Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
FEMS Yeast Res ; 16(7)2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27650705

RESUMEN

The fungal pathogen Candida glabrata is a haploid asexual yeast. Candida glabrata contains orthologs of the genes that control mating and cell-type identity in other fungi, which encode putative transcription factors localized in the MAT locus in Saccharomyces cerevisiae or MTL in other fungi. Candida glabrata contains three copies of the CgMTL locus but only CgMTL1 correctly expresses the information encoded in it. CgMTL1 can encode the Cg A1: gene ( A: information), or the Cgalpha1 and Cgalpha2 genes (alpha information). CgMTL2 contains an identical copy of the Cg A1: gene. CgMTL3 contains an identical copy of the Cgalpha1 gene but a longer variant of the Cgalpha2 gene that we termed Cgalpha3. In S. cerevisiae diploid cells, that express Sc A: and Scalpha information, Sc A1: and Scalpha2 proteins form a heterodimer, which represses genes expressed only in haploid cells and some genes involved in stress response. We constructed C. glabrata strains that simultaneously express Cg A1: and Cgalpha2 or Cg A1: and Cgalpha3 genes. We did not find any phenotype in these strains when grown under a large variety of stress and nutritional conditions. However, we detected an interaction between Cg A1: and Cgalpha2 but not between Cg A1: and Cgalpha3 by Bimolecular Fluorescence Complementation and co-immunoprecipitation assays.


Asunto(s)
Candida glabrata/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes del Tipo Sexual de los Hongos , Sitios Genéticos , Multimerización de Proteína
2.
Microbiology (Reading) ; 161(Pt 2): 300-310, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25479837

RESUMEN

The fungal pathogen Candida glabrata has a well-defined oxidative stress response, is extremely resistant to oxidative stress and can survive inside phagocytic cells. In order to further our understanding of the oxidative stress response in C. glabrata, we characterized the superoxide dismutases (SODs) Cu,ZnSOD (Sod1) and MnSOD (Sod2). We found that Sod1 is the major contributor to total SOD activity and is present in cytoplasm, whereas Sod2 is a mitochondrial protein. Both SODs played a central role in the oxidative stress response but Sod1 was more important during fermentative growth and Sod2 during respiration and growth in non-fermentable carbon sources. Interestingly, C. glabrata cells lacking both SODs showed auxotrophy for lysine, a high rate of spontaneous mutation and reduced chronological lifespan. Thus, our study reveals that SODs play an important role in metabolism, lysine biosynthesis, DNA protection and aging in C. glabrata.


Asunto(s)
Candida glabrata/enzimología , Candida glabrata/crecimiento & desarrollo , ADN de Hongos/genética , Proteínas Fúngicas/metabolismo , Lisina/biosíntesis , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Candida glabrata/genética , Candida glabrata/metabolismo , ADN de Hongos/metabolismo , Proteínas Fúngicas/genética , Viabilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética
3.
FEMS Yeast Res ; 15(6)2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26122277

RESUMEN

Candida glabrata is a fungal pathogen frequently found as a commensal in humans. To colonize and disseminate successfully in the mammalian host, C. glabrata must detect signals within the host and reprogram gene expression to respond appropriately to hostile environmental conditions. One of the layers of regulation of expression of many virulence-related genes (adhesin-encoding genes, genes involved in response to oxidative stress and xenobiotics) is achieved through epigenetic mechanisms. Local and regional silencing is mediated by the activity of two NAD(+)-dependent histone deacetylases, Hst1 and Sir2, respectively, repressing many virulence genes. Hst1 and Sir2 interact with different repressor complexes to achieve regional or local silencing. Sir2 can associate with Sir4, which is then recruited to the telomere by Rap1 and yKu. Deacetylation of the histone tails creates high affinity binding sites for new molecules of the Sir complex, thereby spreading the silent domain over >20 kb. Many of the adhesin-encoding EPA genes are subject to this regulation. Hst1 in turn associates with the Sum1-Rfm1 complex. Sum1 is a DNA-binding protein, which recognizes specific sites at individual promoters, recruiting Hst1 to specific genes involved in the response to oxidative stress and xenobiotics, which results in their repression.


Asunto(s)
Candida glabrata/genética , Candida glabrata/fisiología , Adhesión Celular , Cromatina/metabolismo , Epigénesis Genética , Regulación Fúngica de la Expresión Génica , Estrés Fisiológico , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Histona Desacetilasas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Mapas de Interacción de Proteínas
4.
Eukaryot Cell ; 7(5): 814-25, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18375620

RESUMEN

We characterized the oxidative stress response of Candida glabrata to better understand the virulence of this fungal pathogen. C. glabrata could withstand higher concentrations of H(2)O(2) than Saccharomyces cerevisiae and even Candida albicans. Stationary-phase cells were extremely resistant to oxidative stress, and this resistance was dependent on the concerted roles of stress-related transcription factors Yap1p, Skn7p, and Msn4p. We showed that growing cells of C. glabrata were able to adapt to high levels of H(2)O(2) and that this adaptive response was dependent on Yap1p and Skn7p and partially on the general stress transcription factors Msn2p and Msn4p. C. glabrata has a single catalase gene, CTA1, which was absolutely required for resistance to H(2)O(2) in vitro. However, in a mouse model of systemic infection, a strain lacking CTA1 showed no effect on virulence.


Asunto(s)
Candida glabrata/metabolismo , Candida glabrata/patogenicidad , Candidiasis/microbiología , Catalasa/metabolismo , Estrés Oxidativo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Candida glabrata/efectos de los fármacos , Candida glabrata/crecimiento & desarrollo , Catalasa/química , Catalasa/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Humanos , Peróxido de Hidrógeno/farmacología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Alineación de Secuencia , Eliminación de Secuencia , Factores de Transcripción/genética , Virulencia
5.
Cancer Cell ; 33(1): 91-107.e6, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29316436

RESUMEN

KRAS is a regulator of the nutrient stress response in non-small-cell lung cancer (NSCLC). Induction of the ATF4 pathway during nutrient depletion requires AKT and NRF2 downstream of KRAS. The tumor suppressor KEAP1 strongly influences the outcome of activation of this pathway during nutrient stress; loss of KEAP1 in KRAS mutant cells leads to apoptosis. Through ATF4 regulation, KRAS alters amino acid uptake and asparagine biosynthesis. The ATF4 target asparagine synthetase (ASNS) contributes to apoptotic suppression, protein biosynthesis, and mTORC1 activation. Inhibition of AKT suppressed ASNS expression and, combined with depletion of extracellular asparagine, decreased tumor growth. Therefore, KRAS is important for the cellular response to nutrient stress, and ASNS represents a promising therapeutic target in KRAS mutant NSCLC.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Asparaginasa/farmacología , Aspartatoamoníaco Ligasa/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Homeostasis/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Ratones
6.
Rev Iberoam Micol ; 31(1): 67-71, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24270068

RESUMEN

Organisms have evolved different strategies to respond to oxidative stress generated as a by-product of aerobic respiration and thus maintain the redox homeostasis within the cell. In particular, fungal pathogens are exposed to reactive oxygen species (ROS) when they interact with the phagocytic cells of the host which are the first line of defense against fungal infections. These pathogens have co-opted the enzymatic (catalases, superoxide dismutases (SODs), and peroxidases) and non-enzymatic (glutathione) mechanisms used to maintain the redox homeostasis within the cell, to resist oxidative stress and ensure survival within the host. Several virulence factors have been related to the response to oxidative stress in pathogenic fungi. The opportunistic fungal pathogen Candida glabrata (C. glabrata) is the second most common cause of candidiasis after Candida albicans (C. albicans). C. glabrata has a well defined oxidative stress response (OSR), which include both enzymatic and non-enzymatic mechanisms. C. glabrata OSR is controlled by the well-conserved transcription factors Yap1, Skn7, Msn2 and Msn4. In this review, we describe the OSR of C. glabrata, what is known about its core elements, its regulation and how C. glabrata interacts with the host. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).


Asunto(s)
Candida glabrata/metabolismo , Interacciones Huésped-Patógeno/fisiología , Estrés Oxidativo , Adaptación Fisiológica , Candida glabrata/patogenicidad , Candidiasis/microbiología , Catalasa/fisiología , Proteínas Fúngicas/fisiología , Glutatión/fisiología , Humanos , Huésped Inmunocomprometido , Metalotioneína/fisiología , Infecciones Oportunistas/microbiología , Fagocitosis , Pigmentos Biológicos/fisiología , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/fisiología , Tiorredoxinas/fisiología , Factores de Transcripción/fisiología , Virulencia
7.
Rev. iberoam. micol ; 31(1): 67-71, ene.-mar. 2014.
Artículo en Inglés | IBECS (España) | ID: ibc-120471

RESUMEN

Organisms have evolved different strategies to respond to oxidative stress generated as a by-product of aerobic respiration and thus maintain the redox homeostasis within the cell. In particular, fungal pathogens are exposed to reactive oxygen species (ROS) when they interact with the phagocytic cells of the host which are the first line of defense against fungal infections. These pathogens have co-opted the enzymatic (catalases, superoxide dismutases (SODs), and peroxidases) and non-enzymatic (glutathione) mechanisms used to maintain the redox homeostasis within the cell, to resist oxidative stress and ensure survival within the host. Several virulence factors have been related to the response to oxidative stress in pathogenic fungi. The opportunistic fungal pathogen Candida glabrata (C. glabrata) is the second most common cause of candidiasis after Candida albicans (C. albicans). C. glabrata has a well defined oxidative stress response (OSR), which include both enzymatic and non-enzymatic mechanisms. C. glabrata OSR is controlled by the well-conserved transcription factors Yap1, Skn7, Msn2 and Msn4. In this review, we describe the OSR of C. glabrata, what is known about its core elements, its regulation and how C. glabrata interacts with the host. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012) (AU)


Los microorganismos han establecido diferentes estrategias para controlar el estrés oxidante generado durante la respiración aeróbica y, por consiguiente, mantener la homeostasia redox en la célula. En particular, los hongos patógenos se exponen a especies reactivas del oxígeno cuando interactúan con las células fagocíticas del huésped que son la primera línea de defensa contra estos agentes infecciosos. Estos patógenos han reclutado sistemas enzimáticos (catalasas, superóxido dismutasas y peroxidasas) y no enzimáticos (glutatión) que normalmente utilizan para mantener la homeostasis redox en la célula, para resistir frente al estrés oxidante y garantizar la supervivencia dentro del huésped. Varios factores de virulencia se han relacionado con la respuesta al estrés oxidante de los hongos patógenos. El hongo patógeno oportunista Candida glabrata (C. glabrata) es la segunda causa más frecuente de candidiasis después de Candida albicans (C. albicans). C. glabrata tiene una respuesta bien definida al estrés oxidante, que incluye sistemas enzimáticos y no enzimáticos y está regulada por los factores de transcripción Yap1, Skn7, Msn2 y Msn4. En esta revisión, describimos los elementos de la respuesta de C. glabrata a dicho estrés, cómo se regula y cómo C. glabrata interacciona con el huésped.Este artículo forma parte de una serie de estudios presentados en el «V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi» (Oaxaca, México, 2012) (AU)


Asunto(s)
Humanos , Masculino , Femenino , Candida glabrata/aislamiento & purificación , Candida glabrata/patogenicidad , Estrés Oxidativo/genética , Estrés Oxidativo/inmunología , Estrés Oxidativo/fisiología , Glutatión/análisis , Glutatión , Virulencia , Virulencia/inmunología , Candida glabrata , Candida glabrata/inmunología , Candida glabrata/metabolismo , Noxas/análisis , Noxas/inmunología , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA