Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 15(12): e1008551, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31887136

RESUMEN

Aspergillus fumigatus causes invasive aspergillosis, the most common life-threatening fungal disease of immuno-compromised humans. The treatment of disseminated infections with antifungal drugs, including echinocandin cell wall biosynthesis inhibitors, is increasingly challenging due to the rise of drug-resistant pathogens. The fungal calcium responsive calcineurin-CrzA pathway influences cell morphology, cell wall composition, virulence, and echinocandin resistance. A screen of 395 A. fumigatus transcription factor mutants identified nine transcription factors important to calcium stress tolerance, including CrzA and ZipD. Here, comparative transcriptomics revealed CrzA and ZipD regulated the expression of shared and unique gene networks, suggesting they participate in both converged and distinct stress response mechanisms. CrzA and ZipD additively promoted calcium stress tolerance. However, ZipD also regulated cell wall organization, osmotic stress tolerance and echinocandin resistance. The absence of ZipD in A. fumigatus caused a significant virulence reduction in immunodeficient and immunocompetent mice. The ΔzipD mutant displayed altered cell wall organization and composition, while being more susceptible to macrophage killing and eliciting an increased pro-inflammatory cytokine response. A higher number of neutrophils, macrophages and activated macrophages were found in ΔzipD infected mice lungs. Collectively, this shows that ZipD-mediated regulation of the fungal cell wall contributes to the evasion of pro-inflammatory responses and tolerance of echinocandin antifungals, and in turn promoting virulence and complicating treatment options.


Asunto(s)
Aspergillus fumigatus/patogenicidad , Calcio/efectos adversos , Farmacorresistencia Fúngica , Aspergilosis Pulmonar/microbiología , Factores de Transcripción/genética , Animales , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Caspofungina , Pared Celular/metabolismo , Modelos Animales de Enfermedad , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Ratones , Mutación , Aspergilosis Pulmonar/inmunología , Estrés Fisiológico , Virulencia
2.
PLoS Pathog ; 15(4): e1007666, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30934025

RESUMEN

Fusarium Head Blight (FHB) is the number one floral disease of cereals and poses a serious health hazard by contaminating grain with the harmful mycotoxin deoxynivalenol (DON). Fungi adapt to fluctuations in their environment, coordinating development and metabolism accordingly. G-protein coupled receptors (GPCRs) communicate changes in the environment to intracellular G-proteins that direct the appropriate biological response, suggesting that fungal GPCR signalling may be key to virulence. Here we describe the expansion of non-classical GPCRs in the FHB causing pathogen, Fusarium graminearum, and show that class X receptors are highly expressed during wheat infection. We identify class X receptors that are required for FHB disease on wheat, and show that the absence of a GPCR can cause an enhanced host response that restricts the progression of infection. Specific receptor sub-domains are required for virulence. These non-classical receptors physically interact with intracellular G-proteins and are therefore bona fide GPCRs. Disrupting a class X receptor is shown to dysregulate the transcriptional coordination of virulence traits during infection. This amounts to enhanced wheat defensive responses, including chitinase and plant cell wall biosynthesis, resulting in apoplastic and vascular occlusions that impede infection. Our results show that GPCR signalling is important to FHB disease establishment.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Fusarium/patogenicidad , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Triticum/microbiología , Secuencia de Aminoácidos , Pared Celular/metabolismo , Enfermedades de las Plantas/microbiología , Conformación Proteica , Receptores Acoplados a Proteínas G/química , Homología de Secuencia , Virulencia
3.
BMC Genomics ; 19(1): 269, 2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29673315

RESUMEN

BACKGROUND: The soil dwelling saprotrophic non-pathogenic fungus Fusarium venenatum, routinely used in the commercial fermentation industry, is phylogenetically closely related to the globally important cereal and non-cereal infecting pathogen F. graminearum. This study aimed to sequence, assemble and annotate the F. venenatum (strain A3/5) genome, and compare this genome with F. graminearum. RESULTS: Using shotgun sequencing, a 38,660,329 bp F. venenatum genome was assembled into four chromosomes, and a 78,618 bp mitochondrial genome. In comparison to F. graminearum, the predicted gene count of 13,946 was slightly lower. The F. venenatum centromeres were found to be 25% smaller compared to F. graminearum. Chromosome length was 2.8% greater in F. venenatum, primarily due to an increased abundance of repetitive elements and transposons, but not transposon diversity. On chromosome 3 a major sequence rearrangement was found, but its overall gene content was relatively unchanged. Unlike homothallic F. graminearum, heterothallic F. venenatum possessed the MAT1-1 type locus, but lacked the MAT1-2 locus. The F. venenatum genome has the type A trichothecene mycotoxin TRI5 cluster, whereas F. graminearum has type B. From the F. venenatum gene set, 786 predicted proteins were species-specific versus NCBI. The annotated F. venenatum genome was predicted to possess more genes coding for hydrolytic enzymes and species-specific genes involved in the breakdown of polysaccharides than F. graminearum. Comparison of the two genomes reduced the previously defined F. graminearum-specific gene set from 741 to 692 genes. A comparison of the F. graminearum versus F. venenatum proteomes identified 15 putative secondary metabolite gene clusters (SMC), 109 secreted proteins and 38 candidate effectors not found in F. venenatum. Five of the 15 F. graminearum-specific SMCs that were either absent or highly divergent in the F. venenatum genome showed increased in planta expression. In addition, two predicted F. graminearum transcription factors previously shown to be required for fungal virulence on wheat plants were absent or exhibited high sequence divergence. CONCLUSIONS: This study identifies differences between the F. venenatum and F. graminearum genomes that may contribute to contrasting lifestyles, and highlights the repertoire of F. graminearum-specific candidate genes and SMCs potentially required for pathogenesis.


Asunto(s)
Fusarium/genética , Fusarium/fisiología , Genómica , Solanum lycopersicum/microbiología , Triticum/microbiología , Genoma Fúngico/genética , Anotación de Secuencia Molecular
4.
Cell Microbiol ; 19(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27706915

RESUMEN

Invasive aspergillosis is predominantly caused by Aspergillus fumigatus, and adaptations to stresses experienced within the human host are a prerequisite for the survival and virulence strategies of the pathogen. The central signal transduction pathway operating during hyperosmotic stress is the high osmolarity glycerol mitogen-activated protein kinase cascade. A. fumigatus MpkC and SakA, orthologues of the Saccharomyces cerevisiae Hog1p, constitute the primary regulator of the hyperosmotic stress response. We compared A. fumigatus wild-type transcriptional response to osmotic stress with the ΔmpkC, ΔsakA, and ΔmpkC ΔsakA strains. Our results strongly indicate that MpkC and SakA have independent and collaborative functions during the transcriptional response to transient osmotic stress. We have identified and characterized null mutants for four A. fumigatus basic leucine zipper proteins transcription factors. The atfA and atfB have comparable expression levels with the wild-type in ΔmpkC but are repressed in ΔsakA and ΔmpkC ΔsakA post-osmotic stress. The atfC and atfD have reduced expression levels in all mutants post-osmotic stress. The atfA-D null mutants displayed several phenotypes related to osmotic, oxidative, and cell wall stresses. The ΔatfA and ΔatfB were shown to be avirulent and to have attenuated virulence, respectively, in both Galleria mellonella and a neutropenic murine model of invasive pulmonary aspergillosis.


Asunto(s)
Aspergilosis/microbiología , Aspergillus fumigatus/enzimología , Proteínas Fúngicas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Transcriptoma , Animales , Aspergillus fumigatus/genética , Pared Celular , Femenino , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Ontología de Genes , Genoma Fúngico , Ratones Endogámicos BALB C , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Presión Osmótica , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/fisiología
5.
Mol Microbiol ; 102(4): 642-671, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27538790

RESUMEN

The serine-threonine kinase TOR, the Target of Rapamycin, is an important regulator of nutrient, energy and stress signaling in eukaryotes. Sch9, a Ser/Thr kinase of AGC family (the cAMP-dependent PKA, cGMP- dependent protein kinase G and phospholipid-dependent protein kinase C family), is a substrate of TOR. Here, we characterized the fungal opportunistic pathogen Aspergillus fumigatus Sch9 homologue (SchA). The schA null mutant was sensitive to rapamycin, high concentrations of calcium, hyperosmotic stress and SchA was involved in iron metabolism. The ΔschA null mutant showed increased phosphorylation of SakA, the A. fumigatus Hog1 homologue. The schA null mutant has increased and decreased trehalose and glycerol accumulation, respectively, suggesting SchA performs different roles for glycerol and trehalose accumulation during osmotic stress. The schA was transcriptionally regulated by osmotic stress and this response was dependent on SakA and MpkC. The double ΔschA ΔsakA and ΔschA ΔmpkC mutants were more sensitive to osmotic stress than the corresponding parental strains. Transcriptomics and proteomics identified direct and indirect targets of SchA post-exposure to hyperosmotic stress. Finally, ΔschA was avirulent in a low dose murine infection model. Our results suggest there is a complex network of interactions amongst the A. fumigatus TOR, SakA and SchA pathways.


Asunto(s)
Aspergillus fumigatus/enzimología , Aspergillus fumigatus/patogenicidad , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Aspergilosis/microbiología , Aspergillus fumigatus/metabolismo , Femenino , Proteínas Fúngicas/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos BALB C , Presión Osmótica/fisiología , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Sirolimus/farmacología , Esporas Fúngicas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Virulencia
6.
Mol Microbiol ; 100(5): 841-59, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26878695

RESUMEN

Here, we investigated which stress responses were influenced by the MpkC and SakA mitogen-activated protein kinases of the high-osmolarity glycerol (HOG) pathway in the fungal pathogen Aspergillus fumigatus. The ΔsakA and the double ΔmpkC ΔsakA mutants were more sensitive to osmotic and oxidative stresses, and to cell wall damaging agents. Both MpkC::GFP and SakA::GFP translocated to the nucleus upon osmotic stress and cell wall damage, with SakA::GFP showing a quicker response. The phosphorylation state of MpkA was determined post exposure to high concentrations of congo red and Sorbitol. In the wild-type strain, MpkA phosphorylation levels progressively increased in both treatments. In contrast, the ΔsakA mutant had reduced MpkA phosphorylation, and surprisingly, the double ΔmpkC ΔsakA had no detectable MpkA phosphorylation. A. fumigatus ΔsakA and ΔmpkC were virulent in mouse survival experiments, but they had a 40% reduction in fungal burden. In contrast, the ΔmpkC ΔsakA double mutant showed highly attenuated virulence, with approximately 50% mice surviving and a 75% reduction in fungal burden. We propose that both cell wall integrity (CWI) and HOG pathways collaborate, and that MpkC could act by modulating SakA activity upon exposure to several types of stresses and during CW biosynthesis.


Asunto(s)
Aspergillus fumigatus/enzimología , Aspergillus fumigatus/patogenicidad , Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Animales , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Biopelículas/crecimiento & desarrollo , Pared Celular/patología , Rojo Congo/farmacología , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Ratones , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Presión Osmótica , Estrés Oxidativo , Fosforilación , Transducción de Señal , Sorbitol/farmacología , Estrés Fisiológico , Virulencia
7.
Mol Microbiol ; 98(3): 420-39, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26179439

RESUMEN

Nutrient sensing and utilisation are fundamental for all life forms. As heterotrophs, fungi have evolved a diverse range of mechanisms for sensing and taking up various nutrients. Despite its importance, only a limited number of nutrient receptors and their corresponding ligands have been identified in fungi. G-protein coupled receptors (GPCRs) are the largest family of transmembrane receptors. The Aspergillus nidulans genome encodes 16 putative GPCRs, but only a few have been functionally characterised. Our previous study showed the increased expression of an uncharacterised putative GPCR, gprH, during carbon starvation. GprH appears conserved throughout numerous filamentous fungi. Here, we reveal that GprH is a putative receptor involved in glucose and tryptophan sensing. The absence of GprH results in a reduction in cAMP levels and PKA activity upon adding glucose or tryptophan to starved cells. GprH is pre-formed in conidia and is increasingly active during carbon starvation, where it plays a role in glucose uptake and the recovery of hyphal growth. GprH also represses sexual development under conditions favouring sexual fruiting and during carbon starvation in submerged cultures. In summary, the GprH nutrient-sensing system functions upstream of the cAMP-PKA pathway, influences primary metabolism and hyphal growth, while represses sexual development in A. nidulans.


Asunto(s)
Aspergillus nidulans/metabolismo , Fenómenos Fisiológicos de la Nutrición/genética , Receptores Acoplados a Proteínas G/metabolismo , Aspergillus nidulans/genética , Alimentos , Genes Fúngicos , Glucosa/metabolismo , Transducción de Señal , Esporas Fúngicas
8.
Mol Microbiol ; 96(1): 42-54, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25597841

RESUMEN

Aspergillus fumigatus is a fungal pathogen that is capable of adapting to different host niches and to avoid host defenses. An enhanced understanding of how, and which, A. fumigatus signal transduction pathways are engaged in the regulation of these processes is essential for the development of improved disease control strategies. Protein phosphatases are central to numerous signal transduction pathways. To comprehend the functions of protein phosphatases in A. fumigatus, 32 phosphatase catalytic subunit encoding genes were identified. We have recognized PtcB as one of the phosphatases involved in the high osmolarity glycerol response (HOG) pathway. The ΔptcB mutant has both increased phosphorylation of the p38 MAPK (SakA) and expression of osmo-dependent genes. The ΔptcB strain was more sensitive to cell wall damaging agents, had increased chitin and ß-1,3-glucan, and impaired biofilm formation. The ΔptcB strain was avirulent in a murine model of invasive pulmonary aspergillosis. These results stress the importance of the HOG pathway in the regulation of pathogenicity determinants and virulence in A. fumigatus.


Asunto(s)
Aspergillus fumigatus/fisiología , Aspergillus fumigatus/patogenicidad , Regulación Fúngica de la Expresión Génica , Glicerol/metabolismo , Concentración Osmolar , Monoéster Fosfórico Hidrolasas/genética , Animales , Aspergillus fumigatus/genética , Aspergillus fumigatus/ultraestructura , Biopelículas/crecimiento & desarrollo , Pared Celular/metabolismo , Quitina/metabolismo , Biología Computacional , Modelos Animales de Enfermedad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ratones , Mutación , Monoéster Fosfórico Hidrolasas/metabolismo , Transducción de Señal , beta-Glucanos/metabolismo
9.
Eukaryot Cell ; 14(8): 728-44, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25911225

RESUMEN

Aspergillus fumigatus is an opportunistic pathogenic fungus able to infect immunocompromised patients, eventually causing disseminated infections that are difficult to control and lead to high mortality rates. It is important to understand how the signaling pathways that regulate these factors involved in virulence are orchestrated. Protein phosphatases are central to numerous signal transduction pathways. Here, we characterize the A. fumigatus protein phosphatase 2A SitA, the Saccharomyces cerevisiae Sit4p homologue. The sitA gene is not an essential gene, and we were able to construct an A. fumigatus null mutant. The ΔsitA strain had decreased MpkA phosphorylation levels, was more sensitive to cell wall-damaging agents, had increased ß-(1,3)-glucan and chitin, was impaired in biofilm formation, and had decreased protein kinase C activity. The ΔsitA strain is more sensitive to several metals and ions, such as MnCl2, CaCl2, and LiCl, but it is more resistant to ZnSO4. The ΔsitA strain was avirulent in a murine model of invasive pulmonary aspergillosis and induces an augmented tumor necrosis factor alpha (TNF-α) response in mouse macrophages. These results stress the importance of A. fumigatus SitA as a possible modulator of PkcA/MpkA activity and its involvement in the cell wall integrity pathway.


Asunto(s)
Aspergillus fumigatus/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas de Transporte de Catión/metabolismo , Adhesión Celular/fisiología , Pared Celular/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Virulencia/fisiología , Animales , Quitina/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteínas Fúngicas/metabolismo , Aspergilosis Pulmonar Invasiva/metabolismo , Aspergilosis Pulmonar Invasiva/microbiología , Enfermedades Pulmonares Fúngicas/metabolismo , Enfermedades Pulmonares Fúngicas/microbiología , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
10.
Mol Microbiol ; 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25294314

RESUMEN

In the heterogeneous semi-solid environment naturally occupied by lignocellulolytic fungi the majority of nutrients are locked away as insoluble plant biomass. Hence, lignocellulolytic fungi must actively search for, and attach to, a desirable source of nutrients. During growth on lignocellulose a period of carbon deprivation provokes carbon catabolite derepression and scavenging hydrolase secretion. Subsequently, starvation and/or contact sensing was hypothesized to play a role in lignocellulose attachment and degradation. In Aspergillus nidulans the extracellular signalling mucin, MsbA, influences growth under nutrient-poor conditions including lignocellulose. Cellulase secretion and activity was affected by MsbA via a mechanism that was independent of cellulase transcription. MsbA modulated both the cell wall integrity and filamentous growth MAPK pathways influencing adhesion, biofilm formation and secretion. The constitutive activation of MsbA subsequently enhanced cellulase activity by increasing the secretion of the cellobiohydrolase, CbhA, while improved substrate attachment and may contribute to an enhanced starvation response. Starvation and/or contact sensing therefore represents a new dimension to the already multifaceted regulation of cellulase activity.

11.
Mol Microbiol ; 94(3): 655-74, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25196896

RESUMEN

Aspergillus fumigatus is an opportunistic pathogen and allergen of mammals. Calcium signalling is essential for A. fumigatus pathogenicity and is regulated by the CrzA transcription factor. We used ChIP-seq (Chromatin Immunoprecipitation DNA sequencing) to explore CrzA gene targets in A. fumigatus. In total, 165 potential binding peaks including 102 directly regulated genes were identified, resulting in the prediction of the A[GT][CG]CA[AC][AG] CrzA-binding motif. The 102 CrzA putatively regulated genes exhibited a diverse array of functions. The phkB (Afu3g12530) histidine kinase and the sskB (Afu1g10940) MAP kinase kinase kinase of the HOG (high-osmolarity glycerol response) pathway were regulated by CrzA. Several members of the two-component system (TCS) and the HOG pathway were more sensitive to calcium. CrzA::GFP was translocated to the nucleus upon osmotic stress. CrzA is important for the phosphorylation of the SakA MAPK in response to osmotic shock. The ΔsskB was more sensitive to CaCl2 , NaCl, and paraquat stress, while being avirulent in a murine model of invasive pulmonary aspergillosis. The presence of CaCl2 and osmotic stresses resulted in synergistic inhibition of ΔcrzA and ΔsskB growth. These results suggest there is a genetic interaction between the A. fumigatus calcineurin-CrzA and HOG pathway that is essential for full virulence.


Asunto(s)
Aspergillus fumigatus/fisiología , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Glicerol/metabolismo , Presión Osmótica , Transducción de Señal , Estrés Fisiológico , Animales , Aspergillus fumigatus/genética , Aspergillus fumigatus/crecimiento & desarrollo , Aspergillus fumigatus/patogenicidad , Inmunoprecipitación de Cromatina , ADN de Hongos/química , ADN de Hongos/genética , Proteínas Fúngicas/genética , Eliminación de Gen , Mamíferos , Ratones , Concentración Osmolar , Unión Proteica , Regulón , Análisis de Secuencia de ADN , Virulencia
12.
Fungal Genet Biol ; 72: 48-63, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25011009

RESUMEN

The utilisation of lignocellulosic plant biomass as an abundant, renewable feedstock for green chemistries and biofuel production is inhibited by its recalcitrant nature. In the environment, lignocellulolytic fungi are naturally capable of breaking down plant biomass into utilisable saccharides. Nonetheless, within the industrial context, inefficiencies in the production of lignocellulolytic enzymes impede the implementation of green technologies. One of the primary causes of such inefficiencies is the tight transcriptional control of lignocellulolytic enzymes via carbon catabolite repression. Fungi coordinate metabolism, protein biosynthesis and secretion with cellular energetic status through the detection of intra- and extra-cellular nutritional signals. An enhanced understanding of the signals and signalling pathways involved in regulating the transcription, translation and secretion of lignocellulolytic enzymes is therefore of great biotechnological interest. This comparative review describes how nutrient sensing pathways regulate carbon catabolite repression, metabolism and the utilisation of alternative carbon sources in Saccharomyces cerevisiae and ascomycete fungi.


Asunto(s)
Ascomicetos/enzimología , Ascomicetos/metabolismo , Biomasa , Celulasas/metabolismo , Metabolismo Energético , Plantas/metabolismo , Ascomicetos/genética , Celulasas/genética , Regulación Fúngica de la Expresión Génica , Plantas/microbiología
13.
Fungal Genet Biol ; 60: 74-86, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23856128

RESUMEN

Candida albicans is the most common fungal pathogen of humans, forming both commensal and opportunistic pathogenic interactions, causing a variety of skin and soft tissue infections in healthy people. In immunocompromised patients C. albicans can result in invasive, systemic infections that are associated with a high incidence of mortality. Propolis is a complex mixture of several resinous substances which are collected from plants by bees. Here, we demonstrated the fungicidal activity of propolis against all three morphogenetic types of C. albicans and that propolis-induced cell death was mediated via metacaspase and Ras signaling. To identify genes that were involved in propolis tolerance, we screened ~800 C. albicans homozygous deletion mutants for decreased tolerance to propolis. Fifty-one mutant strains were identified as being hypersensitive to propolis including seventeen genes involved in cell adhesion, biofilm formation, filamentous growth, phenotypic switching and pathogenesis (HST7, GIN4, VPS34, HOG1, ISW2, SUV3, MDS3, HDA2, KAR3, YHB1, NUP85, CDC10, MNN9, ACE2, FKH2, and SNF5). We validated these results by showing that propolis inhibited the transition from yeast-like to hyphal growth. Propolis was shown to contain compounds that conferred fluorescent properties to C. albicans cells. Moreover, we have shown that a topical pharmaceutical preparation, based upon propolis, was able to control C. albicans infections in a mouse model for vulvovaginal candidiasis. Our results strongly indicate that propolis could be used as a strategy for controlling candidiasis.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candidiasis Vulvovaginal/tratamiento farmacológico , Própolis/farmacología , Animales , Antiinfecciosos/farmacología , Candidiasis Vulvovaginal/microbiología , Caspasas/metabolismo , Femenino , Ratones , Ratones Endogámicos BALB C , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
14.
Fungal Genet Biol ; 60: 29-45, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23892063

RESUMEN

The interest in the conversion of plant biomass to renewable fuels such as bioethanol has led to an increased investigation into the processes regulating biomass saccharification. The filamentous fungus Aspergillus niger is an important microorganism capable of producing a wide variety of plant biomass degrading enzymes. In A. niger the transcriptional activator XlnR and its close homolog, AraR, controls the main (hemi-)cellulolytic system responsible for plant polysaccharide degradation. Sugarcane is used worldwide as a feedstock for sugar and ethanol production, while the lignocellulosic residual bagasse can be used in different industrial applications, including ethanol production. The use of pentose sugars from hemicelluloses represents an opportunity to further increase production efficiencies. In the present study, we describe a global gene expression analysis of A. niger XlnR- and AraR-deficient mutant strains, grown on a D-xylose/L-arabinose monosaccharide mixture and steam-exploded sugarcane bagasse. Different gene sets of CAZy enzymes and sugar transporters were shown to be individually or dually regulated by XlnR and AraR, with XlnR appearing to be the major regulator on complex polysaccharides. Our study contributes to understanding of the complex regulatory mechanisms responsible for plant polysaccharide-degrading gene expression, and opens new possibilities for the engineering of fungi able to produce more efficient enzymatic cocktails to be used in biofuel production.


Asunto(s)
Arabinosa/metabolismo , Aspergillus niger/enzimología , Proteínas Fúngicas/genética , Transactivadores/genética , Factores de Transcripción/genética , Xilosa/metabolismo , Arabinosa/química , Aspergillus niger/genética , Aspergillus niger/metabolismo , Biocombustibles , Biomasa , Celulosa/metabolismo , Etanol/metabolismo , Proteínas Fúngicas/biosíntesis , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Polisacáridos/metabolismo , Saccharum/microbiología , Transactivadores/biosíntesis , Transactivadores/deficiencia , Factores de Transcripción/biosíntesis , Factores de Transcripción/deficiencia , Xilosa/química
15.
Eukaryot Cell ; 11(4): 518-31, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22345349

RESUMEN

Aspergillus fumigatus is a major opportunistic pathogen and allergen of mammals. Nutrient sensing and acquisition mechanisms, as well as the capability to cope with different stressing conditions, are essential for A. fumigatus virulence and survival in the mammalian host. This study characterized the A. fumigatus SebA transcription factor, which is the putative homologue of the factor encoded by Trichoderma atroviride seb1. The ΔsebA mutant demonstrated reduced growth in the presence of paraquat, hydrogen peroxide, CaCl2, and poor nutritional conditions, while viability associated with sebA was also affected by heat shock exposure. Accordingly, SebA::GFP (SebA::green fluorescent protein) was shown to accumulate in the nucleus upon exposure to oxidative stress and heat shock conditions. In addition, genes involved in either the oxidative stress or heat shock response had reduced transcription in the ΔsebA mutant. The A. fumigatus ΔsebA strain was attenuated in virulence in a murine model of invasive pulmonary aspergillosis. Furthermore, killing of the ΔsebA mutant by murine alveolar macrophages was increased compared to killing of the wild-type strain. A. fumigatus SebA plays a complex role, contributing to several stress tolerance pathways and growth under poor nutritional conditions, and seems to be integrated into different stress responses.


Asunto(s)
Aspergillus fumigatus/fisiología , Proteínas Fúngicas/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Animales no Consanguíneos , Aspergillus fumigatus/crecimiento & desarrollo , Aspergillus fumigatus/patogenicidad , Calcio/metabolismo , Femenino , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Peróxido de Hidrógeno/farmacología , Aspergilosis Pulmonar Invasiva/inmunología , Aspergilosis Pulmonar Invasiva/microbiología , Pulmón/microbiología , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Viabilidad Microbiana/efectos de los fármacos , Datos de Secuencia Molecular , Oxidantes/farmacología , Paraquat/farmacología , Fenotipo , Eliminación de Secuencia , Estrés Fisiológico/efectos de los fármacos , Factores de Transcripción/metabolismo , Transcripción Genética , Virulencia , Dedos de Zinc
17.
mBio ; 11(1)2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019798

RESUMEN

The filamentous fungus Aspergillus fumigatus can cause a distinct set of clinical disorders in humans. Invasive aspergillosis (IA) is the most common life-threatening fungal disease of immunocompromised humans. The mitogen-activated protein kinase (MAPK) signaling pathways are essential to the adaptation to the human host. Fungal cell survival is highly dependent on the organization, composition, and function of the cell wall. Here, an evaluation of the global A. fumigatus phosphoproteome under cell wall stress caused by the cell wall-damaging agent Congo red (CR) revealed 485 proteins potentially involved in the cell wall damage response. Comparative phosphoproteome analyses with the ΔsakA, ΔmpkC, and ΔsakA ΔmpkC mutant strains from the osmotic stress MAPK cascades identify their additional roles during the cell wall stress response. Our phosphoproteomics allowed the identification of novel kinases and transcription factors (TFs) involved in osmotic stress and in the cell wall integrity (CWI) pathway. Our global phosphoproteome network analysis showed an enrichment for protein kinases, RNA recognition motif domains, and the MAPK signaling pathway. In contrast to the wild-type strain, there is an overall decrease of differentially phosphorylated kinases and phosphatases in ΔsakA, ΔmpkC, and ΔsakA ΔmpkC mutants. We constructed phosphomutants for the phosphorylation sites of several proteins differentially phosphorylated in the wild-type and mutant strains. For all the phosphomutants, there is an increase in the sensitivity to cell wall-damaging agents and a reduction in the MpkA phosphorylation upon CR stress, suggesting these phosphosites could be important for the MpkA modulation and CWI pathway regulation.IMPORTANCEAspergillus fumigatus is an opportunistic human pathogen causing allergic reactions or systemic infections, such as invasive pulmonary aspergillosis in immunocompromised patients. The mitogen-activated protein kinase (MAPK) signaling pathways are essential for fungal adaptation to the human host. Fungal cell survival, fungicide tolerance, and virulence are highly dependent on the organization, composition, and function of the cell wall. Upon cell wall stress, MAPKs phosphorylate multiple target proteins involved in the remodeling of the cell wall. Here, we investigate the global phosphoproteome of the ΔsakA and ΔmpkCA. fumigatus and high-osmolarity glycerol (HOG) pathway MAPK mutants upon cell wall damage. This showed the involvement of the HOG pathway and identified novel protein kinases and transcription factors, which were confirmed by fungal genetics to be involved in promoting tolerance of cell wall damage. Our results provide understanding of how fungal signal transduction networks modulate the cell wall. This may also lead to the discovery of new fungicide drug targets to impact fungal cell wall function, fungicide tolerance, and virulence.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/enzimología , Caspofungina/farmacología , Pared Celular/patología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Aspergillus fumigatus/genética , Pared Celular/efectos de los fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Glicerol/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Concentración Osmolar , Presión Osmótica , Fosforilación , Proteoma , Transducción de Señal
18.
Front Microbiol ; 10: 918, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31134001

RESUMEN

Aspergillus fumigatus, a saprophytic filamentous fungus, is a serious opportunistic pathogen of mammals and it is the primary causal agent of invasive aspergillosis (IA). Mitogen activated protein Kinases (MAPKs) are important components involved in diverse cellular processes in eukaryotes. A. fumigatus MpkC and SakA, the homologs of the Saccharomyces cerevisiae Hog1 are important to adaptations to oxidative and osmotic stresses, heat shock, cell wall damage, macrophage recognition, and full virulence. We performed protein pull-down experiments aiming to identify interaction partners of SakA and MpkC by mass spectrometry analysis. In presence of osmotic stress with sorbitol, 118, and 213 proteins were detected as possible protein interactors of SakA and MpkC, respectively. Under cell wall stress caused by congo red, 420 and 299 proteins were detected interacting with SakA and MpkC, respectively. Interestingly, a group of 78 and 256 proteins were common to both interactome analysis. Co-immunoprecipitation (Co-IP) experiments showed that SakA::GFP is physically associated with MpkC:3xHA upon osmotic and cell wall stresses. We also validated the association between SakA:GFP and the cell wall integrity MAPK MpkA:3xHA and the phosphatase PtcB:3xHA, under cell wall stress. We further characterized A. fumigatus PakA, the homolog of the S. cerevisiae sexual developmental serine/threonine kinase Ste20, as a component of the SakA/MpkC MAPK pathway. The ΔpakA strain is more sensitive to cell wall damaging agents as congo red, calcofluor white, and caspofungin. Together, our data supporting the hypothesis that SakA and MpkC are part of an osmotic and general signal pathways involved in regulation of the response to the cell wall damage, oxidative stress, drug resistance, and establishment of infection. This manuscript describes an important biological resource to understand SakA and MpkC protein interactions. Further investigation of the biological roles played by these protein interactors will provide more opportunities to understand and combat IA.

19.
Fungal Genet Biol ; 60: 1, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24237686
20.
Nat Microbiol ; 3(4): 402-414, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29588541

RESUMEN

G-protein signalling pathways are involved in sensing the environment, enabling fungi to coordinate cell function, metabolism and development with their surroundings, thereby promoting their survival, propagation and virulence. G-protein-coupled receptors (GPCRs) are the largest class of cell surface receptors in fungi. Despite the apparent importance of GPCR signalling to fungal biology and virulence, relatively few GPCR-G-protein interactions, and even fewer receptor-binding ligands, have been identified. Approximately 40% of current pharmaceuticals target human GPCRs, due to their cell surface location and central role in cell signalling. Fungal GPCRs do not belong to any of the mammalian receptor classes, making them druggable targets for antifungal development. This Review Article evaluates developments in our understanding of fungal GPCR-mediated signalling, while substantiating the rationale for considering these receptors as potential antifungal targets. The need for insights into the structure-function relationship of receptor-ligand interactions is highlighted, which could facilitate the development of receptor-interfering compounds that could be used in disease control.


Asunto(s)
Antifúngicos/farmacología , Hongos/patogenicidad , Interacciones Huésped-Patógeno/fisiología , Micosis/tratamiento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Hongos/genética , Hongos/metabolismo , Humanos , Micosis/patología , Receptores Acoplados a Proteínas G/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA