Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38856224

RESUMEN

BACKGROUND: Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disease associated with liver-related complications and death. The efficacy and safety of tirzepatide, an agonist of the glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 receptors, in patients with MASH and moderate or severe fibrosis is unclear. METHODS: We conducted a phase 2, dose-finding, multicenter, double-blind, randomized, placebo-controlled trial involving participants with biopsy-confirmed MASH and stage F2 or F3 (moderate or severe) fibrosis. Participants were randomly assigned to receive once-weekly subcutaneous tirzepatide (5 mg, 10 mg, or 15 mg) or placebo for 52 weeks. The primary end point was resolution of MASH without worsening of fibrosis at 52 weeks. A key secondary end point was an improvement (decrease) of at least one fibrosis stage without worsening of MASH. RESULTS: Among 190 participants who had undergone randomization, 157 had liver-biopsy results at week 52 that could be evaluated, with missing values imputed under the assumption that they would follow the pattern of results in the placebo group. The percentage of participants who met the criteria for resolution of MASH without worsening of fibrosis was 10% in the placebo group, 44% in the 5-mg tirzepatide group (difference vs. placebo, 34 percentage points; 95% confidence interval [CI], 17 to 50), 56% in the 10-mg tirzepatide group (difference, 46 percentage points; 95% CI, 29 to 62), and 62% in the 15-mg tirzepatide group (difference, 53 percentage points; 95% CI, 37 to 69) (P<0.001 for all three comparisons). The percentage of participants who had an improvement of at least one fibrosis stage without worsening of MASH was 30% in the placebo group, 55% in the 5-mg tirzepatide group (difference vs. placebo, 25 percentage points; 95% CI, 5 to 46), 51% in the 10-mg tirzepatide group (difference, 22 percentage points; 95% CI, 1 to 42), and 51% in the 15-mg tirzepatide group (difference, 21 percentage points; 95% CI, 1 to 42). The most common adverse events in the tirzepatide groups were gastrointestinal events, and most were mild or moderate in severity. CONCLUSIONS: In this phase 2 trial involving participants with MASH and moderate or severe fibrosis, treatment with tirzepatide for 52 weeks was more effective than placebo with respect to resolution of MASH without worsening of fibrosis. Larger and longer trials are needed to further assess the efficacy and safety of tirzepatide for the treatment of MASH. (Funded by Eli Lilly; SYNERGY-NASH ClinicalTrials.gov number, NCT04166773.).

2.
Int J Obes (Lond) ; 45(7): 1510-1520, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33935282

RESUMEN

AIMS: To evaluate whether the association between plasma branched-chain amino acids (BCAA) and intrahepatic lipid (IHL) was affected by physical activity level. Furthermore, to investigate if a conventional exercise training program, a subcategory of physical activity, could lower plasma BCAA along with alterations in IHL content in patients with type 2 diabetes (T2DM) and people with nonalcoholic fatty liver (NAFL). METHODS: To investigate the effect of physical activity on the association between plasma BCAA and IHL content, linear regression analyses were performed in 1983 individuals from the Netherlands Epidemiology of Obesity (NEO) stratified by physical activity frequency. Furthermore, the effect of a 12-week supervised combined aerobic resistance-exercise program on plasma BCAA, insulin sensitivity (hyperinsulinemic-euglycemic clamp), and IHL (proton-magnetic resonance spectroscopy (1H-MRS)) was investigated in seven patients with T2DM, seven individuals with NAFL and seven BMI-matched control participants (CON). RESULTS: We observed positive associations between plasma valine, isoleucine and leucine level, and IHL content (1.29 (95% CI: 1.21, 1.38), 1.52 (95% CI: 1.43, 1.61), and 1.54 (95% CI: 1.44, 1.64) times IHL, respectively, per standard deviation of plasma amino acid level). Similar associations were observed in less active versus more active individuals. Exercise training did not change plasma BCAA levels among groups, but reduced IHL content in NAFL (from 11.6 ± 3.0% pre-exercise to 8.1 ± 2.0% post exercise, p < 0.05) and CON (from 2.4 ± 0.6% pre-exercise to 1.6 ± 1.4% post exercise, p < 0.05), and improved peripheral insulin sensitivity in NAFL as well by ~23% (p < 0.05). CONCLUSIONS: The association between plasma BCAA levels and IHL is not affected by physical activity level. Exercise training reduced IHL without affecting plasma BCAA levels in individuals with NAFL and CON. We conclude that exercise training-induced reduction in IHL content is not related to changes in plasma BCAA levels. TRIAL REGISTRATION: Trial registry number: NCT01317576.


Asunto(s)
Aminoácidos de Cadena Ramificada/sangre , Ejercicio Físico , Lípidos/análisis , Hígado , Obesidad , Anciano , Estudios Transversales , Diabetes Mellitus Tipo 2/metabolismo , Ejercicio Físico/fisiología , Ejercicio Físico/estadística & datos numéricos , Humanos , Metabolismo de los Lípidos/fisiología , Hígado/diagnóstico por imagen , Hígado/metabolismo , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/sangre , Obesidad/epidemiología , Obesidad/metabolismo
3.
J Physiol ; 596(5): 857-868, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29110300

RESUMEN

KEY POINTS: Intramyocellular lipid storage is negatively associated with insulin sensitivity. However, endurance trained athletes and type 2 diabetes mellitus (T2DM) patients store similar amounts of lipids in their muscle; the so-called athlete's paradox. Compared to T2DM, trained athletes possess higher levels of perilipin 5 (PLIN5), a lipid droplet (LD) coating protein. We examined whether coating LD with PLIN5 affects the pattern of muscle lipid (LD size and number) in relation to the athlete's paradox. Despite differences in PLIN5 protein content, we observed that coating the LD with PLIN5 could not explain the observed differences in LD size and number between athletes and T2DM. PLIN5-coated LDs were positively associated with oxidative capacity but not with insulin sensitivity. We conclude that coating of LDs with PLIN5 cannot causally explain the athlete's paradox. ABSTRACT: Intramyocellular lipid (IMCL) hampers insulin sensitivity, albeit not in endurance-trained athletes (Trained). Compared to type 2 diabetes mellitus (T2DM) patients, Trained subjects have high levels of perilipin 5 (PLIN5). In the present study, we tested whether the fraction of PLIN5-coated lipid droplets (LDs) is a determinant of skeletal muscle insulin sensitivity and contributes to the athlete's paradox. Muscle biopsies were taken from eight Trained, Lean sedentary, Obese and T2DM subjects. Trained, Obese and T2DM subjects were matched for total IMCL content. Confocal images were analysed for lipid area fraction, LD size and number and PLIN5+ and PLIN5- LDs were measured. A stepwise linear regression was performed to identify factors explaining observed variance in glucose infusion rate (GIR). Trained and T2DM subjects stored IMCL differently; Trained subjects had a higher number of LDs compared to T2DM subjects (0.037 ± 0.004 µm-2 vs. 0.023 ± 0.003 µm-2 , P = 0.024) that were non-significantly smaller (0.27 ± 0.01 µm2 vs. 0.32 ± 0.02 µm2 , P = 0.197, Trained vs. T2DM). Even though total PLIN5 protein content was almost double in Trained vs. T2DM subjects (1.65 ± 0.21 AU vs. 0.89 ± 0.09 AU, P = 0.004), PLIN5 coating did not affect LD number or size significantly. Of the observed variance in GIR, the largest fraction by far (70.2%) was explained by maximal oxygen uptake. Adding PLIN5 protein content or PLIN5+ LDs increased the explained variance in GIR (74.7% and 80.7% for PLIN5 protein content and PLIN5+ LDs, respectively). Thus, the putative relationship between PLIN5 and insulin sensitivity is at best indirect and is apparent only in conjunction with maximal oxygen uptake. Hence, PLIN5 abundance cannot be causally linked to the athlete's paradox.


Asunto(s)
Atletas , Diabetes Mellitus Tipo 2/fisiopatología , Resistencia a la Insulina , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Músculo Esquelético/fisiopatología , Perilipina-5/metabolismo , Adulto , Estudios de Casos y Controles , Ejercicio Físico , Humanos , Masculino , Persona de Mediana Edad , Obesidad/fisiopatología , Resistencia Física , Adulto Joven
4.
Am J Physiol Endocrinol Metab ; 314(2): E165-E173, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29118014

RESUMEN

Exercise training reduces intrahepatic lipid (IHL) content in people with elevated liver fat content. It is unclear, however, whether exercise training reduces IHL content in people with normal liver fat content. Here, we measured the effect of exercise training on IHL content in people with and people without nonalcohol fatty liver. We further measured changes in insulin sensitivity and hepatic energy metabolism. Eleven males with nonalcoholic fatty liver (NAFL) and 11 body mass index-matched individuals without nonalcoholic fatty liver (CON) completed a 12-wk supervised exercise training program. IHL content (proton magnetic resonance spectroscopy), maximal oxidative capacity (V̇o2max, spiroergometry), total muscle strength, body composition, insulin sensitivity (hyperinsulinemic-euglycemic clamp), hepatic ATP-to-total phosphorus ratio, and the hepatic phosphomonoester-to-phosphodiester (PME/PDE) ratio (phosphorus magnetic resonance spectroscopy) were determined. IHL content reduced with exercise training ( P = 0.014) in the whole study population. The relative reduction in IHL content was comparable in NAFL (-34.5 ± 54.0%) and CON (-28.3 ± 60.1%) individuals ( P = 0.800). V̇o2max ( P < 0.001), total muscle strength ( P < 0.001), and skeletal muscle insulin sensitivity ( P = 0.004) increased, whereas adipose tissue ( P = 0.246) and hepatic ( P = 0.086) insulin sensitivity did not increase significantly. Hepatic ATP-to-total phosphorus ratio ( P = 0.987) and PME/PDE ratio ( P = 0.792) did not change. Changes in IHL content correlated with changes in body weight ( r = 0.451, P = 0.035) and changes in hepatic PME/PDE ratio ( r = 0.569, P = 0.019). In conclusion, exercise training reduced intrahepatic lipid content in people with nonalcoholic fatty liver and in people with normal intrahepatic lipid content, and the percent reduction in intrahepatic lipid content was similar in both groups.


Asunto(s)
Ejercicio Físico/fisiología , Metabolismo de los Lípidos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Adulto , Anciano , Regulación hacia Abajo , Femenino , Técnica de Clampeo de la Glucosa , Humanos , Lípidos/análisis , Hígado/química , Hígado/patología , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/patología
5.
Clin Sci (Lond) ; 131(15): 1905-1917, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28620012

RESUMEN

Non-alcoholic fatty liver (NAFL) is an independent risk factor for the development of type 2 diabetes (T2DM). We examined metabolic perturbations in patients with NAFL, patients with T2DM, and control (CON) subjects with normal intrahepatic lipid (IHL) content.A two-step (10 mU/m2 /min; 40 mU/m2/min) hyperinsulinemic-euglycemic clamp was performed in 11 NAFL, 13 T2DM, and 11 CON subjects, all matched for BMI, and aerobic fitness. IHL content was measured using proton magnetic resonance spectroscopy. Because of high IHL content variability in T2DM patients, this group was separated into a high IHL content group (IHL ≥ 5.0%, T2DM+NAFL) and a normal IHL content group (IHL < 5.0%, T2DM-non-NAFL) for further analysis.IHL content was increased in NAFL and T2DM+NAFL subjects (P<0.050 versus CON and T2DM-non-NAFL subjects). Adipose tissue insulin sensitivity index (Adipo-IRi) was higher in NAFL (P<0.050 versus CON and T2DM-non-NAFL subjects) and in T2DM+NAFL subjects (P=0.055 versus CON subjects, P<0.050 versus T2DM-non-NAFL subjects). Suppression of plasma-free fatty acids (P=0.046) was lower in NAFL compared with CON subjects, with intermediate values for T2DM-non-NAFL, and T2DM+NAFL subjects. Suppression of endogenous glucose production (EGP) and insulin-stimulated glucose disposal (ΔRd) was comparable between NAFL, T2DM-non-NAFL, and T2DM+NAFL subjects (all P>0.05), and was lower in comparison with CON subjects (all P<0.01). Metabolic flexibility was lower in T2DM-non-NAFL subjects (P=0.047) and NAFL subjects (P=0.059) compared with CON subjects. Adipo-IRi (r=0.652, P<0.001), hepatic insulin resistance index (HIRi) (r=0.576, P=0.001), and ΔRd (r=-0.653, P<0.001) correlated with IHL content.Individuals with NAFL suffer from metabolic perturbations to a similar degree as T2DM patients. NAFL is an important feature leading to severe insulin resistance and should be viewed as a serious health threat for the development of T2DM. ClinicalTrials.gov: NCT01317576.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Tejido Adiposo/metabolismo , Adulto , Anciano , Composición Corporal/fisiología , Técnica de Clampeo de la Glucosa , Humanos , Insulina/sangre , Resistencia a la Insulina/fisiología , Hígado/enzimología , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo
6.
Diabetologia ; 59(10): 2068-79, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27393135

RESUMEN

Non-alcoholic fatty liver (NAFL) is the most common liver disorder in western society. Various factors may play a role in determining hepatic fat content, such as delivery of lipids to the liver, de novo lipogenesis, hepatic lipid oxidation, secretion of intrahepatic lipids to the circulation or a combination of these. If delivery of lipids to the liver outweighs the sum of hepatic lipid oxidation and secretion, the intrahepatic lipid (IHL) content starts to increase and NAFL may develop. NAFL is closely related to obesity and insulin resistance and a fatty liver increases the vulnerability to type 2 diabetes development. Exercise training is a cornerstone in the treatment and prevention of type 2 diabetes. There is a large body of literature describing the beneficial metabolic consequences of exercise training on skeletal muscle metabolism. Recent studies have started to investigate the effects of exercise training on liver metabolism but data is still limited. Here, first, we briefly discuss the routes by which IHL content is modulated. Second, we review whether and how these contributing routes might be modulated by long-term exercise training. Third, we focus on the effects of acute exercise on IHL metabolism, since exercise also might affect hepatic metabolism in the physically active state. This will give insight into whether the effect of exercise training on IHL could be explained by the accumulated effect of acute bouts of exercise, or whether adaptations might occur only after long-term exercise training. The primary focus of this review will be on observations made in humans. Where human data is missing, data obtained from well-accepted animal models will be used.


Asunto(s)
Ejercicio Físico/fisiología , Metabolismo de los Lípidos/fisiología , Lípidos/análisis , Hígado/metabolismo , Humanos , Resistencia a la Insulina/fisiología
7.
Curr Med Res Opin ; 40(1): 59-68, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37933187

RESUMEN

OBJECTIVE: We examined the roles of type 2 diabetes (T2D) and obesity in disease activity and fibrosis progression/regression in patients with non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH). METHODS: This multi-center, retrospective study included patients with suspected or histologically proven NAFLD/NASH from the NASH Clinical Research Network. Outcomes included disease activity and rate of fibrosis, assessed using liver-biopsy driven measures (NAFLD activity score [NAS] and fibrosis score [FS]). Logistic regression and doubly robu estimation of causal effects tested relationships among T2D, obesity, and NAFLD/NASH. RESULTS: The analytical sample included 870 adult patients with baseline biopsy data and 157 patients with multiple biopsy data. Patients with NAFLD/NASH and T2D had significantly higher baseline average NAS (4.52 vs. 4.13; p = 0.009) and FS (2.17 vs. 1.56; p < 0.0001); those with T2D had a significantly greater reduction in average NAS over time (-0.77/year vs. -0.17/year; p = 0.0008). Change in FS over time did not differ significantly by T2D status (-0.23/year vs. -0.04/year; p = 0.34). Baseline NAS, baseline FS, and change in average NAS over time did not differ significantly by obesity status (4.17 vs. 4.47; p = 0.16; 1.73 vs.1.92; p = 0.31; -0.40/year vs. -0.59/year; p = 0.62, respectively). Patients with obesity had a slight increase in FS but those without obesity had a reduction in average FS over time (0.07/year vs. -0.27/year; p = 0.008). CONCLUSIONS: Patients with NAFLD/NASH and T2D had greater baseline disease activity versus those without T2D, but there was greater regression of disease activity over time among those with T2D. Patients with NAFLD/NASH and obesity had worsening of fibrosis versus those without obesity. NCT00063622.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Adulto , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Estudios Retrospectivos , Fibrosis , Obesidad/complicaciones , Biopsia , Hígado
8.
Diabetes Res Clin Pract ; 211: 111675, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636848

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is the most common form of chronic liver disease. It exists as either simple steatosis or its more progressive form, metabolic dysfunction-associated steatohepatitis (MASH), formerly, non-alcoholic steatohepatitis (NASH). The global prevalence of MASLD is estimated to be 32% among adults and is projected to continue to rise with increasing rates of obesity, type 2 diabetes, and metabolic syndrome. While simple steatosis is often considered benign and reversible, MASH is progressive, potentially leading to the development of cirrhosis, liver failure, and hepatocellular carcinoma. Treatment of MASH is therefore directed at slowing, stopping, or reversing the progression of disease. Evidence points to improved liver histology with therapies that result in sustained body weight reduction. Incretin-based molecules, such as glucagon-like peptide-1 receptor agonists (GLP-1 RAs), alone or in combination with glucose-dependent insulinotropic polypeptide (GIP) and/or glucagon receptor agonists, have shown benefit here, and several are under investigation for MASLD/MASH treatment. In this review, we discuss current published data on GLP-1, GIP/GLP-1, GLP-1/glucagon, and GLP-1/GIP/glucagon RAs in MASLD/MASH, focusing on their efficacy on liver histology, liver fat, and MASH biomarkers.


Asunto(s)
Incretinas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Incretinas/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Diabetes Mellitus Tipo 2/tratamiento farmacológico
9.
Aliment Pharmacol Ther ; 60(1): 17-32, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38768298

RESUMEN

BACKGROUND: The use of histological inclusion criteria for clinical trials of at-risk metabolic dysfunction-associated steatohepatitis (MASH) is often associated with high screen failure rates. AIMS: To describe the design of a trial investigating tirzepatide treatment of MASH and to examine the effect of new inclusion criteria incorporating the use of the FibroScan-AST (FAST) score on the proportion of patients meeting histological criteria. METHODS: SYNERGY-NASH is a Phase 2b, multicentre, randomised, double-blinded, placebo-controlled trial in patients with biopsy-confirmed MASH, F2-F3 fibrosis and NAFLD Activity Score ≥4. New inclusion criteria (FAST score >0.35 and an increase in AST inclusion criterion from >20 to >23 U/L) were adopted during the trial, allowing us to examine its impact on the qualification rate. RESULTS: 1583 participants were screened, 651 participants proceeded to liver biopsy and 190 participants were randomised with an overall screen fail rate of 87%. Following the protocol amendment, the overall qualification rate for per-protocol biopsies was minimally changed from 27.5% to 28.9% with considerable variation among different investigator medical speciality types: endocrinology: from 37.5% to 39.3%; gastroenterology/hepatology: from 26.0% to 23.3%; other specialities: from 21.3% to 29.7%. At 29 sites that performed per-protocol biopsies before and after the amendment, qualification rates changed as follows: all: 26.1% to 29.1%; endocrinology: from 35.0% to 40.9%; gastroenterology/hepatology: 25.6% to 20.0%; other specialities: from 16.1% to 27.8%. CONCLUSIONS: For at-risk MASH trials based on liver histology, the implementation of inclusion criteria with the proposed FAST score and AST cut-offs in this trial was most effective at non-specialist sites.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Método Doble Ciego , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Biopsia/métodos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Hígado/efectos de los fármacos , Hígado/metabolismo , Selección de Paciente
10.
Nat Med ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858523

RESUMEN

Retatrutide is a novel triple agonist of the glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1 and glucagon receptors. A 48-week phase 2 obesity study demonstrated weight reductions of 22.8% and 24.2% with retatrutide 8 and 12 mg, respectively. The primary objective of this substudy was to assess mean relative change from baseline in liver fat (LF) at 24 weeks in participants from that study with metabolic dysfunction-associated steatotic liver disease and ≥10% of LF. Here, in this randomized, double-blind, placebo-controlled trial, participants (n = 98) were randomly assigned to 48 weeks of once-weekly subcutaneous retatrutide (1, 4, 8 or 12 mg dose) or placebo. The mean relative change from baseline in LF at 24 weeks was -42.9% (1 mg), -57.0% (4 mg), -81.4% (8 mg), -82.4% (12 mg) and +0.3% (placebo) (all P < 0.001 versus placebo). At 24 weeks, normal LF (<5%) was achieved by 27% (1 mg), 52% (4 mg), 79% (8 mg), 86% (12 mg) and 0% (placebo) of participants. LF reductions were significantly related to changes in body weight, abdominal fat and metabolic measures associated with improved insulin sensitivity and lipid metabolism. The ClinicalTrials.gov registration is NCT04881760 .

11.
Lancet Diabetes Endocrinol ; 10(6): 393-406, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35468325

RESUMEN

BACKGROUND: Tirzepatide is a novel dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 receptor agonist under development for the treatment of type 2 diabetes. The aim of this substudy was to characterise the changes in liver fat content (LFC), volume of visceral adipose tissue (VAT), and abdominal subcutaneous adipose tissue (ASAT) in response to tirzepatide or insulin degludec in a subpopulation of the SURPASS-3 study. METHODS: This substudy of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial was done at 45 medical research centres and hospitals across eight countries (Argentina, Austria, Greece, Hungary, Italy, Romania, Spain, and the USA). Eligible participants were adults with type 2 diabetes, a baseline HbA1c 7·0-10·5% (53-91 mmol/mol), a BMI of at least 25 kg/m2, stable weight, were insulin-naive, and on treatment with metformin alone or in combination with a SGLT2 inhibitor for at least 3 months before screening. In addition to the main study inclusion criteria, substudy participants had a fatty liver index of at least 60. Participants had an MRI scan and were randomised (1:1:1:1) in the main study to subcutaneous injection once per week of tirzepatide 5 mg, 10 mg, or 15 mg, or subcutaneous injection once per day of titrated insulin degludec, using an interactive web-response system, and were stratified by country, HbA1c, and concomitant oral anti-hyperglycaemic medication. The primary efficacy endpoint was the change from baseline in LFC (as measured by MRI-proton density fat fraction [MRI-PDFF]) at week 52 using pooled data from the tirzepatide 10 mg and 15 mg groups versus insulin degludec. Analyses were assessed in the enrolled MRI population, which consisted of participants in the modified intention-to-treat population of the main study who also had a valid MRI at either baseline or after baseline. This is a substudy of the trial registered with ClinicalTrials.gov, number NCT03882970, and is complete. FINDINGS: From April 1, 2019, to Nov 15, 2019, 502 participants were assessed for eligibility to participate in this substudy, 296 (59%) of whom were included in the enrolled MRI population and randomly assigned to treatment (tirzepatide 5 mg, n=71; tirzepatide 10 mg, n=79; tirzepatide 15 mg, n=72; and insulin degludec, n=74). Baseline demographics and clinical characteristics were similar across all treatment groups. From an overall mean baseline LFC of 15·71% (SD 8·93), the absolute reduction in LFC at week 52 was significantly greater for the pooled tirzepatide 10 mg and 15 mg groups (-8·09%, SE 0·57) versus the insulin degludec group (-3·38%, 0·83). The estimated treatment difference versus insulin degludec was -4·71% (95% CI -6·72 to -2·70; p<0·0001). The reduction in LFC was significantly correlated (p≤0·0006) with baseline LFC (ρ=-0·71), reductions in VAT (ρ=0·29), reductions in ASAT (ρ=0·33), and reductions in body weight (ρ=0·34) in the tirzepatide groups. INTERPRETATION: Tirzepatide showed a significant reduction in LFC and VAT and ASAT volumes compared with insulin degludec in this subpopulation of patients with type 2 diabetes in the SURPASS-3 study. These data provide additional evidence on the metabolic effects of this novel dual GIP and GLP-1 receptor agonist. FUNDING: Eli Lilly and Company.


Asunto(s)
Diabetes Mellitus Tipo 2 , Grasa Abdominal/química , Adulto , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Polipéptido Inhibidor Gástrico , Hemoglobina Glucada/análisis , Humanos , Hipoglucemiantes/uso terapéutico , Insulina de Acción Prolongada , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética , Resultado del Tratamiento
12.
Physiol Rep ; 8(24): e14669, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33356015

RESUMEN

The circadian clock and metabolism are tightly intertwined. Hence, the specific timing of interventions that target metabolic changes may affect their efficacy. Here we retrospectively compared the metabolic health effects of morning versus afternoon exercise training in metabolically compromised subjects enrolled in a 12-week exercise training program. Thirty-two adult males (58 ± 7 yrs) at risk for or diagnosed with type 2 diabetes performed 12 weeks of supervised exercise training either in the morning (8.00-10.00 a.m., N = 12) or in the afternoon (3.00-6.00 p.m., N = 20). Compared to participants who trained in the morning, participants who trained in the afternoon experienced superior beneficial effects of exercise training on peripheral insulin sensitivity (+5.2 ± 6.4 vs. -0.5 ± 5.4 µmol/min/kgFFM, p = .03), insulin-mediated suppression of adipose tissue lipolysis (-4.5 ± 13.7% vs. +5.9 ± 11%, p = .04), fasting plasma glucose levels (-0.3 ± 1.0 vs. +0.5 ± 0.8 mmol/l, p = .02), exercise performance (+0.40 ± 0.2 vs. +0.2 ± 0.1 W/kg, p = .05) and fat mass (-1.2 ± 1.3 vs. -0.2 ± 1.0 kg, p = .03). In addition, exercise training in the afternoon also tended to elicit superior effects on basal hepatic glucose output (p = .057). Our findings suggest that metabolically compromised subjects may reap more pronounced metabolic benefits from exercise training when this training is performed in the afternoon versus morning. CLINICALTRIALS.GOV ID: NCT01317576.


Asunto(s)
Ritmo Circadiano , Diabetes Mellitus Tipo 2/terapia , Terapia por Ejercicio/métodos , Ciclos de Actividad , Tejido Adiposo/metabolismo , Adiposidad , Anciano , Glucemia/metabolismo , Humanos , Resistencia a la Insulina , Lipólisis , Hígado/metabolismo , Masculino , Persona de Mediana Edad
13.
Artículo en Inglés | MEDLINE | ID: mdl-33160079

RESUMEN

In many different cell types neutral lipids can be stored in lipid droplets (LDs). Nowadays, LDs are viewed as dynamic organelles, which store and release fatty acids depending on energy demand (LD dynamics). Proteins like perilipin 2 (PLIN2) and PLIN5 decorate the LD membrane and are determinants of LD lipolysis and fat oxidation, thus affecting LD dynamics. Trained athletes and type 2 diabetes (T2D) patients both have high levels of intramyocellular lipid (IMCL). While IMCL content scales negatively with insulin resistance, athletes are highly insulin sensitive in contrast to T2D patients, the so-called athlete's paradox. Differences in LD dynamics may be an underlying factor explaining the athlete's paradox. We aimed to quantify PLIN2 and PLIN5 content at individual LDs as a reflection of the ability to switch between fatty acid release and storage depending on energy demand. Thus, we developed a novel fluorescent super-resolution microscopy approach and found that PLIN2 protein abundance at the LD surface was higher in T2D patients than in athletes. Localization of adipocyte triglyceride lipase (ATGL) to the LD surface was lower in LDs abundantly decorated with PLIN2. While PLIN5 abundance at the LD surface was similar in athletes and T2D patients, we have observed previously that the number of PLIN5 decorated LDs was higher in athletes, indicating more LDs in close association with mitochondria. Thus, in athletes interaction of LDs with mitochondria was more pronounced and LDs have the protein machinery to be more dynamic, while in T2D patients the LD pool is more inert. This observation contributes to our understanding of the athlete's paradox.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Entrenamiento Aeróbico , Lipasa/metabolismo , Gotas Lipídicas/metabolismo , Perilipina-2/metabolismo , Perilipina-5/metabolismo , Adulto , Anciano , Atletas , Biomarcadores/análisis , Biomarcadores/metabolismo , Biopsia , Diabetes Mellitus Tipo 2/patología , Ácidos Grasos/metabolismo , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Lipasa/análisis , Lipólisis , Masculino , Microscopía Confocal/métodos , Persona de Mediana Edad , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Oxidación-Reducción , Perilipina-2/análisis , Perilipina-5/análisis , Adulto Joven
14.
Obesity (Silver Spring) ; 28 Suppl 1: S93-S103, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32645256

RESUMEN

OBJECTIVE: Exercise has been shown to improve cardiometabolic health, yet neither the molecular connection nor the effects of exercise timing have been elucidated. The aim of this study was to investigate whether ad libitum or time-restricted mild exercise reduces atherosclerosis development in atherosclerosis-prone dyslipidemic APOE*3-Leiden.CETP mice and whether mild exercise training in men with obesity affects lipoprotein levels. METHODS: Mice were group-housed and subjected to ad libitum or time-restricted (first or last 6 hours of the active phase) voluntary wheel running for 16 weeks while on a cholesterol-rich diet, after which atherosclerosis development was assessed in the aortic root. Furthermore, nine men with obesity followed a 12-week mild exercise training program. Lipoprotein levels were measured by nuclear magnetic resonance spectroscopy in plasma collected pre and post exercise training. RESULTS: Wheel running did not affect plasma lipid levels, uptake of triglyceride-derived fatty acids by tissues, and aortic atherosclerotic lesion size or severity. Markers of training status were unaltered. Exercise training in men with obesity did not alter lipoprotein levels. CONCLUSIONS: Mild exercise training does not reduce dyslipidemia or atherosclerosis development in APOE*3-Leiden.CETP mice or affect lipoprotein levels in humans. Future research on the effects of (time-restricted) exercise on atherosclerosis or lipid metabolism should consider more vigorous exercise protocols.


Asunto(s)
Apolipoproteína E3/metabolismo , Aterosclerosis/sangre , Lipoproteínas/sangre , Obesidad/fisiopatología , Condicionamiento Físico Animal/métodos , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones
15.
Physiol Rep ; 8(12): e14416, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32562350

RESUMEN

Exercise training and physical activity are known to be associated with high mitochondrial content and oxidative capacity in skeletal muscle. Metabolic diseases including obesity and insulin resistance are associated with low mitochondrial capacity in skeletal muscle. Certain transcriptional factors such as PGC-1α are known to mediate the exercise response; however, the precise molecular mechanisms involved in the adaptation to exercise are not completely understood. We performed multiple measurements of mitochondrial capacity both in vivo and ex vivo in lean or overweight individuals before and after an 18-day aerobic exercise training regimen. These results were compared to lean, active individuals. Aerobic training in these individuals resulted in a marked increase in mitochondrial oxidative respiratory capacity without an appreciable increase in mitochondrial content. These adaptations were associated with robust transcriptome changes. This work also identifies the Tribbles pseudokinase 1, TRIB1, as a potential mediator of the exercise response in human skeletal muscle.


Asunto(s)
Ejercicio Físico/fisiología , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Mitocondrias Musculares/metabolismo , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Adulto , Peso Corporal , Biología Computacional/métodos , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Consumo de Oxígeno/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/genética
16.
J Appl Physiol (1985) ; 125(5): 1585-1593, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30212302

RESUMEN

Rodent studies have indicated that physical exercise may improve adipose tissue function. We investigated the effects of a 12-wk supervised, progressive exercise training program on adipocyte morphology and abdominal subcutaneous adipose tissue function in metabolically well-phenotyped subjects with obesity. Men with obesity ( n = 21) participated in a 12-wk supervised, progressive, combined exercise training program consisting of aerobic exercise (30 min at 70% of maximal power output 2 times/wk) and resistance exercise (3 × 10 repetitions at 60% of 1 repeated maximum 1 time/wk), with adjustment of exercise intensity every 4 wk. At baseline and after intervention, abdominal subcutaneous adipose tissue biopsies were collected to determine 1) adipocyte morphology, 2) gene expression of markers for lipolysis, inflammation, browning, adipokines, and mitochondrial biogenesis/function, 3) protein expression of mitochondrial oxidative phosphorylation (OXPHOS) complexes, and 4) ex vivo basal and ß2-adrenergic stimulated lipolysis. The exercise training program, which increased maximal aerobic capacity ( P < 0.001) and muscle strength ( P < 0.001), slightly reduced adipose tissue mass (~0.7 kg, P = 0.021) but did not affect abdominal subcutaneous adipocyte size ( P = 0.744), adipose tissue gene expression of markers for mitochondrial biogenesis and function, browning, lipolysis, inflammation and adipokines, total OXPHOS protein content ( P = 0.789), or ß2-adrenergic sensitivity of lipolysis ( P = 0.555). A 12-wk supervised, progressive exercise training program did not alter abdominal subcutaneous adipocyte morphology and adipose tissue gene/protein expression of markers related to adipose tissue function or ß2-adrenergic sensitivity of lipolysis in male subjects with obesity. NEW & NOTEWORTHY Studies that investigated the effects of exercise training on adipose tissue function in well-phenotyped humans are scarce. We demonstrate that 12 wk of supervised exercise training improved physical fitness and peripheral insulin sensitivity but did not alter abdominal subcutaneous adipocyte morphology, adipose tissue gene and protein expression of markers related to adipose tissue function, or ß2-adrenergic receptor-mediated lipolysis in men with obesity. A prolonged and/or more intense training program may be required to improve human adipose tissue function.


Asunto(s)
Adipocitos/patología , Ejercicio Físico/fisiología , Lipólisis , Obesidad/terapia , Grasa Subcutánea Abdominal/patología , Adipocitos/metabolismo , Adulto , Anciano , Humanos , Masculino , Persona de Mediana Edad , Obesidad/patología , Entrenamiento de Fuerza , Grasa Subcutánea Abdominal/metabolismo
17.
Diabetes Care ; 41(10): 2245-2254, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30072402

RESUMEN

OBJECTIVE: Some individuals with type 2 diabetes do not reap metabolic benefits from exercise training, yet the underlying mechanisms of training response variation are largely unexplored. We classified individuals with type 2 diabetes (n = 17) as nonresponders (n = 6) or responders (n = 11) based on changes in phosphocreatine (PCr) recovery rate after 10 weeks of aerobic training. We aimed to determine whether the training response variation in PCr recovery rate was marked by distinct epigenomic profiles in muscle prior to training. RESEARCH DESIGN AND METHODS: PCr recovery rate as an indicator of in vivo muscle mitochondrial function in vastus lateralis (31P-magnetic resonance spectroscopy), insulin sensitivity (M-value; hyperinsulinemic-euglycemic clamp), aerobic capacity (Vo2peak), and blood profiles were determined pretraining and post-training. Muscle biopsies were performed pretraining in vastus lateralis for the isolation of primary skeletal muscle cells (HSkMCs) and assessments of global DNA methylation and RNA sequencing in muscle tissue and HSkMCs. RESULTS: By design, nonresponders decreased and responders increased PCr recovery rate with training. In nonresponders, insulin sensitivity did not improve and glycemic control (HbA1c) worsened. In responders, insulin sensitivity improved. Vo2peak improved by ∼12% in both groups. Nonresponders and responders were distinguished by distinct pretraining molecular (DNA methylation, RNA expression) patterns in muscle tissue, as well as in HSkMCs. Enrichment analyses identified elevations in glutathione regulation, insulin signaling, and mitochondrial metabolism in nonresponders pretraining, which was reflected in vivo by higher pretraining PCr recovery rate and insulin sensitivity in these same individuals. CONCLUSIONS: A training response variation for clinical risk factors in individuals with type 2 diabetes is reflected by distinct basal myocellular epigenomic profiles in muscle tissue, some of which are maintained in HSkMCs, suggesting a cell-autonomous underpinning. Our data provide new evidence to potentially shift the diabetes treatment paradigm for individuals who do not benefit from training, such that supplemental treatment can be designed.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Ejercicio Físico/fisiología , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Fosfocreatina/metabolismo , Biopsia , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Epigenómica , Femenino , Técnica de Clampeo de la Glucosa , Humanos , Insulina/metabolismo , Masculino , Persona de Mediana Edad , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Fosfocreatina/sangre , Recuperación de la Función , Factores de Tiempo
18.
Mol Metab ; 17: 71-81, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30174227

RESUMEN

OBJECTIVE: Intramyocellular lipid (IMCL) storage negatively associates with insulin resistance, albeit not in endurance-trained athletes. We investigated the putative contribution of lipid droplet (LD) morphology and subcellular localization to the so-called athlete's paradox. METHODS: We performed quantitative immunofluorescent confocal imaging of muscle biopsy sections from endurance Trained, Lean sedentary, Obese, and Type 2 diabetes (T2DM) participants (n = 8/group). T2DM patients and Trained individuals were matched for IMCL content. Furthermore we performed this analysis in biopsies of T2DM patients before and after a 12-week exercise program (n = 8). RESULTS: We found marked differences in lipid storage morphology between trained subjects and T2DM: the latter group mainly store lipid in larger LDs in the subsarcolemmal (SS) region of type II fibers, whereas Trained store lipid in a higher number of LDs in the intramyofibrillar (IMF) region of type I fibers. In addition, a twelve-week combined endurance and strength exercise program resulted in a LD phenotype shift in T2DM patients partly towards an 'athlete-like' phenotype, accompanied by improved insulin sensitivity. Proteins involved in LD turnover were also more abundant in Trained than in T2DM and partly changed in an 'athlete-like' fashion in T2DM patients upon exercise training. CONCLUSIONS: Our findings provide a physiological explanation for the athlete's paradox and reveal LD morphology and distribution as a major determinant of skeletal muscle insulin sensitivity.


Asunto(s)
Ejercicio Físico/fisiología , Gotas Lipídicas/metabolismo , Gotas Lipídicas/fisiología , Adulto , Atletas , Biopsia con Aguja/métodos , Estudios Transversales , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Proteínas de Unión al GTP , Humanos , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos/fisiología , Masculino , Persona de Mediana Edad , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Países Bajos , Obesidad/metabolismo , Sobrepeso/metabolismo , Resistencia Física/fisiología
19.
Front Physiol ; 9: 704, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29942262

RESUMEN

Mice overexpressing NAMPT in skeletal muscle (NamptTg mice) develop higher exercise endurance and maximal aerobic capacity (VO2max) following voluntary exercise training compared to wild-type (WT) mice. Here, we aimed to investigate the mechanisms underlying by determining skeletal muscle mitochondrial respiratory capacity in NamptTg and WT mice. Body weight and body composition, tissue weight (gastrocnemius, quadriceps, soleus, heart, liver, and epididymal white adipose tissue), skeletal muscle and liver glycogen content, VO2max, skeletal muscle mitochondrial respiratory capacity (measured by high-resolution respirometry), skeletal muscle gene expression (measured by microarray and qPCR), and skeletal muscle protein content (measured by Western blot) were determined following 6 weeks of voluntary exercise training (access to running wheel) in 13-week-old male NamptTg (exercised NamptTg) mice and WT (exercised WT) mice. Daily running distance and running time during the voluntary exercise training protocol were recorded. Daily running distance (p = 0.51) and running time (p = 0.85) were not significantly different between exercised NamptTg mice and exercised WT mice. VO2max was higher in exercised NamptTg mice compared to exercised WT mice (p = 0.02). Body weight (p = 0.92), fat mass (p = 0.49), lean mass (p = 0.91), tissue weight (all p > 0.05), and skeletal muscle (p = 0.72) and liver (p = 0.94) glycogen content were not significantly different between exercised NamptTg mice and exercised WT mice. Complex I oxidative phosphorylation (OXPHOS) respiratory capacity supported by fatty acid substrates (p < 0.01), maximal (complex I+II) OXPHOS respiratory capacity supported by glycolytic (p = 0.02) and fatty acid (p < 0.01) substrates, and maximal uncoupled respiratory capacity supported by fatty acid substrates (p < 0.01) was higher in exercised NamptTg mice compared to exercised WT mice. Transcriptomic analyses revealed differential expression for genes involved in oxidative metabolism in exercised NamptTg mice compared to exercised WT mice, specifically, enrichment for the gene set related to the SIRT3-mediated signaling pathway. SIRT3 protein content correlated with NAMPT protein content (r = 0.61, p = 0.04). In conclusion, NamptTg mice develop higher exercise capacity following voluntary exercise training compared to WT mice, which is paralleled by higher mitochondrial respiratory capacity in skeletal muscle. The changes in SIRT3 targets suggest that these effects are due to remodeling of mitochondrial function.

20.
Mol Metab ; 7: 1-11, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29146412

RESUMEN

OBJECTIVE: Nicotinamide phosphoribosyl transferase (NAMPT) is the rate-limiting enzyme in the salvage pathway that produces nicotinamide adenine dinucleotide (NAD+), an essential co-substrate regulating a myriad of signaling pathways. We produced a mouse that overexpressed NAMPT in skeletal muscle (NamptTg) and hypothesized that NamptTg mice would have increased oxidative capacity, endurance performance, and mitochondrial gene expression, and would be rescued from metabolic abnormalities that developed with high fat diet (HFD) feeding. METHODS: Insulin sensitivity (hyperinsulinemic-euglycemic clamp) was assessed in NamptTg and WT mice fed very high fat diet (VHFD, 60% by kcal) or chow diet (CD). The aerobic capacity (VO2max) and endurance performance of NamptTg and WT mice before and after 7 weeks of voluntary exercise training (running wheel in home cage) or sedentary conditions (no running wheel) were measured. Skeletal muscle mitochondrial gene expression was also measured in exercised and sedentary mice and in mice fed HFD (45% by kcal) or low fat diet (LFD, 10% by kcal). RESULTS: NAMPT enzyme activity in skeletal muscle was 7-fold higher in NamptTg mice versus WT mice. There was a concomitant 1.6-fold elevation of skeletal muscle NAD+. NamptTg mice fed VHFD were partially protected against body weight gain, but not against insulin resistance. Notably, voluntary exercise training elicited a 3-fold higher exercise endurance in NamptTg versus WT mice. Mitochondrial gene expression was higher in NamptTg mice compared to WT mice, especially when fed HFD. Mitochondrial gene expression was higher in exercised NamptTg mice than in sedentary WT mice. CONCLUSIONS: Our studies have unveiled a fascinating interaction between elevated NAMPT activity in skeletal muscle and voluntary exercise that was manifest as a striking improvement in exercise endurance.


Asunto(s)
Citocinas/metabolismo , Músculo Esquelético/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Consumo de Oxígeno , Condicionamiento Físico Animal , Animales , Citocinas/genética , Dieta Alta en Grasa , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Músculo Esquelético/fisiología , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA