RESUMEN
Candida auris is a fungal pathogen of humans responsible for nosocomial infections with high mortality rates. High levels of resistance to antifungal drugs and environmental persistence mean these infections are difficult to treat and eradicate from a healthcare setting. Understanding the life cycle and the genetics of this fungus underpinning clinically relevant traits, such as antifungal resistance and virulence, is of the utmost importance to develop novel treatments and therapies. Epidemiological and genomic studies have identified five geographical clades (I-V), which display phenotypic and genomic differences. Aggregation of cells, a phenotype primarily of clade III strains, has been linked to reduced virulence in some infection models. The aggregation phenotype has thus been associated with conferring an advantage for (skin) colonisation rather than for systemic infection. However, strains with different clade affiliations were compared to infer the effects of different morphologies on virulence. This makes it difficult to distinguish morphology-dependent causes from clade-specific or even strain-specific genetic factors. Here, we identify two different types of aggregation: one induced by antifungal treatment which is a result of a cell separation defect; and a second which is controlled by growth conditions and only occurs in strains with the ability to aggregate. The latter aggregation type depends on an ALS-family adhesin which is differentially expressed during aggregation in an aggregative C. auris strain. Finally, we demonstrate that macrophages cannot clear aggregates, suggesting that aggregation might after all provide a benefit during systemic infection and could facilitate long-term persistence in the host.
Asunto(s)
Antifúngicos , Candida , Humanos , Antifúngicos/uso terapéutico , Candida/genética , Candida auris , Virulencia , Farmacorresistencia Fúngica , Adhesinas Bacterianas/metabolismo , Pruebas de Sensibilidad MicrobianaRESUMEN
Most microbes have developed responses that protect them against stresses relevant to their niches. Some that inhabit reasonably predictable environments have evolved anticipatory responses that protect against impending stresses that are likely to be encountered in their niches-termed "adaptive prediction". Unlike yeasts such as Saccharomyces cerevisiae, Kluyveromyces lactis and Yarrowia lipolytica and other pathogenic Candida species we examined, the major fungal pathogen of humans, Candida albicans, activates an oxidative stress response following exposure to physiological glucose levels before an oxidative stress is even encountered. Why? Using competition assays with isogenic barcoded strains, we show that "glucose-enhanced oxidative stress resistance" phenotype enhances the fitness of C. albicans during neutrophil attack and during systemic infection in mice. This anticipatory response is dependent on glucose signalling rather than glucose metabolism. Our analysis of C. albicans signalling mutants reveals that the phenotype is not dependent on the sugar receptor repressor pathway, but is modulated by the glucose repression pathway and down-regulated by the cyclic AMP-protein kinase A pathway. Changes in catalase or glutathione levels do not correlate with the phenotype, but resistance to hydrogen peroxide is dependent on glucose-enhanced trehalose accumulation. The data suggest that the evolution of this anticipatory response has involved the recruitment of conserved signalling pathways and downstream cellular responses, and that this phenotype protects C. albicans from innate immune killing, thereby promoting the fitness of C. albicans in host niches.
Asunto(s)
Candida albicans , Glucosa , Humanos , Animales , Ratones , Glucosa/metabolismo , Estrés Oxidativo/fisiología , Neutrófilos , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/metabolismoRESUMEN
Establishing suitable in vitro culture conditions for microorganisms is crucial for dissecting their biology and empowering potential applications. However, a significant number of bacterial and fungal species, including Pneumocystis jirovecii, remain unculturable, hampering research efforts. P. jirovecii is a deadly pathogen of humans that causes life-threatening pneumonia in immunocompromised individuals and transplant patients. Despite the major impact of Pneumocystis on human health, limited progress has been made in dissecting the pathobiology of this fungus. This is largely due to the fact that its experimental dissection has been constrained by the inability to culture the organism in vitro. We present a comprehensive in silico genome-scale metabolic model of Pneumocystis growth and metabolism, to identify metabolic requirements and imbalances that hinder growth in vitro. We utilise recently published genome data and available information in the literature as well as bioinformatics and software tools to develop and validate the model. In addition, we employ relaxed Flux Balance Analysis and Reinforcement Learning approaches to make predictions regarding metabolic fluxes and to identify critical components of the Pneumocystis growth medium. Our findings offer insights into the biology of Pneumocystis and provide a novel strategy to overcome the longstanding challenge of culturing this pathogen in vitro.
RESUMEN
The interaction between the Candida albicans cell wall and pattern recognition receptors is crucial for the initiation of host immune responses, which, ultimately, contribute to the clearance of this pathogenic fungus. In the present study, we investigate the ability of C. albicans mannans to modulate immune response and induce innate immune memory (also termed trained immunity). Using mutants of C. albicans that are defective in or lack mannosyl residues, we show that alterations in the mannosylation of the C. albicans cell wall affect the innate cytokine response and strongly reduce the secretion of T-cell-derived cytokines. Subsequently, we demonstrate that the branching of N-linked mannan, but not O-linked mannan, is essential to potentiate the induction of trained immunity, a process mediated by dectin 2. In conclusion, N-linked mannan is needed, in addition to ß-glucans, for an effective induction of trained immunity by C. albicans.
Asunto(s)
Candida albicans , Citocinas , Inmunidad Innata , Lectinas Tipo C , Mananos , Candida albicans/inmunología , Lectinas Tipo C/metabolismo , Lectinas Tipo C/inmunología , Mananos/inmunología , Animales , Ratones , Citocinas/metabolismo , Pared Celular/inmunología , beta-Glucanos/inmunología , Ratones Endogámicos C57BL , Inmunidad EntrenadaRESUMEN
Innate immunity provides essential protection against life-threatening fungal infections. However, the outcomes of individual skirmishes between immune cells and fungal pathogens are not a foregone conclusion because some pathogens have evolved mechanisms to evade phagocytic recognition, engulfment, and killing. For example, Candida albicans can escape phagocytosis by activating cellular morphogenesis to form lengthy hyphae that are challenging to engulf. Through live imaging of C. albicans-macrophage interactions, we discovered that macrophages can counteract this by folding fungal hyphae. The folding of fungal hyphae is promoted by Dectin-1, ß2-integrin, VASP, actin-myosin polymerization, and cell motility. Folding facilitates the complete engulfment of long hyphae in some cases and it inhibits hyphal growth, presumably tipping the balance toward successful fungal clearance.
Asunto(s)
Candida albicans/patogenicidad , Hifa/citología , Macrófagos/metabolismo , Fagocitosis , Quinasas de la Proteína-Quinasa Activada por el AMP , Actomiosina/metabolismo , Animales , Antígenos CD18/metabolismo , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Humanos , Hifa/patogenicidad , Lectinas Tipo C/metabolismo , Macrófagos/microbiología , Ratones , Proteínas Quinasas/metabolismo , Células RAW 264.7RESUMEN
Candida auris is an emerging, multidrug-resistant fungal pathogen that causes refractory colonization and life-threatening, invasive nosocomial infections. The high proportion of C. auris isolates that display antifungal resistance severely limits treatment options. Combination therapies provide a possible strategy by which to enhance antifungal efficacy and prevent the emergence of further resistance. Therefore, we examined drug combinations using antifungals that are already in clinical use or are undergoing clinical trials. Using checkerboard assays, we screened combinations of 5-flucytosine and manogepix (the active form of the novel antifungal drug fosmanogepix) with anidulafungin, amphotericin B, or voriconazole against drug resistant and susceptible C. auris isolates from clades I and III. Fractional inhibitory concentration indices (FICI values) of 0.28 to 0.75 and 0.36 to 1.02 were observed for combinations of anidulafungin with manogepix or 5-flucytosine, respectively, indicating synergistic activity. The high potency of these anidulafungin combinations was confirmed using live-cell microfluidics-assisted imaging of the fungal growth. In summary, combinations of anidulafungin with manogepix or 5-flucytosine show great potential against both resistant and susceptible C. auris isolates.
Asunto(s)
Antifúngicos , Flucitosina , Antifúngicos/farmacología , Anidulafungina/farmacología , Flucitosina/farmacología , Candida auris , Candida , Pruebas de Sensibilidad MicrobianaRESUMEN
BACKGROUND: Our previous proteomics data obtained from Candida albicans recovered after serial passage in a murine model of systemic infection revealed that Orf19.36.1 expression correlates with the virulence of the fungus. Therefore, the impact of ORF19.36.1 upon virulence was tested in this study. MATERIALS & METHODS: CRISPR-Cas9 technology was used to construct homozygous C. albicans orf19.36.1 null mutants and the phenotypes of these mutants examined in vitro (filamentation, invasion, adhesion, biofilm formation, hydrolase activities) and in vivo assays. RESULTS: The deletion of ORF19.36.1 did not significantly impact the phenotypes examined or the virulence of C. albicans in two infection models. CONCLUSION: These results suggest that, although Orf19.36.1 expression correlates with virulence, this protein is not essential for C. albicans pathobiology.
Asunto(s)
Candida albicans , Candidiasis , Proteínas Fúngicas , Animales , Ratones , Candidiasis/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Virulencia/genéticaRESUMEN
We are constantly exposed to the threat of fungal infection. The outcome-clearance, commensalism or infection-depends largely on the ability of our innate immune defences to clear infecting fungal cells versus the success of the fungus in mounting compensatory adaptive responses. As each seeks to gain advantage during these skirmishes, the interactions between host and fungal pathogen are complex and dynamic. Nevertheless, simply compromising the physiological robustness of fungal pathogens reduces their ability to evade antifungal immunity, their virulence, and their tolerance against antifungal therapy. In this article I argue that this physiological robustness is based on a 'Resilience Network' which mechanistically links and controls fungal growth, metabolism, stress resistance and drug tolerance. The elasticity of this network probably underlies the phenotypic variability of fungal isolates and the heterogeneity of individual cells within clonal populations. Consequently, I suggest that the definition of the fungal Resilience Network represents an important goal for the future which offers the clear potential to reveal drug targets that compromise drug tolerance and synergise with current antifungal therapies.
Asunto(s)
Antifúngicos , Interacciones Huésped-Patógeno , VirulenciaRESUMEN
Successful human colonizers such as Candida pathogens have evolved distinct strategies to survive and proliferate within the human host. These include sophisticated mechanisms to evade immune surveillance and adapt to constantly changing host microenvironments where nutrient limitation, pH fluctuations, oxygen deprivation, changes in temperature, or exposure to oxidative, nitrosative, and cationic stresses may occur. Here, we review the current knowledge and recent findings highlighting the remarkable ability of medically important Candida species to overcome a broad range of host-imposed constraints and how this directly affects their physiology and pathogenicity. We also consider the impact of these adaptation mechanisms on immune recognition, biofilm formation, and antifungal drug resistance, as these pathogens often exploit specific host constraints to establish a successful infection. Recent studies of adaptive responses to physiological niches have improved our understanding of the mechanisms established by fungal pathogens to evade the immune system and colonize the host, which may facilitate the design of innovative diagnostic tests and therapeutic approaches for Candida infections.
Asunto(s)
Adaptación Fisiológica/inmunología , Antifúngicos/uso terapéutico , Candida/fisiología , Candidiasis , Farmacorresistencia Fúngica/inmunología , Interacciones Huésped-Parásitos/inmunología , Candidiasis/tratamiento farmacológico , Candidiasis/inmunología , Candidiasis/patología , HumanosRESUMEN
The fungal cell wall is an essential organelle that maintains cellular morphology and protects the fungus from environmental insults. For fungal pathogens such as Candida albicans, it provides a degree of protection against attack by host immune defences. However, the cell wall also presents key epitopes that trigger host immunity and attractive targets for antifungal drugs. Rather than being a rigid shield, it has become clear that the fungal cell wall is an elastic organelle that permits rapid changes in cell volume and the transit of large liposomal particles such as extracellular vesicles. The fungal cell wall is also flexible in that it adapts to local environmental inputs, thereby enhancing the fitness of the fungus in these microenvironments. Recent evidence indicates that this cell wall adaptation affects host-fungus interactions by altering the exposure of major cell wall epitopes that are recognised by innate immune cells. Therefore, we discuss the impact of environmental adaptation upon fungal cell wall structure, and how this affects immune recognition, focussing on C. albicans and drawing parallels with other fungal pathogens.
Asunto(s)
Candida albicans/citología , Candida albicans/inmunología , Pared Celular/inmunología , Candida albicans/patogenicidad , Candidiasis/inmunología , Candidiasis/microbiología , HumanosRESUMEN
BACKGROUND: Emergence of Candida glabrata, which causes potential life-threatening invasive candidiasis, has been widely associated with high morbidity and mortality. In order to cause disease in vivo, a robust and highly efficient metabolic adaptation is crucial for the survival of this fungal pathogen in human host. In fact, reprogramming of the carbon metabolism is believed to be indispensable for phagocytosed C. glabrata within glucose deprivation condition during infection. METHODS: In this study, the metabolic responses of C. glabrata under acetate growth condition was explored using high-throughput transcriptomic and proteomic approaches. RESULTS: Collectively, a total of 1482 transcripts (26.96%) and 242 proteins (24.69%) were significantly up- or down-regulated. Both transcriptome and proteome data revealed that the regulation of alternative carbon metabolism in C. glabrata resembled other fungal pathogens such as Candida albicans and Cryptococcus neoformans, with up-regulation of many proteins and transcripts from the glyoxylate cycle and gluconeogenesis, namely isocitrate lyase (ICL1), malate synthase (MLS1), phosphoenolpyruvate carboxykinase (PCK1) and fructose 1,6-biphosphatase (FBP1). In the absence of glucose, C. glabrata shifted its metabolism from glucose catabolism to anabolism of glucose intermediates from the available carbon source. This observation essentially suggests that the glyoxylate cycle and gluconeogenesis are potentially critical for the survival of phagocytosed C. glabrata within the glucose-deficient macrophages. CONCLUSION: Here, we presented the first global metabolic responses of C. glabrata to alternative carbon source using transcriptomic and proteomic approaches. These findings implicated that reprogramming of the alternative carbon metabolism during glucose deprivation could enhance the survival and persistence of C. glabrata within the host.
Asunto(s)
Candida glabrata/metabolismo , Carbono/metabolismo , Proteínas Fúngicas/metabolismo , Proteoma/metabolismo , Transcriptoma , Acetatos/metabolismo , Perfilación de la Expresión GénicaRESUMEN
Candida auris is an emerging pathogenic yeast of significant clinical concern because of its frequent intrinsic resistance to fluconazole and often other antifungal drugs and the high mortality rates associated with systemic infections. Furthermore, C. auris has a propensity for persistence and transmission in health care environments. The reasons for this efficient transmission are not well understood, and therefore we tested whether enhanced resistance to environmental stresses might contribute to the ability of C. auris to spread in health care environments. We compared C. auris to other pathogenic Candida species with respect to their resistance to individual stresses and combinations of stresses. Stress resistance was examined using in vitro assays on laboratory media and also on hospital linen. In general, the 17 C. auris isolates examined displayed similar degrees of resistance to oxidative, nitrosative, cationic and cell wall stresses as clinical isolates of C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, C. krusei, C. guilliermondii, C. lusitaniae and C. kefyr. All of the C. auris isolates examined were more sensitive to low pH (pH 2, but not pH 4) compared to C. albicans, but were more resistant to high pH (pH 13). C. auris was also sensitive to low pH, when tested on contaminated hospital linen. Most C. auris isolates were relatively thermotolerant, displaying significant growth at 47°C. Furthermore, C. auris was relatively resistant to certain combinations of combinatorial stress (e.g., pH 13 plus 47°C). Significantly, C. auris was sensitive to the stress combinations imposed by hospital laundering protocol (pH > 12 plus heat shock at >80°C), suggesting that current laundering procedures are sufficient to limit the transmission of this fungal pathogen via hospital linen.
Asunto(s)
Candida/patogenicidad , Candidiasis/transmisión , Ambiente , Hospitales , Estrés Fisiológico , Antifúngicos/farmacología , Ropa de Cama y Ropa Blanca/microbiología , Candida/clasificación , Candida/efectos de los fármacos , Candidiasis/microbiología , Farmacorresistencia Fúngica , Equipos y Suministros de Hospitales/microbiología , Humanos , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Estrés Nitrosativo , Estrés Oxidativo , TermotoleranciaRESUMEN
The human host comprises a range of specific niche environments. In order to successfully persist, pathogens such as Aspergillus fumigatus must adapt to these environments. One key example of in-host adaptation is the development of resistance to azole antifungals. Azole resistance in A. fumigatus is increasingly reported worldwide and the most commonly reported mechanisms are cyp51A mediated. Using a unique series of A. fumigatus isolates, obtained from a patient suffering from persistent and recurrent invasive aspergillosis over 2â¯years, this study aimed to gain insight into the genetic basis of in-host adaptation. Single nucleotide polymorphisms (SNPs) unique to a single isolate in this series, which had developed multi-azole resistance in-host, were identified. Two nonsense SNPs were recreated using CRISPR-Cas9; these were 213* in svf1 and 167* in uncharacterised gene AFUA_7G01960. Phenotypic analyses including antifungal susceptibility testing, mycelial growth rate assessment, lipidomics analysis and statin susceptibility testing were performed to associate genotypes to phenotypes. This revealed a role for svf1 in A. fumigatus oxidative stress sensitivity. In contrast, recapitulation of 167* in AFUA_7G01960 resulted in increased itraconazole resistance. Comprehensive lipidomics analysis revealed decreased ergosterol levels in strains containing this SNP, providing insight to the observed itraconazole resistance. Decreases in ergosterol levels were reflected in increased resistance to lovastatin and nystatin. Importantly, this study has identified a SNP in an uncharacterised gene playing a role in azole resistance via a non-cyp51A mediated resistance mechanism. This mechanism is of clinical importance, as this SNP was identified in a clinical isolate, which acquired azole resistance in-host.
Asunto(s)
Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Azoles/farmacología , Sistemas CRISPR-Cas , Farmacorresistencia Fúngica Múltiple/genética , Polimorfismo de Nucleótido Simple , Antifúngicos/farmacología , Aspergilosis/microbiología , Aspergillus fumigatus/crecimiento & desarrollo , Aspergillus fumigatus/aislamiento & purificación , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ergosterol , Proteínas Fúngicas/genética , Genotipo , Interacciones Huésped-Patógeno , Humanos , Itraconazol/farmacología , Pruebas de Sensibilidad Microbiana , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , FenotipoRESUMEN
Most fungal pathogens of humans display robust protective oxidative stress responses that contribute to their pathogenicity. The induction of enzymes that detoxify reactive oxygen species (ROS) is an essential component of these responses. We showed previously that ectopic expression of the heme-containing catalase enzyme in Candida albicans enhances resistance to oxidative stress, combinatorial oxidative plus cationic stress, and phagocytic killing. Clearly ectopic catalase expression confers fitness advantages in the presence of stress, and therefore in this study we tested whether it enhances fitness in the absence of stress. We addressed this using a set of congenic barcoded C. albicans strains that include doxycycline-conditional tetON-CAT1 expressors. We show that high basal catalase levels, rather than CAT1 induction following stress imposition, reduce ROS accumulation and cell death, thereby promoting resistance to acute peroxide or combinatorial stress. This conclusion is reinforced by our analyses of phenotypically diverse clinical isolates and the impact of stochastic variation in catalase expression upon stress resistance in genetically homogeneous C. albicans populations. Accordingly, cat1Δ cells are more sensitive to neutrophil killing. However, we find that catalase inactivation does not attenuate C. albicans virulence in mouse or invertebrate models of systemic candidiasis. Furthermore, our direct comparisons of fitness in vitro using isogenic barcoded CAT1, cat1Δ and tetON-CAT1 strains show that, while ectopic catalase expression confers a fitness advantage during peroxide stress, it confers a fitness defect in the absence of stress. This fitness defect is suppressed by iron supplementation. Also high basal catalase levels induce key iron assimilatory functions (CFL5, FET3, FRP1, FTR1). We conclude that while high basal catalase levels enhance peroxide stress resistance, they place pressure on iron homeostasis through an elevated cellular demand for iron, thereby reducing the fitness of C. albicans in iron-limiting tissues within the host.
Asunto(s)
Candida albicans/enzimología , Candidiasis/microbiología , Catalasa/metabolismo , Proteínas Fúngicas/metabolismo , Hierro/metabolismo , Animales , Candida albicans/genética , Candida albicans/metabolismo , Catalasa/genética , Femenino , Proteínas Fúngicas/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Estrés OxidativoRESUMEN
The Ypd1 phosphorelay protein is a central constituent of fungal two-component signal transduction pathways. Inhibition of Ypd1 in Saccharomyces cerevisiae and Cryptococcus neoformans is lethal due to the sustained activation of the 'p38-related' Hog1 stress-activated protein kinase (SAPK). As two-component signalling proteins are not found in animals, Ypd1 is considered to be a prime antifungal target. However, a major fungal pathogen of humans, Candida albicans, can survive the concomitant sustained activation of Hog1 that occurs in cells lacking YPD1. Here we show that the sustained activation of Hog1 upon Ypd1 loss is mediated through the Ssk1 response regulator. Moreover, we present evidence that C. albicans survives SAPK activation in the short-term, following Ypd1 loss, by triggering the induction of protein tyrosine phosphatase-encoding genes which prevent the accumulation of lethal levels of phosphorylated Hog1. In addition, our studies reveal an unpredicted, reversible, mechanism that acts to substantially reduce the levels of phosphorylated Hog1 in ypd1Δ cells following long-term sustained SAPK activation. Indeed, over time, ypd1Δ cells become phenotypically indistinguishable from wild-type cells. Importantly, we also find that drug-induced down-regulation of YPD1 expression actually enhances the virulence of C. albicans in two distinct animal infection models. Investigating the underlying causes of this increased virulence, revealed that drug-mediated repression of YPD1 expression promotes hyphal growth both within murine kidneys, and following phagocytosis, thus increasing the efficacy by which C. albicans kills macrophages. Taken together, these findings challenge the targeting of Ypd1 proteins as a general antifungal strategy and reveal novel cellular adaptation mechanisms to sustained SAPK activation.
Asunto(s)
Candida albicans/fisiología , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Animales , Candida albicans/enzimología , Candida albicans/genética , Candida albicans/patogenicidad , Regulación hacia Abajo , Femenino , Proteínas Fúngicas/genética , Eliminación de Gen , Humanos , Ratones , Ratones Endogámicos BALB C , Proteínas Quinasas Activadas por Mitógenos/genética , Modelos Biológicos , Fenotipo , Fosforilación , Estrés Fisiológico , VirulenciaRESUMEN
Flexibility in carbon metabolism is pivotal for the survival and propagation of many human fungal pathogens within host niches. Indeed, flexible carbon assimilation enhances pathogenicity and affects the immunogenicity of Candida albicans. Over the last decade, Candida glabrata has emerged as one of the most common and problematic causes of invasive candidiasis. Despite this, the links between carbon metabolism, fitness, and pathogenicity in C. glabrata are largely unexplored. Therefore, this study has investigated the impact of alternative carbon metabolism on the fitness and pathogenic attributes of C. glabrata. We confirm our previous observation that growth on carbon sources other than glucose, namely acetate, lactate, ethanol, or oleate, attenuates both the planktonic and biofilm growth of C. glabrata, but that biofilms are not significantly affected by growth on glycerol. We extend this by showing that C. glabrata cells grown on these alternative carbon sources undergo cell wall remodeling, which reduces the thickness of their ß-glucan and chitin inner layer while increasing their outer mannan layer. Furthermore, alternative carbon sources modulated the oxidative stress resistance of C. glabrata as well as the resistance of C. glabrata to an antifungal drug. In short, key fitness and pathogenic attributes of C. glabrata are shown to be dependent on carbon source. This reaffirms the perspective that the nature of the carbon sources available within specific host niches is crucial for C. glabrata pathogenicity during infection.
Asunto(s)
Biopelículas , Candida glabrata/metabolismo , Metabolismo de los Hidratos de Carbono , Pared Celular/metabolismo , Farmacorresistencia Fúngica , Estrés Oxidativo , Acetatos/metabolismo , Candida glabrata/efectos de los fármacos , Candida glabrata/fisiología , Pared Celular/ultraestructura , Etanol/metabolismo , Ácido Láctico/metabolismo , Ácidos Oléicos/metabolismoRESUMEN
The pathogenicity of the clinically important yeast, Candida albicans, is dependent on robust responses to host-imposed stresses. These stress responses have generally been dissected in vitro at 30°C on artificial growth media that do not mimic host niches. Yet host inputs, such as changes in carbon source or temperature, are known to affect C. albicans stress adaptation. Therefore, we performed screens to identify novel regulators that promote stress resistance during growth on a physiologically relevant carboxylic acid and at elevated temperatures. These screens revealed that, under these 'non-standard' growth conditions, numerous uncharacterised regulators are required for stress resistance in addition to the classical Hog1, Cap1 and Cta4 stress pathways. In particular, two transcription factors (Sfp1 and Rtg3) promote stress resistance in a reciprocal, carbon source-conditional manner. SFP1 is induced in stressed glucose-grown cells, whereas RTG3 is upregulated in stressed lactate-grown cells. Rtg3 and Sfp1 regulate the expression of key stress genes such as CTA4, CAP1 and HOG1 in a carbon source-dependent manner. These mechanisms underlie the stress sensitivity of C. albicans sfp1 cells during growth on glucose, and rtg3 cells on lactate. The data suggest that C. albicans exploits environmentally contingent regulatory mechanisms to retain stress resistance during host colonisation.
Asunto(s)
Candida albicans/fisiología , Estrés Oxidativo/fisiología , Aclimatación , Adaptación Fisiológica , Proteínas de Arabidopsis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Carbono/metabolismo , Pared Celular/metabolismo , Medios de Cultivo , Proteínas de Unión al ADN/metabolismo , Farmacorresistencia Fúngica , Proteínas Fúngicas/metabolismo , Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos , Presión OsmóticaRESUMEN
In order to survive, Aspergillus fumigatus must adapt to specific niche environments. Adaptation to the human host includes modifications facilitating persistent colonisation and the development of azole resistance. The aim of this study is to advance understanding of the genetic and physiological adaptation of A. fumigatus in patients during infection and treatment. Thirteen A. fumigatus strains were isolated from a single chronic granulomatous disease patient suffering from persistent and recurrent invasive aspergillosis over a period of 2â¯years. All strains had identical microsatellite genotypes and were considered isogenic. Whole genome comparisons identified 248 non-synonymous single nucleotide polymorphisms. These non-synonymous mutations have potential to play a role in in-host adaptation. The first 2 strains isolated were azole susceptible, whereas later isolates were itraconazole, voriconazole and/or posaconazole resistant. Growth assays in the presence and absence of various antifungal stressors highlighted minor changes in growth rate and stress resistance, with exception of one isolate showing a significant growth defect. Poor conidiation was observed in later isolates. In certain drug resistant isolates conidiation was restored in the presence of itraconazole. Differences in virulence were observed as demonstrated in a Galleria mellonella infection model. We conclude that the microevolution of A. fumigatus in this patient has driven the emergence of both Cyp51A-independent and Cyp51A-dependent, azole resistance mechanisms, and additional phenotypes that are likely to have promoted fungal persistence.
Asunto(s)
Aspergillus fumigatus/genética , Farmacorresistencia Fúngica/genética , Evolución Molecular , Interacciones Huésped-Patógeno/genética , Adaptación Fisiológica/genética , Antifúngicos/farmacología , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Aspergillus fumigatus/efectos de los fármacos , Azoles/farmacología , Sistema Enzimático del Citocromo P-450/genética , Proteínas Fúngicas/genética , Genotipo , Enfermedad Granulomatosa Crónica/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Repeticiones de Microsatélite , Fenotipo , Polimorfismo de Nucleótido Simple , Virulencia , Secuenciación Completa del GenomaRESUMEN
Efficient carbon assimilation is critical for microbial growth and pathogenesis. The environmental yeast Saccharomyces cerevisiae is "Crabtree positive", displaying a rapid metabolic switch from the assimilation of alternative carbon sources to sugars. Following exposure to sugars, this switch is mediated by the transcriptional repression of genes (carbon catabolite repression) and the turnover (catabolite inactivation) of enzymes involved in the assimilation of alternative carbon sources. The pathogenic yeast Candida albicans is Crabtree negative. It has retained carbon catabolite repression mechanisms, but has undergone posttranscriptional rewiring such that gluconeogenic and glyoxylate cycle enzymes are not subject to ubiquitin-mediated catabolite inactivation. Consequently, when glucose becomes available, C. albicans can continue to assimilate alternative carbon sources alongside the glucose. We show that this metabolic flexibility promotes host colonization and virulence. The glyoxylate cycle enzyme isocitrate lyase (CaIcl1) was rendered sensitive to ubiquitin-mediated catabolite inactivation in C. albicans by addition of a ubiquitination site. This mutation, which inhibits lactate assimilation in the presence of glucose, reduces the ability of C. albicans cells to withstand macrophage killing, colonize the gastrointestinal tract and cause systemic infections in mice. Interestingly, most S. cerevisiae clinical isolates we examined (67%) have acquired the ability to assimilate lactate in the presence of glucose (i.e. they have become Crabtree negative). These S. cerevisiae strains are more resistant to macrophage killing than Crabtree positive clinical isolates. Moreover, Crabtree negative S. cerevisiae mutants that lack Gid8, a key component of the Glucose-Induced Degradation complex, are more resistant to macrophage killing and display increased virulence in immunocompromised mice. Thus, while Crabtree positivity might impart a fitness advantage for yeasts in environmental niches, the more flexible carbon assimilation strategies offered by Crabtree negativity enhance the ability of yeasts to colonize and infect the mammalian host.