoV-19 vaccine induced a weaker IgG response but a stronger T cell response than the BNT162b2 vaccine after the priming dose, which could explain the complementarity of both vaccines when used in combination. The heterologous vaccination regimen could therefore be particularly suitable for immunocompromised individuals.


Asunto(s)
Vacuna BNT162/administración & dosificación , Vacuna BNT162/inmunología , COVID-19/inmunología , COVID-19/prevención & control , ChAdOx1 nCoV-19/administración & dosificación , ChAdOx1 nCoV-19/inmunología , SARS-CoV-2/inmunología , Vacunación/estadística & datos numéricos , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Femenino , Francia/epidemiología , Hospitales Universitarios , Humanos , Memoria Inmunológica/inmunología , Incidencia , Masculino , Células B de Memoria/inmunología , Células T de Memoria/inmunología , Persona de Mediana Edad , Glicoproteína de la Espiga del Coronavirus/inmunología
2.
Eur J Immunol ; : e2451035, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627984

RESUMEN

OBJECTIVES: In the post-SARS-CoV-2 pandemic era, "breakthrough infections" are still documented, due to variants of concerns (VoCs) emergence and waning humoral immunity. Despite widespread utilization, the definition of the anti-Spike (S) immunoglobulin-G (IgG) threshold to define protection has unveiled several limitations. Here, we explore the advantages of incorporating T-cell response assessment to enhance the definition of immune memory profile. METHODS: SARS-CoV-2 interferon-gamma release assay test (IGRA) was performed on samples collected longitudinally from immunocompetent healthcare workers throughout their immunization by infection and/or vaccination, anti-receptor-binding domain IgG levels were assessed in parallel. The risk of symptomatic infection according to cellular/humoral immune capacities during Omicron BA.1 wave was then estimated. RESULTS: Close to 40% of our samples were exclusively IGRA-positive, largely due to time elapsed since their last immunization. This suggests that individuals have sustained long-lasting cellular immunity, while they would have been classified as lacking protective immunity based solely on IgG threshold. Moreover, the Cox regression model highlighted that Omicron BA.1 circulation raises the risk of symptomatic infection while increased anti-receptor-binding domain IgG and IGRA levels tended to reduce it. CONCLUSION: The discrepancy between humoral and cellular responses highlights the significance of assessing the overall adaptive immune response. This integrated approach allows the identification of vulnerable subjects and can be of interest to guide antiviral prophylaxis at an individual level.

3.
Crit Care Med ; 51(6): 808-816, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36917594

RESUMEN

OBJECTIVES: There is a crucial unmet need for biomarker-guided diagnostic and prognostic enrichment in clinical trials evaluating immune modulating therapies in critically ill patients. Low monocyte expression of human leukocyte antigen-DR (mHLA-DR), considered as a reference surrogate to identify immunosuppressed patients, has been proposed for patient stratification in immunostimulation approaches. However, its widespread use in clinic has been somewhat hampered by technical constraints inherent to flow cytometry technology. The objective of the present study was to evaluate the ability of a prototype multiplex polymerase chain reaction tool (immune profiling panel [IPP]) to identify immunosuppressed ICU patients characterized by a low mHLA-DR expression. DESIGN: Retrospective observational cohort study. SETTING: Adult ICU in a University Hospital, Lyon, France. PATIENTS: Critically ill patients with various etiologies enrolled in the REAnimation Low Immune Status Marker study (NCT02638779). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: mHLA-DR and IPP data were obtained from 1,731 blood samples collected from critically ill patients with various etiologies and healthy volunteers. A partial least square regression model combining the expression levels of IPP markers was trained and used for the identification of samples from patients presenting with evidence of immunosuppression, defined here as mHLADR less than 8,000 antibodies bound per cell (AB/C). The IPP gene set had an area under the receiver operating characteristic curve (AUC) of 0.86 (95% CI 0.83-0.89) for the identification of immunosuppressed patients. In addition, when applied to the 123 patients still in the ICU at days 5-7 after admission, IPP similarly enriched the number of patients with ICU-acquired infections in the immunosuppressed group (26%), in comparison with low mHLA-DR (22%). CONCLUSIONS: This study reports on the potential of the IPP gene set to identify ICU patients presenting with mHLA-DR less than 8,000 AB/C. Upon further optimization and validation, this molecular tool may help in the stratification of patients that could benefit from immunostimulation in the context of personalized medicine.


Asunto(s)
Enfermedad Crítica , Monocitos , Adulto , Humanos , Estudios Retrospectivos , Antígenos HLA-DR/genética , Biomarcadores , Anticuerpos
4.
J Med Virol ; 95(8): e28984, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37503561

RESUMEN

We aimed to evaluate the association between the humoral and cellular immune responses and symptomatic SARS-CoV-2 infection with Delta or Omicron BA.1 variants in fully vaccinated outpatients. Anti-receptor binding domain (RBD) IgG levels and interferon-gamma (IFN-γ) release were evaluated at PCR-diagnosis of SARS-CoV-2 in 636 samples from negative and positive patients during Delta and Omicron BA.1 periods. Median levels of anti-RBD IgG in positive patients were significantly lower than in negative patients for both variants (p < 0.05). The frequency of Omicron BA.1 infection in patients with anti-RBD IgG concentrations ≥1000 binding antibody units (BAU)/mL was 51.0% and decreased to 34.4% in patients with concentrations ≥3000 BAU/mL. For Delta infection, the frequency of infection was significantly lower when applying the same anti-RBD IgG thresholds (13.3% and 5.3% respectively, p < 0.05). In addition, individuals in the hybrid immunity group had a 4.5 times lower risk of Delta infection compared to the homologous vaccination group (aOR = 0.22, 95% CI: [0.05-0.64]. No significant decrease in the risk of Omicron BA.1 infection was observed in the hybrid group compared to the homologous group, but the risk decreased within the hybrid group as anti-RBD IgG titers increased (aOR = 0.08, 95% CI: [0.01-0.41], p = 0.008). IFN-γ release post-SARS-CoV-2 peptide stimulation was not different between samples from patients infected (either with Delta or Omicron BA.1 variant) or not (p > 0.05). Our results show that high circulating levels of anti-RBD IgG and hybrid immunity were independently associated with a lower risk of symptomatic SARS-CoV-2 infection in outpatients with differences according to the infecting variant (www.clinicaltrials.gov; ID NCT05060939).


Asunto(s)
COVID-19 , Hepatitis D , Humanos , Pacientes Ambulatorios , SARS-CoV-2 , COVID-19/prevención & control , Interferón gamma , Inmunoglobulina G , Anticuerpos Antivirales
5.
Trends Analyt Chem ; 160: 116963, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36968318

RESUMEN

Real-time polymerase chain reaction (qPCR) enables accurate detection and quantification of nucleic acids and has become a fundamental tool in biological sciences, bioengineering and medicine. By combining multiple primer sets in one reaction, it is possible to detect several DNA or RNA targets simultaneously, a process called multiplex PCR (mPCR) which is key to attaining optimal throughput, cost-effectiveness and efficiency in molecular diagnostics, particularly in infectious diseases. Multiple solutions have been devised to increase multiplexing in qPCR, including single-well techniques, using target-specific fluorescent oligonucleotide probes, and spatial multiplexing, where segregation of the sample enables parallel amplification of multiple targets. However, these solutions are mostly limited to three or four targets, or highly sophisticated and expensive instrumentation. There is a need for innovations that will push forward the multiplexing field in qPCR, enabling for a next generation of diagnostic tools which could accommodate high throughput in an affordable manner. To this end, the use of machine learning (ML) algorithms (data-driven solutions) has recently emerged to leverage information contained in amplification and melting curves (AC and MC, respectively) - two of the most standard bio-signals emitted during qPCR - for accurate classification of multiple nucleic acid targets in a single reaction. Therefore, this review aims to demonstrate and illustrate that data-driven solutions can be successfully coupled with state-of-the-art and common qPCR platforms using a variety of amplification chemistries to enhance multiplexing in qPCR. Further, because both ACs and MCs can be predicted from sequence data using thermodynamic databases, it has also become possible to use computer simulation to rationalize and optimize the design of mPCR assays where target detection is supported by data-driven technologies. Thus, this review also discusses recent work converging towards the development of an end-to-end framework where knowledge-based and data-driven software solutions are integrated to streamline assay design, and increase the accuracy of target detection and quantification in the multiplex setting. We envision that concerted efforts by academic and industry scientists will help advance these technologies, to a point where they become mature and robust enough to bring about major improvements in the detection of nucleic acids across many fields.

6.
Crit Care ; 27(1): 158, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085849

RESUMEN

BACKGROUND: The development of stratification tools based on the assessment of circulating mRNA of genes involved in the immune response is constrained by the heterogeneity of septic patients. The aim of this study is to develop a transcriptomic score based on a pragmatic combination of immune-related genes detected with a prototype multiplex PCR tool. METHODS: As training cohort, we used the gene expression dataset obtained from 176 critically ill patients enrolled in the REALISM study (NCT02638779) with various etiologies and still hospitalized in intensive care unit (ICU) at day 5-7. Based on the performances of each gene taken independently to identify patients developing ICU-acquired infections (ICU-AI) after day 5-7, we built an unweighted score assuming the independence of each gene. We then determined the performances of this score to identify a subgroup of patients at high risk to develop ICU-AI, and both longer ICU length of stay and mortality of this high-risk group were assessed. Finally, we validated the effectiveness of this score in a retrospective cohort of 257 septic patients. RESULTS: This transcriptomic score (TScore) enabled the identification of a high-risk group of patients (49%) with an increased rate of ICU-AI when compared to the low-risk group (49% vs. 4%, respectively), with longer ICU length of stay (13 days [95% CI 8-30] vs. 7 days [95% CI 6-9], p < 0.001) and higher ICU mortality (15% vs. 2%). High-risk patients exhibited biological features of immune suppression with low monocytic HLA-DR levels, higher immature neutrophils rates and higher IL10 concentrations. Using the TScore, we identified 160 high-risk patients (62%) in the validation cohort, with 30% of ICU-AI (vs. 18% in the low-risk group, p = 0.06), and significantly higher mortality and longer ICU length of stay. CONCLUSIONS: The transcriptomic score provides a useful and reliable companion diagnostic tool to further develop immune modulating drugs in sepsis in the context of personalized medicine.


Asunto(s)
Sepsis , Transcriptoma , Humanos , Estudios Retrospectivos , Enfermedad Crítica , Sepsis/diagnóstico , Sepsis/genética , Unidades de Cuidados Intensivos , Progresión de la Enfermedad
7.
Euro Surveill ; 28(15)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37052679

RESUMEN

BackgroundTo cope with the persistence of the COVID-19 epidemic and the decrease in antibody levels following vaccination, a third dose of vaccine has been recommended in the general population. However, several vaccine regimens had been used initially for the primary vaccination course, and the heterologous Vaxzevria/Comirnaty regimen had shown better efficacy and immunogenicity than the homologous Comirnaty/Comirnaty regimen.AimWe wanted to determine if this benefit was retained after a third dose of an mRNA vaccine.MethodsWe combined an observational epidemiological study of SARS-CoV-2 infections among vaccinated healthcare workers at the University Hospital of Lyon, France, with a prospective cohort study to analyse immunological parameters before and after the third mRNA vaccine dose.ResultsFollowing the second vaccine dose, heterologous vaccination regimens were more protective against infection than homologous regimens (adjusted hazard ratio (HR) = 1.88; 95% confidence interval (CI): 1.18-3.00; p = 0.008), but this was no longer the case after the third dose (adjusted HR = 0.86; 95% CI: 0.72-1.02; p = 0.082). Receptor-binding domain-specific IgG levels and serum neutralisation capacity against different SARS-CoV-2 variants were higher after the third dose than after the second dose in the homologous regimen group, but not in the heterologous group.ConclusionThe advantage conferred by heterologous vaccination was lost after the third dose in terms of both protection and immunogenicity. Immunological measurements 1 month after vaccination suggest that heterologous vaccination induces maximal immunity after the second dose, whereas the third dose is required to reach the same level in individuals with a homologous regimen.


Asunto(s)
COVID-19 , Vacunas , Humanos , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Francia/epidemiología , Estudios Prospectivos , SARS-CoV-2 , Vacunación
8.
Eur J Immunol ; 51(4): 989-994, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33314090

RESUMEN

Low concentrations of type-I interferon (IFN) in blood seem to be associated with more severe forms of Coronavirus disease 2019 (COVID-19). However, following the type-I interferon response (IR) in early stage disease is a major challenge. We evaluated detection of a molecular interferon signature on a FilmArray® system, which includes PCR assays for four interferon stimulated genes. We analyzed three types of patient populations: (i) children admitted to a pediatric emergency unit for fever and suspected infection, (ii) ICU-admitted patients with severe COVID-19, and (iii) healthcare workers with mild COVID-19. The results were compared to the reference tools, that is, molecular signature assessed with Nanostring® and IFN-α2 quantification by SIMOA® (Single MOlecule Array). A strong correlation was observed between the IR measured by the FilmArray®, Nanostring®, and SIMOA® platforms (r-Spearman 0.996 and 0.838, respectively). The FilmArray® panel could be used in the COVID-19 pandemic to evaluate the IR in 45-min with 2 min hand-on-time at hospitalization and to monitor the IR in future clinical trials.


Asunto(s)
COVID-19/sangre , Interferón-alfa/sangre , Reacción en Cadena de la Polimerasa/métodos , SARS-CoV-2/inmunología , Adulto , Anciano , COVID-19/inmunología , Niño , Femenino , Personal de Salud , Humanos , Interferón Tipo I/sangre , Interferón Tipo I/genética , Interferón-alfa/genética , Masculino
10.
Pediatr Nephrol ; 37(11): 2743-2753, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35211796

RESUMEN

BACKGROUND: With adult patients, the measurement of [TIMP-2]*[IGFBP7] can predict the risk of moderate to severe AKI within 12 h of testing. In pediatrics, however, the performance of [TIMP-2]*[IGFBP7] as a predictor of AKI was less studied and yet to be widely utilized in clinical practice. This study was conducted to validate the utility of [TIMP-2]*[IGFBP7] as an earlier biomarker for AKI prediction in Chinese infants and small children. METHODS: We measured urinary [TIMP-2]*[IGFBP7] using NEPHROCHECK® at eight perioperative time points in 230 patients undergoing complex cardiac surgery and evaluated the performance of [TIMP-2]*[IGFBP7] for predicting severe AKI within 72 h of surgery. RESULTS: A total of 50 (22%) of 230 developed AKI stages 2-3 within 72 h after CPB initiation. In the AKI stage 2-3 patients, two patterns of serum creatinine (SCr) elevations were observed. The patients with only a transient increase in SCr within 24 h (< 24 h, early AKI 2-3) did not experience a worse outcome than patients in AKI stage 0-1. AKI stage 2-3 patients with SCr elevation after 24 h (24-72 h, late AKI 2-3), as well as AKI dialysis patients (together designated severe AKI), did experience worse outcomes. Compared to AKI stages 0-1, significant elevations of [TIMP-2]*[IGFBP7] values were observed in severe AKI patients at hours T2, T4, T12, and T24 following CPB initiation. The AUC for predicting severe AKI with [TIMP-2]*[IGFBP7] at T2 (AUC = 0.76) and maximum T2/T24 (AUC = 0.80) are higher than other time points. The addition of the NEPHROCHECK® test to the postoperative parameters improved the risk assessment of severe AKI. CONCLUSIONS: Multiple AKI phenotypes (early versus late AKI) were identified after pediatric complex cardiac surgery according to SCr-based AKI definition. Urinary [TIMP-2]*[IGFBP7] predicts late severe AKI (but not early AKI) as early as 2 h following CPB initiation. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Lesión Renal Aguda , Procedimientos Quirúrgicos Cardíacos , Somatomedinas , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/etiología , Biomarcadores , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Niño , Creatinina , Humanos , Metaloproteasas , Valor Predictivo de las Pruebas , Curva ROC , Diálisis Renal , Inhibidor Tisular de Metaloproteinasa-2
11.
Clin Immunol ; 226: 108714, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33741504

RESUMEN

Lipopolysaccharide (LPS) and monophosphoryl lipid A (MPLA) induce, overall, similar transcriptional profiles in healthy individuals, although LPS has been shown to more potently induce pro-inflammatory cytokines. We explore herein whether MPLA could be considered as a synthetic replacement of LPS in immune functional assays to study anergy of immune cells in septic patients. Ex vivo whole blood stimulation with MPLA revealed a lower induction of the TNFα secreted protein in 20 septic patients (SP) compared to 10 healthy volunteers (HV), in agreement with monocyte anergy. Principal component analysis of the 93-gene molecular response to MPLA and LPS stimulation found that the main variability was driven by stimulation in HV and by pathophysiology in SP. MPLA was a stronger inducer of the HLA family genes than LPS in both populations, arguing for divergent signalling pathways downstream of TLR-4. In addition, MPLA appeared to present a more informative stratification potential within the septic population.


Asunto(s)
Huésped Inmunocomprometido/inmunología , Lípido A/análogos & derivados , Lipopolisacáridos/inmunología , Sepsis/inmunología , Anciano , Anciano de 80 o más Años , Citocinas/inmunología , Femenino , Humanos , Inflamación/inmunología , Lípido A/inmunología , Masculino , Monocitos/inmunología , Estudios Prospectivos , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología , Factor de Necrosis Tumoral alfa/inmunología
12.
Crit Care ; 25(1): 140, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33845874

RESUMEN

BACKGROUND: Since the onset of the pandemic, only few studies focused on longitudinal immune monitoring in critically ill COVID-19 patients with acute respiratory distress syndrome (ARDS) whereas their hospital stay may last for several weeks. Consequently, the question of whether immune parameters may drive or associate with delayed unfavorable outcome in these critically ill patients remains unsolved. METHODS: We present a dynamic description of immuno-inflammatory derangements in 64 critically ill COVID-19 patients including plasma IFNα2 levels and IFN-stimulated genes (ISG) score measurements. RESULTS: ARDS patients presented with persistently decreased lymphocyte count and mHLA-DR expression and increased cytokine levels. Type-I IFN response was initially induced with elevation of IFNα2 levels and ISG score followed by a rapid decrease over time. Survivors and non-survivors presented with apparent common immune responses over the first 3 weeks after ICU admission mixing gradual return to normal values of cellular markers and progressive decrease of cytokines levels including IFNα2. Only plasma TNF-α presented with a slow increase over time and higher values in non-survivors compared with survivors. This paralleled with an extremely high occurrence of secondary infections in COVID-19 patients with ARDS. CONCLUSIONS: Occurrence of ARDS in response to SARS-CoV2 infection appears to be strongly associated with the intensity of immune alterations upon ICU admission of COVID-19 patients. In these critically ill patients, immune profile presents with similarities with the delayed step of immunosuppression described in bacterial sepsis.


Asunto(s)
COVID-19/sangre , Enfermedad Crítica , Unidades de Cuidados Intensivos/tendencias , Interferón-alfa/sangre , Síndrome de Dificultad Respiratoria/sangre , Adulto , Anciano , Biomarcadores/sangre , COVID-19/epidemiología , COVID-19/inmunología , Enfermedad Crítica/epidemiología , Femenino , Hospitalización/tendencias , Humanos , Inmunidad/inmunología , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Síndrome de Dificultad Respiratoria/epidemiología , Síndrome de Dificultad Respiratoria/inmunología
13.
J Infect Dis ; 222(Suppl 2): S84-S95, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32691839

RESUMEN

BACKGROUND: Critical illness such as sepsis is a life-threatening syndrome defined as a dysregulated host response to infection and is characterized by patients exhibiting impaired immune response. In the field of diagnosis, a gap still remains in identifying the immune profile of critically ill patients in the intensive care unit (ICU). METHODS: A new multiplex immune profiling panel (IPP) prototype was assessed for its ability to semiquantify messenger RNA immune-related markers directly from blood, using the FilmArray System, in less than an hour. Samples from 30 healthy volunteers were used for the technical assessment of the IPP tool. Then the tool was clinically assessed using samples from 10 healthy volunteers and 20 septic shock patients stratified using human leukocyte antigen-DR expression on monocytes (mHLA-DR). RESULTS: The IPP prototype consists of 16 biomarkers that target the immune response. The majority of the assays had a linear expression with different RNA inputs and a coefficient of determination (R2) > 0.8. Results from the IPP pouch were comparable to standard quantitative polymerase chain reaction and the assays were within the limits of agreement in Bland-Altman analysis. Quantification cycle values of the target genes were normalized against reference genes and confirmed to account for the different cell count and technical variability. The clinical assessment of the IPP markers demonstrated various gene modulations that could distinctly differentiate 3 profiles: healthy volunteers, intermediate mHLA-DR septic shock patients, and low mHLA-DR septic shock patients. CONCLUSIONS: The use of IPP showed great potential for the development of a fully automated, rapid, and easy-to-use immune profiling tool. The IPP tool may be used in the future to stratify critically ill patients in the ICU according to their immune status. Such stratification will enable personalized management of patients and guide treatments to avoid secondary infections and lower mortality.


Asunto(s)
Enfermedad Crítica , Pruebas Inmunológicas , Choque Séptico/diagnóstico , Choque Séptico/inmunología , Anciano , Biomarcadores/sangre , Femenino , Antígenos HLA-DR/genética , Antígenos HLA-DR/inmunología , Humanos , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Reacción en Cadena de la Polimerasa Multiplex , Prueba de Estudio Conceptual
14.
Clin Immunol ; 210: 108312, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31760096

RESUMEN

Recent advances in the immunotherapy field require evaluation of the immune function to adapt therapeutic decisions. Immune functional assays (IFA) are able to reveal the immune status and would be useful to further adapt and/or improve patient's care. However, standardized methods are needed to implement IFA in clinical settings. We carried out an independent validation of a published method used to characterize the underlying host response to infectious conditions using an IFA. We evaluated the reproducibility and robustness of this IFA and the associated readout using an independent healthy volunteers (HV) cohort. Expression of a 44-gene signature and IFNγ protein secretion was assessed after stimulation. We observed a strong host-response correlation between the two cohorts. We also highlight that standardized methods for immune function evaluation exist and could be implemented in larger-scale studies. This IFA could be a relevant tool to reveal innate and adaptive immune dysfunction in immune-related disorders patients.


Asunto(s)
Inmunoensayo/normas , Interferón gamma/metabolismo , Estándares de Referencia , Inmunidad Adaptativa , Adulto , Anciano , Células Cultivadas , Estudios de Cohortes , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Transcriptoma/inmunología
15.
Clin Chem ; 66(6): 802-808, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32359149

RESUMEN

BACKGROUND: Fever is one of the leading causes of consultation in the pediatric emergency department for patients under the age of 3 years. Distinguishing between bacterial and viral infections etiologies in febrile patients remains challenging. We hypothesized that specific host biomarkers for viral infections, such as type I-interferon (IFN), could help clinicians' decisions and limit antibiotic overuse. METHODS: Paxgene tubes and serum were collected from febrile children (n = 101), age from 7 days to 36 months, with proven viral or bacterial infections, being treated at pediatric emergency departments in France. We assessed the performance of an IFN signature, which was based on quantification of expression of IFN-stimulated genes using the Nanostring® technology and plasma IFN-α quantified by digital ELISA technology. RESULTS: Serum concentrations of IFN-α were below the quantification threshold (30 fg/mL) for 2% (1/46) of children with proven viral infections and for 71% (39/55) of children with bacterial infections (P < 0.001). IFN-α concentrations and IFN score were significantly higher in viral compared to bacterial infection (P < 0.001). There was a strong correlation between serum IFN-α concentrations and IFN score (p-pearson = 0.83). Both serum IFN-α concentration and IFN score robustly discriminated (Area Under the Curve >0.91 for both) between viral and bacterial infection in febrile children, compared to C-reactive protein (0.83). CONCLUSIONS: IFN-α is increased in blood of febrile infants with viral infections. The discriminative performance of IFN-α femtomolar concentrations as well as blood transcriptional signatures could show a diagnostic benefit and potentially limit antibiotic overuse. CLINICAL TRIALS REGISTRATION: clinicaltrials.gov (NCT03163628).


Asunto(s)
Infecciones Bacterianas/diagnóstico , Interferón Tipo I/sangre , Virosis/diagnóstico , Biomarcadores/sangre , Preescolar , Diagnóstico Diferencial , Servicio de Urgencia en Hospital , Femenino , Fiebre , Humanos , Lactante , Recién Nacido , Masculino , Medicina de Urgencia Pediátrica/métodos , Medicina de Urgencia Pediátrica/organización & administración , Estudios Prospectivos
16.
Crit Care ; 24(1): 96, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188504

RESUMEN

BACKGROUND: Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Numerous studies have explored the complex and dynamic transcriptome modulations observed in sepsis patients, but a large fraction of the transcriptome remains unexplored. This fraction could provide information to better understand sepsis pathophysiology. Multiple levels of interaction between human endogenous retroviruses (HERV) and the immune response have led us to hypothesize that sepsis is associated with HERV transcription and that HERVs may contribute to a signature among septic patients allowing stratification and personalized management. METHODS: We used a high-density microarray and RT-qPCR to evaluate the HERV and Mammalian Apparent Long Terminal Repeat retrotransposons (MaLR) transcriptome in a pilot study that included 20 selected septic shock patients, stratified on mHLA-DR expression, with samples collected on day 1 and day 3 after inclusion. We validated the results in an unselected, independent cohort that included 100 septic shock patients on day 3 after inclusion. We compared septic shock patients, according to their immune status, to describe the transcriptional HERV/MaLR and conventional gene expression. For differential expression analyses, moderated t tests were performed and Wilcoxon signed-rank tests were used to analyze RT-qPCR results. RESULTS: We showed that 6.9% of the HERV/MaLR repertoire was transcribed in the whole blood, and septic shock was associated with an early modulation of a few thousand of these loci, in comparison to healthy volunteers. We provided evidence that a subset of HERV/MaLR and conventional genes were differentially expressed in septic shock patients, according to their immune status, using monocyte HLA-DR (mHLA-DR) expression as a proxy. A group of 193 differentially expressed HERV/MaLR probesets, tested in an independent septic shock cohort, identified two groups of patients with different immune status and severity features. CONCLUSION: We demonstrated that a large, unexplored part of our genome, which codes for HERV/MaLR, may be linked to the host immune response. The identified set of HERV/MaLR probesets should be evaluated on a large scale to assess the relevance of these loci in the stratification of septic shock patients. This may help to address the heterogeneity of these patients.


Asunto(s)
Retrovirus Endógenos/genética , Choque Séptico , Transcriptoma/genética , Anciano , Femenino , Antígenos HLA-DR , Humanos , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Proyectos Piloto , Retroelementos , Choque Séptico/sangre , Choque Séptico/genética , Choque Séptico/inmunología , Secuencias Repetidas Terminales
17.
Euro Surveill ; 24(3)2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30670143

RESUMEN

We report a seasonal increase of enterovirus D68 (EV-D68) cases in France, with 54 cases detected between 19 August and 14 November 2018. Molecular typing revealed that 20 of 32 of the isolates belonged to clade D1, only sporadically detected before in France. Median age of D1-cases was 42 years, 10 developed severe respiratory signs and one had neurological complications. The 2018-D1 viruses showed a genetic divergence of 3.34 % with D1 viruses identified previously.


Asunto(s)
Enterovirus Humano D/aislamiento & purificación , Infecciones por Enterovirus/diagnóstico , Infecciones por Enterovirus/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Enfermedades Transmisibles Emergentes/epidemiología , Brotes de Enfermedades , Enterovirus Humano D/genética , Infecciones por Enterovirus/virología , Femenino , Francia/epidemiología , Genotipo , Humanos , Lactante , Masculino , Persona de Mediana Edad , Tipificación Molecular , Filogenia , Vigilancia de la Población/métodos , Análisis de Secuencia de ADN , Adulto Joven
18.
BMC Genomics ; 19(1): 522, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29976163

RESUMEN

BACKGROUND: Human Endogenous Retroviruses (HERVs) and Mammalian apparent LTR-retrotransposons (MaLRs) represent the 8% of our genome and are distributed among our 46 chromosomes. These LTR-retrotransposons are thought to be essentially silent except in cancer, autoimmunity and placental development. Their Long Terminal Repeats (LTRs) constitute putative promoter or polyA regulatory sequences. In this study, we used a recently described high-density microarray which can be used to study HERV/MaLR transcriptome including 353,994 HERV/MaLR loci and 1559 immunity-related genes. RESULTS: We described, for the first time, the HERV transcriptome in peripheral blood mononuclear cells (PBMCs) using a cellular model mimicking inflammatory response and monocyte anergy observed after septic shock. About 5.6% of the HERV/MaLR repertoire is transcribed in PBMCs. Roughly one-tenth [5.7-13.1%] of LTRs exhibit a putative constitutive promoter or polyA function while one-quarter [19.5-27.6%] may shift from silent to active. Evidence was given that some HERVs/MaLRs and genes may share similar regulation control under lipopolysaccharide (LPS) stimulation conditions. Stimulus-dependent response confirms that HERV expression is tightly regulated in PBMCs. Altogether, these observations make it possible to integrate 62 HERVs/MaLRs and 26 genes in 11 canonical pathways and suggest a link between HERV expression and immune response. The transcriptional modulation of HERVs located close to genes such as OAS2/3 and IFI44/IFI44L or at a great distance from genes was discussed. CONCLUSION: This microarray-based approach revealed the expression of about 47,466 distinct HERV loci and identified 951 putative promoter LTRs and 744 putative polyA LTRs in PBMCs. HERV/MaLR expression was shown to be tightly modulated under several stimuli including high-dose and low-dose LPS and Interferon-γ (IFN-γ). HERV incorporation at the crossroads of immune response pathways paves the way for further functional studies and analyses of the HERV transcriptome in altered immune responses in vivo such as in sepsis.


Asunto(s)
Leucocitos Mononucleares/efectos de los fármacos , Lipopolisacáridos/farmacología , Retroelementos/genética , Secuencias Repetidas Terminales/genética , Transcriptoma/efectos de los fármacos , Biología Computacional , Retrovirus Endógenos/genética , Humanos , Sistema Inmunológico/efectos de los fármacos , Sistema Inmunológico/metabolismo , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo
20.
Sci Rep ; 14(1): 11305, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760488

RESUMEN

Sepsis induces intense, dynamic and heterogeneous host response modulations. Despite improvement of patient management, the risk of mortality and healthcare-associated infections remains high. Treatments to counterbalance immune response are under evaluation, but effective biomarkers are still lacking to perform patient stratification. The design of the present study was defined to alleviate the limitations of existing literature: we selected patients who survived the initial hyperinflammatory response and are still hospitalized at day 5-7 after ICU admission. Using the Immune Profiling Panel (IPP), a fully automated RT-qPCR multiplex prototype, we optimized a machine learning model combining the IPP gene expression levels for the identification of patients at high risk of worsening, a composite endpoint defined as death or secondary infection, within one week after sampling. This was done on 332 sepsis patients selected from two retrospective studies. The IPP model identified a high-risk group comprising 30% of patients, with a significant increased proportion of worsening events at day 28 compared to the low-risk group (49% vs. 28%, respectively). These preliminary results underline the potential clinical application of IPP for sepsis patient stratification in a personalized medicine perspective, that will be confirmed in a larger prospective multicenter study.


Asunto(s)
Biomarcadores , Sepsis , Humanos , Sepsis/inmunología , Masculino , Femenino , Anciano , Persona de Mediana Edad , Aprendizaje Automático , Estudios Retrospectivos , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA