Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 207(2): 483-492, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34193599

RESUMEN

Alcohol use disorders (AUD) increase susceptibility to respiratory infections by 2- to 4-fold in part because of impaired alveolar macrophage (AM) immune function. Alcohol causes AM oxidative stress, diminishing AM phagocytic capacity and clearance of microbes from the alveolar space. Alcohol increases AM NADPH oxidases (Noxes), primary sources of AM oxidative stress, and reduces peroxisome proliferator-activated receptor γ (PPARγ) expression, a critical regulator of AM immune function. To investigate the underlying mechanisms of these alcohol-induced AM derangements, we hypothesized that alcohol stimulates CCAAT/enhancer-binding protein ß (C/EBPß) to suppress Nox-related microRNAs (miRs), thereby enhancing AM Nox expression, oxidative stress, and phagocytic dysfunction. Furthermore, we postulated that pharmacologic PPARγ activation with pioglitazone would inhibit C/EBPß and attenuate alcohol-induced AM dysfunction. AM isolated from human AUD subjects or otherwise healthy control subjects were examined. Compared with control AM, alcohol activated AM C/EBPß, decreased Nox1-related miR-1264 and Nox2-related miR-107, and increased Nox1, Nox2, and Nox4 expression and activity. These alcohol-induced AM derangements were abrogated by inhibition of C/EBPß, overexpression of miR-1264 or miR-107, or pioglitazone treatment. These findings define novel molecular mechanisms of alcohol-induced AM dysfunction mediated by C/EBPß and Nox-related miRs that are amenable to therapeutic targeting with PPARγ ligands. These results demonstrate that PPARγ ligands provide a novel and rapidly translatable strategy to mitigate susceptibility to respiratory infections and related morbidity in individuals with AUD.


Asunto(s)
Alcoholismo/tratamiento farmacológico , Alcoholismo/metabolismo , Etanol/efectos adversos , Macrófagos Alveolares/efectos de los fármacos , Fagocitos/efectos de los fármacos , Pioglitazona/farmacología , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Línea Celular , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , NADPH Oxidasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , PPAR gamma/metabolismo , Fagocitos/metabolismo
2.
Blood ; 136(12): 1402-1406, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32384147

RESUMEN

Altered mitochondrial function occurs in sickle cell disease (SCD), due in part to low nitric oxide (NO) bioavailability. Arginine, the substrate for NO production, becomes acutely deficient in SCD patients with vaso-occlusive pain episodes (VOE). To determine if arginine improves mitochondrial function, 12 children with SCD-VOE (13.6 ± 3 years; 67% male; 75% hemoglobin-SS) were randomized to 1 of 3 arginine doses: (1) 100 mg/kg IV 3 times/day (TID); (2) loading dose (200 mg/kg) then 100 mg/kg TID; or (3) loading dose (200 mg/kg) followed by continuous infusion (300 mg/kg per day) until discharge. Platelet-rich plasma mitochondrial activity, protein expression, and protein-carbonyls were measured from emergency department (ED) presentation vs discharge. All VOE subjects at ED presentation had significantly decreased complex-V activity compared to a steady-state cohort. Notably, complex-V activity was increased at discharge in subjects from all 3 arginine-dosing schemes; greatest increase occurred with a loading dose (P < .001). Although complex-IV and citrate synthase activities were similar in VOE platelets vs steady state, enzyme activities were significantly increased in VOE subjects after arginine-loading dose treatment. Arginine also decreased protein-carbonyl levels across all treatment doses (P < .01), suggesting a decrease in oxidative stress. Arginine therapy increases mitochondrial activity and reduces oxidative stress in children with SCD/VOE. This trial was registered at www.clinicaltrials.gov as #NCT02536170.


Asunto(s)
Anemia de Células Falciformes/tratamiento farmacológico , Arginina/uso terapéutico , Mitocondrias/efectos de los fármacos , Adolescente , Analgésicos Opioides/uso terapéutico , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/metabolismo , Anemia de Células Falciformes/patología , Arginina/administración & dosificación , Niño , Femenino , Humanos , Masculino , Mitocondrias/metabolismo , Mitocondrias/patología , Estrés Oxidativo/efectos de los fármacos , Dolor/tratamiento farmacológico , Dolor/etiología , Estudios Prospectivos
3.
J Immunol ; 200(6): 2115-2128, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29427413

RESUMEN

TGF-ß1 is a pleiotropic cytokine with an established role in fibrosis; however, the immunosuppressive effects of TGF-ß1 are less characterized. Elevated levels of TGF-ß1 are found in patients with acute and chronic lung diseases, and the underlying disease processes are exacerbated by respiratory viral infections. The alveolar macrophage is the first line of cellular defense against respiratory viral infections, and its response to infections is dependent on environmental cues. Using the mouse alveolar macrophage line, MH-S, and human CD14+ monocyte-derived macrophages, we examined the effects of TGF-ß1 on the type I IFN antiviral response, macrophage polarization, and mitochondrial bioenergetics following a challenge with human respiratory syncytial virus (RSV). Our results showed that TGF-ß1 treatment of macrophages decreased the antiviral and proinflammatory response, and suppressed basal, maximal, spare mitochondrial respiration, and mitochondrial ATP production. Challenge with RSV following TGF-ß1 treatment further exacerbated mitochondrial dysfunction. The TGF-ß1 and TGF-ß1+RSV-treated macrophages had a higher frequency of apoptosis and diminished phagocytic capacity, potentially through mitochondrial stress. Disruption of TGF-ß1 signaling or rescue of mitochondrial respiration may be novel therapeutically targetable pathways to improve macrophage function and prevent secondary bacterial infections that complicate viral respiratory infections.


Asunto(s)
Interferón Tipo I/metabolismo , Macrófagos Alveolares/metabolismo , Mitocondrias/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/fisiología , Línea Celular , Citocinas/metabolismo , Humanos , Inflamación/metabolismo , Ratones , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitial Respiratorio Humano/patogenicidad , Transducción de Señal/fisiología
4.
Pediatr Res ; 81(3): 461-467, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27828937

RESUMEN

BACKGROUND: The health implications of in utero alcohol exposure have been difficult to study in very-low-birth-weight newborns (VLBW) because of an inability to identify maternal alcohol exposure. Fatty acid ethyl esters (FAEEs) are elevated in meconium of alcohol-exposed term newborns. We hypothesized that meconium FAEEs would be similarly elevated in alcohol-exposed VLBW premature newborns. METHODS: In a retrospective cohort study of 64 VLBW neonates, newborns were classified into Non-Exposed, Any Exposure, or Weekly Exposure groups based on an in-depth structured maternal interview. Meconium FAEE concentrations were quantified via gas chromatography mass spectrometry. RESULTS: Alcohol exposure during Trimester 1 (Any Exposure) occurred in ~30% of the pregnancies, while 11% of the subjects reported drinking ≥ 1 drink/week (Weekly Exposure). Meconium ethyl linolenate was higher in Any Exposure (P = 0.01) and Weekly Exposure groups (P = 0.005) compared to the Non-Exposed VLBW group. There was a significant positive correlation between Trimester 1 drinking amounts and the concentration of meconium ethyl linolenate (P = 0.005). Adjusted receiver operating characteristic (ROC) curves evaluating ethyl linolenate to identify alcohol-exposed VLBW newborns generated areas under the curve of 88% with sensitivities of 86-89% and specificities of 83-88%. CONCLUSION: Despite prematurity, meconium FAEEs hold promise to identify the alcohol-exposed VLBW newborn.


Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Ácidos Linolénicos/análisis , Exposición Materna , Meconio/química , Biomarcadores/análisis , Estudios de Cohortes , Etanol , Ácidos Grasos/análisis , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Recién Nacido , Recien Nacido Prematuro , Recién Nacido de muy Bajo Peso , Embarazo , Curva ROC , Estudios Retrospectivos , Sensibilidad y Especificidad , Encuestas y Cuestionarios
5.
Paediatr Respir Rev ; 21: 34-37, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27613232

RESUMEN

Maternal alcohol use during pregnancy exposes both premature and term newborns to the toxicity of alcohol and its metabolites. Foetal alcohol exposure adversely effects the lung. In contrast to the adult "alcoholic lung" phenotype, an inability to identify the newborn exposed to alcohol in utero has limited our understanding of its effect on adverse pulmonary outcomes. This paper will review advances in biomarker development of in utero alcohol exposure. We will highlight the current understanding of in utero alcohol's toxicity to the developing lung and immune defense. Finally, we will present recent clinical evidence describing foetal alcohol's association with adverse pulmonary outcomes including bronchopulmonary dysplasia, viral infections such as respiratory syncytial virus and allergic asthma/atopy. With research to define alcohol's effect on the lung and translational studies accurately identifying the exposed offspring, the full extent of alcohol's effects on clinical respiratory outcomes of the newborn or child can be determined.


Asunto(s)
Consumo de Bebidas Alcohólicas/epidemiología , Enfermedades del Sistema Inmune/epidemiología , Enfermedades Pulmonares/epidemiología , Pulmón/embriología , Efectos Tardíos de la Exposición Prenatal/epidemiología , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/sangre , Asma/epidemiología , Asma/etiología , Biomarcadores/sangre , Displasia Broncopulmonar/epidemiología , Displasia Broncopulmonar/etiología , Niño , Femenino , Glucuronatos/sangre , Glicerofosfolípidos/sangre , Humanos , Enfermedades del Sistema Inmune/etiología , Recién Nacido , Enfermedades Pulmonares/etiología , Neumonía Viral/epidemiología , Neumonía Viral/etiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología , Hipersensibilidad Respiratoria/epidemiología , Hipersensibilidad Respiratoria/etiología , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/etiología , Ésteres del Ácido Sulfúrico/sangre
6.
Am J Respir Cell Mol Biol ; 55(1): 35-46, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26677910

RESUMEN

Peroxisome proliferator-activated receptor (PPAR) γ is critical for alveolar macrophage (AM) function. Chronic alcohol abuse causes AM phagocytic dysfunction and susceptibility to respiratory infections by stimulating nicotinamide adenine dinucleotide oxidases (Nox), transforming growth factor-ß1, and oxidative stress in the AM. Because PPARγ inhibits Nox expression, we hypothesized that alcohol reduces PPARγ, stimulating AM dysfunction. AMs were examined from: (1) patients with alcoholism or control patients; (2) a mouse model of chronic ethanol consumption; (3) PPARγ knockout mice; or (4) MH-S cells exposed to ethanol in vitro. Alcohol reduced AM PPARγ levels and increased Nox1, -2, and -4, transforming growth factor-ß1, oxidative stress, and phagocytic dysfunction. Genetic loss of PPARγ recapitulated, whereas stimulating PPARγ activity attenuated alcohol-mediated alterations in gene expression and phagocytic function, supporting the importance of PPARγ in alcohol-induced AM derangements. Similarly, PPARγ activation in vivo reduced alcohol-mediated impairments in lung bacterial clearance. Alcohol increased levels of microRNA-130a/-301a, which bind to the PPARγ 3' untranslated region to reduce PPARγ expression. MicroRNA-130a/-301a inhibition attenuated alcohol-mediated PPARγ reductions and derangements in AM gene expression and function. Alcohol-induced Toll-like receptor 4 endocytosis was reversed by PPARγ activation. These findings demonstrate that targeting PPARγ provides a novel therapeutic approach for mitigating alcohol-induced AM derangements and susceptibility to lung infection.


Asunto(s)
Etanol/efectos adversos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , PPAR gamma/metabolismo , Animales , Línea Celular , Humanos , Klebsiella/efectos de los fármacos , Ligandos , Pulmón/microbiología , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fagocitos/efectos de los fármacos , Fagocitos/patología , Rosiglitazona , Tiazolidinedionas/farmacología
7.
Alcohol Clin Exp Res ; 40(10): 2147-2160, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27627733

RESUMEN

BACKGROUND: Alcohol use disorders (AUDs) and cigarette smoking are associated with pulmonary oxidative stress, likely related to antioxidant depletion. Pulmonary oxidative stress may adversely affect innate immunity, leading to increased pneumonia susceptibility and severity, including development of the acute respiratory distress syndrome. In people with AUDs, most of whom smoke, antioxidant therapy can potentially restore immune cell function and attenuate pneumonia development. Challenges to human investigations of antioxidant therapies include an inability to identify pulmonary oxidative stress noninvasively and the optimal route to deliver pulmonary antioxidants. We sought to determine whether bronchoalveolar lavage (BAL) measures of thiol antioxidants from a 50-ml upper airway aliquot approximated those in the alveolar space and to determine whether AUDs and/or smoking affected these relationships. METHODS: Healthy human subjects with and without AUDs, including smokers and nonsmokers, underwent BAL. Samples obtained after the first 50-ml normal saline aliquot were analyzed as representing bronchial airways; subsequent 50-ml aliquots were analyzed as representative of the alveolar space. Reduced and oxidized (GSSG) glutathione, cysteine (Cys), and its oxidized species, cystine, along with mixed disulfides (MDs) were quantified using high-performance liquid chromatography. The percent of total thiols present in their oxidized forms, and thiol redox potentials, were calculated. RESULTS: Positive correlations between upper and lower BAL fluid thiol species were observed that were most robust for GSSG (ρ = 0.85), Cys (ρ = 0.83), and MDs (ρ = 0.69), but poor for thiol redox potential measures. In contrast to nonsmokers (either with or without AUDs), in subjects with AUDs who smoked, upper BAL fluid %GSSG, Cys, and MD measures were relatively increased compared to lower. CONCLUSIONS: A small volume BAL procedure may be suitable to assess intrapulmonary oxidative stress related to thiol depletion. Factors including AUDs and smoking may disproportionately increase upper airways oxidative stress that could be relevant for therapeutic interventions.


Asunto(s)
Alcoholismo/metabolismo , Antioxidantes/análisis , Antioxidantes/metabolismo , Líquido del Lavado Bronquioalveolar/química , Fumar Cigarrillos/metabolismo , Adulto , Estudios de Casos y Controles , Cisteína/metabolismo , Cistina/metabolismo , Disulfuros/metabolismo , Femenino , Glutatión/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Oxidación-Reducción
8.
J Allergy Clin Immunol ; 136(2): 454-61.e9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25748343

RESUMEN

BACKGROUND: The mechanisms underlying glucocorticoid responsiveness are largely unknown. Although redox regulation of the glucocorticoid receptor (GR) has been reported, it has not been studied in asthmatic patients. OBJECTIVE: We characterized systemic cysteine oxidation and its association with inflammatory and clinical features in healthy children and children with difficult-to-treat asthma. We hypothesized that cysteine oxidation would be associated with increased markers of oxidative stress and inflammation, increased features of asthma severity, decreased clinically defined glucocorticoid responsiveness, and impaired GR function. METHODS: PBMCs were collected from healthy children (n = 16) and children with asthma (n = 118) aged 6 to 17 years. Children with difficult-to-treat asthma underwent glucocorticoid responsiveness testing with intramuscular triamcinolone. Cysteine, cystine, and inflammatory chemokines and reactive oxygen species generation were quantified, and expression and activity of the GR were assessed. RESULTS: Cysteine oxidation was present in children with difficult-to-treat asthma and accompanied by increased reactive oxygen species generation and increased CCL3 and CXCL1 mRNA expression. Children with the greatest extent of cysteine oxidation had more features of asthma severity, including poorer symptom control, greater medication use, and less glucocorticoid responsiveness despite inhaled glucocorticoid therapy. Cysteine oxidation also modified the GR protein by decreasing available sulfhydryl groups and decreasing nuclear GR expression and activity. CONCLUSIONS: A highly oxidized cysteine redox state promotes a posttranslational modification of the GR that might inhibit its function. Given that cysteine oxidation is prevalent in children with difficult-to-treat asthma, the cysteine redox state might represent a potential therapeutic target for restoration of glucocorticoid responsiveness in this population.


Asunto(s)
Asma/tratamiento farmacológico , Glucocorticoides/uso terapéutico , Leucocitos Mononucleares/inmunología , Procesamiento Proteico-Postraduccional , Receptores de Glucocorticoides/inmunología , Triamcinolona/uso terapéutico , Administración por Inhalación , Adolescente , Asma/genética , Asma/inmunología , Asma/patología , Quimiocina CCL3/genética , Quimiocina CCL3/inmunología , Quimiocina CXCL1/genética , Quimiocina CXCL1/inmunología , Niño , Cisteína/química , Cisteína/inmunología , Cistina/química , Cistina/inmunología , Monitoreo de Drogas , Femenino , Expresión Génica , Humanos , Inyecciones Intramusculares , Leucocitos Mononucleares/química , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/patología , Masculino , Oxidación-Reducción , Estrés Oxidativo , Cultivo Primario de Células , ARN Mensajero/genética , ARN Mensajero/inmunología , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética
9.
Am J Physiol Lung Cell Mol Physiol ; 308(12): L1212-23, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25888574

RESUMEN

Lung barrier dysfunction is a cardinal feature of the acute respiratory distress syndrome (ARDS). Alcohol abuse, which increases the risk of ARDS two- to fourfold, induces transforming growth factor (TGF)-ß1, which increases epithelial permeability and impairs granulocyte/macrophage colony-stimulating factor (GM-CSF)-dependent barrier integrity in experimental models. We hypothesized that the relative balance of GM-CSF and TGF-ß1 signaling regulates lung epithelial barrier function. GM-CSF and TGF-ß1 were tested separately and simultaneously for their effects on lung epithelial cell barrier function in vitro. TGF-ß1 alone caused an ∼ 25% decrease in transepithelial resistance (TER), increased paracellular flux, and was associated with projections perpendicular to tight junctions ("spikes") containing claudin-18 that colocalized with F-actin. In contrast, GM-CSF treatment induced an ∼ 20% increase in TER, decreased paracellular flux, and showed decreased colocalization of spike-associated claudin-18 with F-actin. When simultaneously administered to lung epithelial cells, GM-CSF antagonized the effects of TGF-ß1 on epithelial barrier function in cultured cells. Given this, GM-CSF and TGF-ß1 levels were measured in bronchoalveolar lavage (BAL) fluid from patients with ventilator-associated pneumonia and correlated with markers for pulmonary edema and patient outcome. In patient BAL fluid, protein markers of lung barrier dysfunction, serum α2-macroglobulin, and IgM levels were increased at lower ratios of GM-CSF/TGF-ß1. Critically, patients who survived had significantly higher GM-CSF/TGF-ß1 ratios than nonsurviving patients. This study provides experimental and clinical evidence that the relative balance between GM-CSF and TGF-ß1 signaling is a key regulator of lung epithelial barrier function. The GM-CSF/TGF-ß1 ratio in BAL fluid may provide a concentration-independent biomarker that can predict patient outcomes in ARDS.


Asunto(s)
Células Epiteliales/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Pulmón/metabolismo , Fenómenos Fisiológicos Respiratorios , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Pulmón/citología , Masculino , Ratas , Ratas Sprague-Dawley
10.
Alcohol Clin Exp Res ; 39(3): 434-44, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25703924

RESUMEN

BACKGROUND: Chronic alcohol exposure alters the function of alveolar macrophages (AM), impairing immune defenses in both adult and neonatal lungs. Fatty acid ethyl esters (FAEEs) are biological markers of prenatal alcohol exposure in newborns. FAEEs contribute to alcohol-induced mitochondrial (MT) damage in multiple organs. We hypothesized that in utero ethanol exposure would increase FAEEs in the neonatal lung and that direct exposure of neonatal AM to FAEEs would contribute to MT injury and cellular dysfunction. METHODS: FAEEs were measured in neonatal guinea pig lungs after ± in utero ethanol exposure via gas chromatography/mass spectrometry. The NR8383 cell line and freshly isolated neonatal guinea pig AM were exposed to ethyl oleate (EO) in vitro. MT membrane potential, MT reactive oxygen species generation (mROS), phagocytosis, and apoptosis were evaluated after exposure to EO ± the MT-specific antioxidant mito-TEMPO (mitoT) or ± the pan-caspase inhibitor Z-VAD-FMK. Whole lung FAEEs were compared using the Mann-Whitney U-test. Cellular results were analyzed using 1-way analysis of variance, followed by the Student-Newman-Keuls Method for post hoc comparisons. RESULTS: In utero ethanol significantly increased ethyl linoleate and the combinations of ethyl oleate + linoleate + linolenate (OLL), and OLL + stearate in the neonatal lung. In vitro EO caused significant MT dysfunction in both NR8383 and primary neonatal AM, as indicated by increased mROS and loss of MT membrane potential. Impaired phagocytosis and apoptosis were significantly increased in both the cell line and primary AM after EO exposure. MitoT conferred significant but only partial protection against EO-induced MT injury, as did caspase inhibition with Z-VAD-FMK. CONCLUSIONS: In utero ethanol exposure increased FAEEs in the neonatal guinea pig lung. Direct exposure to the FAEE EO significantly contributed to AM dysfunction, in part via oxidant injury to the MT and in part via secondary apoptosis.


Asunto(s)
Etanol/toxicidad , Ácidos Grasos no Esterificados/toxicidad , Pulmón/citología , Pulmón/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Animales , Animales Recién Nacidos , Femenino , Cobayas , Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Mitocondrias/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo
11.
Alcohol Alcohol ; 50(1): 30-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25371044

RESUMEN

AIMS: (a) Establish the minimum number of weeks of chronic ethanol ingestion needed to perturb zinc homeostasis, (b) Examine intracellular zinc status in the alveolar macrophages (AMs) when ethanol ingestion is combined with pregnancy, (c) Investigate whether in vitro zinc treatment reverses the effects of ethanol ingestion on the AM. METHODS: C57BL/6 female mice were fed a liquid diet (±25% ethanol-derived calories) during preconception and pregnancy. The control group was pair-fed to the ethanol group. In the isolated AMs, we measured intracellular AM zinc levels, zinc transporter expression, alternative activation and phagocytic index. Zinc acetate was added to some cells prior to analysis. RESULTS: Intracellular zinc levels in the AM decreased within 3 weeks of ethanol ingestion. After ethanol ingestion prior to and during pregnancy, zinc transporter expression and intracellular zinc levels were decreased in the AMs when compared with controls. Bacterial clearance was decreased because the AMs were alternatively activated. In vitro additions of zinc reversed these effects of ethanol. CONCLUSION: Ethanol ingestion prior to and during pregnancy perturbed AM zinc balance resulting in impaired bacterial clearance, but these effects were ameliorated by in vitro zinc treatments.


Asunto(s)
Etanol/efectos adversos , Macrófagos Alveolares/efectos de los fármacos , Zinc/deficiencia , Animales , Proteínas Portadoras/análisis , Proteínas Portadoras/biosíntesis , Femenino , Macrófagos Alveolares/química , Macrófagos Alveolares/fisiología , Ratones , Ratones Endogámicos C57BL , Fagocitosis/efectos de los fármacos , Embarazo , Complicaciones del Embarazo/inducido químicamente , Zinc/análisis
12.
Am J Physiol Lung Cell Mol Physiol ; 306(5): L429-41, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24441868

RESUMEN

Chronic alcohol abuse increases lung oxidative stress and susceptibility to respiratory infections by impairing alveolar macrophage (AM) function. NADPH oxidases (Nox) are major sources of reactive oxygen species in AMs. We hypothesized that treatment with the critical antioxidant glutathione (GSH) attenuates chronic alcohol-induced oxidative stress by downregulating Noxes and restores AM phagocytic function. Bronchoalveolar lavage (BAL) fluid and AMs were isolated from male C57BL/6J mice (8-10 wk) treated ± ethanol in drinking water (20% wt/vol, 12 wk) ± orally gavaged GSH in methylcellulose vehicle (300 mg x kg(-1) x day(-1), during week 12). MH-S cells, a mouse AM cell line, were treated ± ethanol (0.08%, 3 days) ± GSH (500 µM, 3 days or last 1 day of ethanol). BAL and AMs were also isolated from ethanol-fed and control mice ± inoculated airway Klebsiella pneumoniae (200 colony-forming units, 28 h) ± orally gavaged GSH (300 mg/kg, 24 h). GSH levels (HPLC), Nox mRNA (quantitative RT-PCR) and protein levels (Western blot and immunostaining), oxidative stress (2',7'-dichlorofluorescein-diacetate and Amplex Red), and phagocytosis (Staphylococcus aureus internalization) were measured. Chronic alcohol decreased GSH levels, increased Nox expression and activity, enhanced oxidative stress, impaired phagocytic function in AMs in vivo and in vitro, and exacerbated K. pneumonia-induced oxidative stress. Although how oral GSH restored GSH pools in ethanol-fed mice is unknown, oral GSH treatments abrogated the detrimental effects of chronic alcohol exposure and improved AM function. These studies provide GSH as a novel therapeutic approach for attenuating alcohol-induced derangements in AM Nox expression, oxidative stress, dysfunction, and risk for pneumonia.


Asunto(s)
Alcoholismo/inmunología , Antioxidantes/metabolismo , Glutatión/metabolismo , Macrófagos Alveolares/inmunología , NADH NADPH Oxidorreductasas/metabolismo , Alcoholismo/metabolismo , Animales , Antioxidantes/farmacología , Líquido del Lavado Bronquioalveolar/inmunología , Línea Celular , Depresores del Sistema Nervioso Central/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/inmunología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/inmunología , Etanol/farmacología , Glutatión/farmacología , Infecciones por Klebsiella/inmunología , Infecciones por Klebsiella/metabolismo , Klebsiella pneumoniae/inmunología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasa 1 , NADPH Oxidasa 2 , NADPH Oxidasa 4 , NADPH Oxidasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/inmunología , Fosfoproteínas/metabolismo
13.
Am J Physiol Lung Cell Mol Physiol ; 306(4): L326-40, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24375795

RESUMEN

Myofibroblast accumulation is a pathological feature of lung diseases requiring oxygen therapy. One possible source for myofibroblasts is through the epithelial-to-mesenchymal transition (EMT) of alveolar epithelial cells (AEC). To study the effects of oxygen on alveolar EMT, we used RLE-6TN and ex vivo lung slices and found that hyperoxia (85% O2, H85) decreased epithelial proteins, presurfactant protein B (pre-SpB), pro-SpC, and lamellar protein by 50% and increased myofibroblast proteins, α-smooth muscle actin (α-SMA), and vimentin by over 200% (P < 0.05). In AEC freshly isolated from H85-treated rats, mRNA for pre-SpB and pro-SpC was diminished by ∼50% and α-SMA was increased by 100% (P < 0.05). Additionally, H85 increased H2O2 content, and H2O2 (25-50 µM) activated endogenous transforming growth factor-ß1 (TGF-ß1), as evident by H2DCFDA immunofluorescence and ELISA (P < 0.05). Both hyperoxia and H2O2 increased SMAD3 phosphorylation (260% of control, P < 0.05). Treating cultured cells with TGF-ß1 inhibitors did not prevent H85-induced H2O2 production but did prevent H85-mediated α-SMA increases and E-cadherin downregulation. Finally, to determine the role of TGF-ß1 in hyperoxia-induced EMT in vivo, we evaluated AEC from H85-treated rats and found that vimentin increased ∼10-fold (P < 0.05) and that this effect was prevented by intraperitoneal TGF-ß1 inhibitor SB-431542. Additionally, SB-431542 treatment attenuated changes in alveolar histology caused by hyperoxia. Our studies indicate that hyperoxia promotes alveolar EMT through a mechanism that is dependent on activation of TGF-ß1 signaling.


Asunto(s)
Transición Epitelial-Mesenquimal , Hiperoxia/patología , Alveolos Pulmonares/patología , Células Epiteliales Alveolares/fisiología , Animales , Células Cultivadas , Peróxido de Hidrógeno/metabolismo , Hiperoxia/metabolismo , Masculino , Miofibroblastos/metabolismo , Fenotipo , Alveolos Pulmonares/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Técnicas de Cultivo de Tejidos , Factor de Crecimiento Transformador beta1/metabolismo
14.
Respir Res ; 15: 1, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24397246

RESUMEN

BACKGROUND: Analysis of exhaled breath condensates (EBC) is a non-invasive technique to evaluate biomarkers such as antioxidants in the pediatric population, but limited data exists of its use in intubated patients, particularly newborns. Currently, tracheal aspirate (TA) serves as the gold standard collection modality in critically ill newborns, but this method remains invasive. We tested the hypothesis that glutathione status would positively correlate between EBC and TA collections in intubated newborns in the Newborn Intensive Care Unit (NICU). We also hypothesized that these measurements would be associated with alveolar macrophage (AM) glutathione status in the newborn lung. METHODS: Reduced glutathione (rGSH), glutathione disulfide (GSSG), and total GSH (rGSH + (2 X GSSG)) were measured in sequential EBC and TA samples from 26 intubated newborns via high performance liquid chromatography (HPLC). Additionally, AM glutathione was evaluated via immunofluorescence. Pearson's correlation coefficient and associated 95% confidence intervals were used to quantify the associations between raw and urea-corrected concentrations in EBC and TA samples and AM staining. Statistical significance was defined as p ≤ 0.05 using two-tailed tests. The sample size was projected to allow for a correlation coefficient of 0.5, with 0.8 power and alpha of 0.05. RESULTS: EBC was obtainable from intubated newborns without adverse clinical events. EBC samples demonstrated moderate to strong positive correlations with TA samples in terms of rGSH, GSSG and total GSH. Positive correlations between the two sampling sites were observed in both raw and urea-corrected concentrations of rGSH, GSSG and total GSH. AM glutathione staining moderately correlated with GSSG and total GSH status in both the TA and EBC. CONCLUSIONS: GSH status in EBC samples of intubated newborns significantly correlated with the GSH status of the TA sample and was reflective of cellular GSH status in this cohort of neonatal patients. Non-invasive EBC sampling of intubated newborns holds promise for monitoring antioxidant status such as GSH in the premature lung. Further studies are necessary to evaluate the potential relationships between EBC biomarkers in the intubated premature newborn and respiratory morbidities.


Asunto(s)
Espiración/fisiología , Glutatión/análisis , Glutatión/metabolismo , Intubación Intratraqueal , Pulmón/química , Pulmón/metabolismo , Pruebas Respiratorias/métodos , Humanos , Recién Nacido , Intubación Intratraqueal/métodos , Proyectos Piloto
15.
J Immunol ; 188(8): 3648-57, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22412195

RESUMEN

Chronic alcohol abuse is a comorbid variable of acute respiratory distress syndrome. Previous studies showed that, in the lung, chronic alcohol consumption increased oxidative stress and impaired alveolar macrophage (AM) function. NADPH oxidases (Noxes) are the main source of reactive oxygen species in AMs. Therefore, we hypothesized that chronic alcohol consumption increases AM oxidant stress through modulation of Nox1, Nox2, and Nox4 expression. AMs were isolated from male C57BL/6J mice, aged 8-10 wk, which were treated with or without ethanol in drinking water (20% w/v, 12 wk). MH-S cells, a mouse AM cell line, were treated with or without ethanol (0.08%, 3 d) for in vitro studies. Selected cells were treated with apocynin (300 µM), a Nox1 and Nox2 complex formation inhibitor, or were transfected with Nox small interfering RNAs (20-35 nM), before ethanol exposure. Human AMs were isolated from alcoholic and control patients' bronchoalveolar lavage fluid. Nox mRNA levels (quantitative RT-PCR), protein levels (Western blot and immunostaining), oxidative stress (2',7'-dichlorofluorescein-diacetate and Amplex Red analysis), and phagocytosis (Staphylococcus aureus internalization) were measured. Chronic alcohol increased Nox expression and oxidative stress in mouse AMs in vivo and in vitro. Experiments using apocynin and Nox small interfering RNAs demonstrated that ethanol-induced Nox4 expression, oxidative stress, and AM dysfunction were modulated through Nox1 and Nox2 upregulation. Further, Nox1, Nox2, and Nox4 protein levels were augmented in human AMs from alcoholic patients compared with control subjects. Ethanol induces AM oxidative stress initially through upregulation of Nox1 and Nox2 with downstream Nox4 upregulation and subsequent impairment of AM function.


Asunto(s)
Etanol/farmacología , Pulmón/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , NADPH Oxidasas/genética , Acetofenonas/farmacología , Adulto , Alcoholismo/enzimología , Alcoholismo/genética , Alcoholismo/inmunología , Animales , Líquido del Lavado Bronquioalveolar/citología , Línea Celular , Humanos , Isoenzimas/genética , Isoenzimas/inmunología , Pulmón/enzimología , Pulmón/inmunología , Macrófagos Alveolares/enzimología , Macrófagos Alveolares/inmunología , Masculino , Ratones , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/inmunología , Estrés Oxidativo/efectos de los fármacos , Fagocitosis/efectos de los fármacos , ARN Mensajero/biosíntesis , ARN Mensajero/inmunología , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Regulación hacia Arriba
16.
Antioxidants (Basel) ; 13(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38397736

RESUMEN

We previously reported that maternal alcohol use increased the risk of sepsis in premature and term newborns. In the neonatal mouse, fetal ethanol (ETOH) exposure depleted the antioxidant glutathione (GSH), which promoted alveolar macrophage (AM) immunosuppression and respiratory syncytial virus (RSV) infections. In this study, we explored if oral liposomal GSH (LGSH) would attenuate oxidant stress and RSV infections in the ETOH-exposed mouse pups. C57BL/6 female mice were pair-fed a liquid diet with 25% of calories from ethanol or maltose-dextrin. Postnatal day 10 pups were randomized to intranasal saline, LGSH, and RSV. After 48 h, we assessed oxidant stress, AM immunosuppression, pulmonary RSV burden, and acute lung injury. Fetal ETOH exposure increased oxidant stress threefold, lung RSV burden twofold and acute lung injury threefold. AMs were immunosuppressed with decreased RSV clearance. However, LGSH treatments of the ETOH group normalized oxidant stress, AM immune phenotype, the RSV burden, and acute lung injury. These studies suggest that the oxidant stress caused by fetal ETOH exposure impaired AM clearance of infectious agents, thereby increasing the viral infection and acute lung injury. LGSH treatments reversed the oxidative stress and restored AM immune functions, which decreased the RSV infection and subsequent acute lung injury.

17.
Paediatr Respir Rev ; 14(1): 17-21, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23347657

RESUMEN

In utero alcohol exposure dramatically increases the risk of premature delivery. However, the majority of premature and term newborns exposed to alcohol remain undetected by medical caregivers. There is a desperate need for reliable and accurate biomarkers of alcohol exposure for the term and premature newborn population. The inability to identify the exposed newborn severely limits our understanding of alcohol's pathophysiological effects on developing organs such as the lung. This chapter will review potential advancements in future biomarkers of alcohol exposure for the newborn population. We will discuss alcohol's effects on redox homeostasis and cellular development of the neonatal lung. Finally, we will present the evidence describing in utero alcohol's derangement of innate and adaptive immunity and risk for infectious complications in the lung. Continued investigations into the identification and understanding of the mechanisms of alcohol-induced alterations in the premature lung will advance the care of this vulnerable patient population.


Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Etanol/efectos adversos , Enfermedades Pulmonares , Pulmón/efectos de los fármacos , Pulmón/embriología , Efectos Tardíos de la Exposición Prenatal/epidemiología , Consumo de Bebidas Alcohólicas/epidemiología , Femenino , Salud Global , Humanos , Incidencia , Recién Nacido , Enfermedades Pulmonares/epidemiología , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/fisiopatología , Embarazo
18.
J Allergy Clin Immunol ; 129(2): 388-96, 396.e1-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22206775

RESUMEN

BACKGROUND: TGF-ß1 is thought to play a role in airway remodeling in asthmatic subjects. TGF-ß1 expression might be mediated by an excessive burden of reactive oxygen species and oxidant stress. OBJECTIVE: Given the profound airway oxidant stress we have previously observed in children with severe asthma, we sought to (1) quantify TGF-ß1 protein and mRNA gene expression in the airways of children with mild-to-moderate and severe atopic asthma and (2) determine the relationship of airway TGF-ß1 concentrations to oxidant burden (ie, lipid peroxidation), T(H)2-mediated eosinophilic inflammation, and airflow limitation. METHODS: Bronchoalveolar lavage fluid was collected from 68 atopic children with asthma (severe asthma, n = 28) and 12 atopic adult control subjects. Airway TGF-ß1 expression and activation were assessed in relation to airway IL-13, 8-isoprostane, and malondialdehyde concentrations. The relationship of airway TGF-ß1 expression to airflow limitation in children with asthma was also assessed. RESULTS: Children with severe asthma had higher total airway concentrations of TGF-ß1 that were associated with increased protein and mRNA expression of TGF-ß1 in airway macrophages and an increase in concentrations of the lipid peroxidation biomarkers 8-isoprostanes and malondialdehyde. TGF-ß1 activation was also greater in children with severe asthma and was associated with higher airway 8-isoprostane, malondialdehyde, and IL-13 concentrations. Total airway TGF-ß1 concentrations were further associated with airflow limitation. CONCLUSIONS: Children with severe asthma have increased airway TGF-ß1 expression and activation associated with an increased airway oxidant burden. Oxidant stress might mediate the effects of TGF-ß1 and promote airway remodeling in children with severe asthma.


Asunto(s)
Asma/metabolismo , Macrófagos Alveolares/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Adolescente , Asma/genética , Asma/fisiopatología , Bronquios/metabolismo , Bronquios/fisiopatología , Lavado Broncoalveolar , Broncoscopía , Niño , Dinoprost/análogos & derivados , Dinoprost/metabolismo , Expresión Génica , Humanos , Interleucina-13/metabolismo , Malondialdehído/metabolismo , Estrés Oxidativo , ARN Mensajero/metabolismo , Espirometría , Factor de Crecimiento Transformador beta1/genética
19.
Alcohol ; 106: 30-43, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36328183

RESUMEN

Alcohol use disorders (AUD) cause alveolar macrophage (AM) immune dysfunction and increase risk of lung infections. Excessive alcohol use causes AM oxidative stress, which impairs AM phagocytosis and pathogen clearance from the alveolar space. Alcohol induces expression of NADPH oxidases (Noxes), primary sources of oxidative stress in AM. In contrast, alcohol decreases AM peroxisome proliferator-activated receptor gamma (PPARγ), a critical regulator of AM immune function. To explore the underlying molecular mechanisms for these effects of alcohol, we hypothesized that ethanol promotes CCAAT/enhancer-binding protein beta (C/EBPß)-mediated suppression of Nox-related microRNAs (miRs), in turn enhancing AM Nox expression, oxidative stress, and phagocytic dysfunction. We also hypothesized that PPARγ activation with pioglitazone (PIO) would reverse alcohol-induced C/EBPß expression and attenuate AM oxidative stress and phagocytic dysfunction. Cells from the mouse AM cell line (MH-S) were exposed to ethanol in vitro or primary AM were isolated from mice fed ethanol in vivo. Ethanol enhanced C/EBPß expression, decreased Nox 1-related miR-1264 and Nox 2-related miR-107 levels, and increased Nox1, Nox2, and Nox 4 expression in MH-S cells in vitro and mouse AM in vivo. These alcohol-induced AM derangements were abrogated by loss of C/EBPß, overexpression of miRs-1264 or -107, or PIO treatment. These findings identify C/EBPß and Nox-related miRs as novel therapeutic targets for PPARγ ligands, which could provide a translatable strategy to mitigate susceptibility to lung infections in people with a history of AUD. These studies further clarify the molecular underpinnings for a previous clinical trial using short-term PIO treatment to improve AM immunity in AUD individuals.


Asunto(s)
Etanol , Macrófagos Alveolares , MicroARNs , Procesamiento Postranscripcional del ARN , Animales , Ratones , Alcoholismo/tratamiento farmacológico , Alcoholismo/genética , Etanol/efectos adversos , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/patología , MicroARNs/genética , MicroARNs/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo
20.
Exp Biol Med (Maywood) ; 248(12): 1013-1023, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37012678

RESUMEN

The lung microenvironment plays a crucial role in maintaining lung homeostasis as well as the initiation and resolution of both acute and chronic lung injury. Acute chest syndrome (ACS) is a complication of sickle cell disease (SCD) like acute lung injury. Both the endothelial cells and peripheral blood mononuclear cells are known to secrete proinflammatory cytokines elevated during ACS episodes. However, in SCD, the lung microenvironment that may favor excessive production of proinflammatory cytokines and the contribution of other lung resident cells, such as alveolar macrophages and alveolar type 2 epithelial (AT-2) cells, to ACS pathogenesis is not completely understood. Here, we sought to understand the pulmonary microenvironment and the proinflammatory profile of lung alveolar macrophages (LAMs) and AT-2 cells at steady state in Townes sickle cell (SS) mice compared to control mice (AA). In addition, we examined lung function and micromechanics molecules essential for pulmonary epithelial barrier function in these mice. Our results showed that bronchoalveolar lavage (BAL) fluid in SS mice had elevated protein levels of pro-inflammatory cytokines interleukin (IL)-1ß and IL-12 (p ⩽ 0.05) compared to AA controls. We showed for the first time, significantly increased protein levels of inflammatory mediators (Human antigen R (HuR), Toll-like receptor 4 (TLR4), MyD88, and PU.1) in AT-2 cells (1.4 to 2.2-fold) and LAM (17-21%) isolated from SS mice compared to AA control mice at steady state. There were also low levels of anti-inflammatory transcription factors (Nrf2 and PPARy) in SS mice compared to AA controls (p ⩽ 0.05). Finally, we found impaired lung function and a dysregulated composition of surfactant proteins (B and C). Our results demonstrate that SS mice at steady state had a compromised lung microenvironment with elevated expression of proinflammatory cytokines by AT-2 cells and LAM, as well as dysregulated expression of surfactant proteins necessary for maintaining the alveolar barrier integrity and lung function.


Asunto(s)
Anemia de Células Falciformes , Macrófagos Alveolares , Ratones , Humanos , Animales , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Células Endoteliales/metabolismo , Leucocitos Mononucleares/metabolismo , Pulmón/patología , Citocinas/metabolismo , Anemia de Células Falciformes/patología , Tensoactivos/metabolismo , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA