Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
N Engl J Med ; 382(5): 437-445, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-31995689

RESUMEN

BACKGROUND: Cytomegalovirus (CMV) can cause severe disease in children and adults with a variety of inherited or acquired T-cell immunodeficiencies, who are prone to multiple infections. It can also rarely cause disease in otherwise healthy persons. The pathogenesis of idiopathic CMV disease is unknown. Inbred mice that lack the gene encoding nitric oxide synthase 2 (Nos2) are susceptible to the related murine CMV infection. METHODS: We studied a previously healthy 51-year-old man from Iran who after acute CMV infection had an onset of progressive CMV disease that led to his death 29 months later. We hypothesized that the patient may have had a novel type of inborn error of immunity. Thus, we performed whole-exome sequencing and tested candidate mutant alleles experimentally. RESULTS: We found a homozygous frameshift mutation in NOS2 encoding a truncated NOS2 protein that did not produce nitric oxide, which determined that the patient had autosomal recessive NOS2 deficiency. Moreover, all NOS2 variants that we found in homozygosity in public databases encoded functional proteins, as did all other variants with an allele frequency greater than 0.001. CONCLUSIONS: These findings suggest that inherited NOS2 deficiency was clinically silent in this patient until lethal infection with CMV. Moreover, NOS2 appeared to be redundant for control of other pathogens in this patient. (Funded by the National Center for Advancing Translational Sciences and others.).


Asunto(s)
Infecciones por Citomegalovirus , Mutación del Sistema de Lectura , Óxido Nítrico Sintasa de Tipo II/deficiencia , Resultado Fatal , Femenino , Genotipo , Homocigoto , Humanos , Mutación con Pérdida de Función , Masculino , Persona de Mediana Edad , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Linaje , Secuenciación del Exoma
2.
PLoS Pathog ; 16(6): e1008567, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32574211

RESUMEN

Efforts at host-directed therapy of tuberculosis have produced little control of the disease in experimental animals to date. This is not surprising, given that few specific host targets have been validated, and reciprocally, many of the compounds tested potentially impact multiple targets with both beneficial and detrimental consequences. This puts a premium on identifying appropriate molecular targets and subjecting them to more selective modulation. We discovered an aminopyrimidine small molecule, 2062, that had no direct antimycobacterial activity, but synergized with rifampin to reduce bacterial burden in Mtb infected macrophages and mice and also dampened lung immunopathology. We used 2062 and its inactive congeners as tool compounds to identify host targets. By biochemical, pharmacologic, transcriptomic and genetic approaches, we found that 2062's beneficial effects on Mtb control and clearance in macrophages and in mice are associated with activation of transcription factor EB via an organellar stress response. 2062-dependent TFEB activation led to improved autophagy, lysosomal acidification and lysosomal degradation, promoting bacterial clearance in macrophages. Deletion of TFEB resulted in the loss of IFNγ-dependent control of Mtb replication in macrophages. 2062 also targeted multiple kinases, such as PIKfyve, VPS34, JAKs and Tyk2, whose inhibition likely limited 2062's efficacy in vivo. These findings support a search for selective activators of TFEB for HDT of TB.


Asunto(s)
Antituberculosos/farmacología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Mycobacterium tuberculosis/metabolismo , Rifampin/farmacología , Tuberculosis , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/tratamiento farmacológico , Tuberculosis/metabolismo , Tuberculosis/patología
3.
Eur J Immunol ; 48(4): 612-620, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29436711

RESUMEN

Genetic deficiency of protein kinase R (PKR) in mice was reported to enhance macrophage activation in vitro in response to interferon-γ (IFNγ) and to reduce the burden of Mycobacterium tuberculosis (Mtb) in vivo (Wu et al. PloS One. 2012 7:e30512). Consistent with this, treatment of wild-type (WT) macrophages in vitro with a novel PKR inhibitor (Bryk et al., Bioorg. Med. Chem. Lett. 2011 21:4108-4114) also enhanced IFN-γ-dependent macrophage activation (Wu et al. PloS One. 2012 7:e30512). Here we show that co-treatment with IFN-γ and a new PKR inhibitor identified herein to be highly but not completely selective likewise induced macrophages to produce more reactive nitrogen intermediates (RNI) and tumor necrosis factor alpha (TNF-α) and less interleukin 10 (IL-10) than seen with IFN-γ alone. Unexpectedly, however, this new PKR inhibitor had a comparable effect on PKR-deficient macrophages. Retrospective investigation revealed that the PKR-deficient mice in (Wu et al. PloS One. 2012 7:e30512) had not been backcrossed. On comparing genetically matched PKR-deficient and WT mice, we saw no impact of PKR deficiency on macrophage activation in vitro or during the course of Mtb infection in vivo. In addition, although 129S1/SvImJ macrophage responses to IFN-γ were greater than those of C57BL/6J macrophages, PKR was not required to mediate the IFN-γ-dependent production of IL-10, RNI or TNF-α in either strain. Together the data cast doubt on PKR as a potential therapeutic target for tuberculosis.


Asunto(s)
Interferón gamma/farmacología , Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , eIF-2 Quinasa/antagonistas & inhibidores , Animales , Células Cultivadas , Femenino , Interleucina-10/biosíntesis , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especies de Nitrógeno Reactivo/biosíntesis , Tuberculosis/microbiología , Factor de Necrosis Tumoral alfa/biosíntesis , eIF-2 Quinasa/genética
4.
Proc Natl Acad Sci U S A ; 112(43): E5834-43, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26430237

RESUMEN

Enzymes of central carbon metabolism (CCM) in Mycobacterium tuberculosis (Mtb) make an important contribution to the pathogen's virulence. Evidence is emerging that some of these enzymes are not simply playing the metabolic roles for which they are annotated, but can protect the pathogen via additional functions. Here, we found that deficiency of 2-hydroxy-3-oxoadipate synthase (HOAS), the E1 component of the α-ketoglutarate (α-KG) dehydrogenase complex (KDHC), did not lead to general metabolic perturbation or growth impairment of Mtb, but only to the specific inability to cope with glutamate anaplerosis and nitroxidative stress. In the former role, HOAS acts to prevent accumulation of aldehydes, including growth-inhibitory succinate semialdehyde (SSA). In the latter role, HOAS can participate in an alternative four-component peroxidase system, HOAS/dihydrolipoyl acetyl transferase (DlaT)/alkylhydroperoxide reductase colorless subunit gene (ahpC)-neighboring subunit (AhpD)/AhpC, using α-KG as a previously undescribed source of electrons for reductase action. Thus, instead of a canonical role in CCM, the E1 component of Mtb's KDHC serves key roles in situational defense that contribute to its requirement for virulence in the host. We also show that pyruvate decarboxylase (AceE), the E1 component of pyruvate dehydrogenase (PDHC), can participate in AceE/DlaT/AhpD/AhpC, using pyruvate as a source of electrons for reductase action. Identification of these systems leads us to suggest that Mtb can recruit components of its CCM for reactive nitrogen defense using central carbon metabolites.


Asunto(s)
Ácido Glutámico/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Mycobacterium tuberculosis/metabolismo , Nitrosación , Estrés Oxidativo , Animales , Ratones , Ratones Endogámicos C57BL
5.
Biochemistry ; 52(51): 9375-84, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24251446

RESUMEN

Tuberculosis remains a global health emergency that calls for treatment regimens directed at new targets. Here we explored lipoamide dehydrogenase (Lpd), a metabolic and detoxifying enzyme in Mycobacterium tuberculosis (Mtb) whose deletion drastically impairs Mtb's ability to establish infection in the mouse. Upon screening more than 1.6 million compounds, we identified N-methylpyridine 3-sulfonamides as potent and species-selective inhibitors of Mtb Lpd affording >1000-fold selectivity versus the human homologue. The sulfonamides demonstrated low nanomolar affinity and bound at the lipoamide channel in an Lpd-inhibitor cocrystal. Their selectivity could be attributed, at least partially, to hydrogen bonding of the sulfonamide amide oxygen with the species variant Arg93 in the lipoamide channel. Although potent and selective, the sulfonamides did not enter mycobacteria, as determined by their inability to accumulate in Mtb to effective levels or to produce changes in intracellular metabolites. This work demonstrates that high potency and selectivity can be achieved at the lipoamide-binding site of Mtb Lpd, a site different from the NAD⁺/NADH pocket targeted by previously reported species-selective triazaspirodimethoxybenzoyl inhibitors.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Dihidrolipoamida Deshidrogenasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/enzimología , Sulfonamidas/farmacología , Ácido Tióctico/análogos & derivados , Antituberculosos/efectos adversos , Antituberculosos/química , Arginina/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bencenoacetamidas/efectos adversos , Bencenoacetamidas/química , Bencenoacetamidas/farmacología , Sitios de Unión , Transporte Biológico/efectos de los fármacos , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Dihidrolipoamida Deshidrogenasa/química , Dihidrolipoamida Deshidrogenasa/genética , Dihidrolipoamida Deshidrogenasa/metabolismo , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/efectos adversos , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Moduladores del Transporte de Membrana/efectos adversos , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/farmacología , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Sulfonamidas/efectos adversos , Sulfonamidas/química , Ácido Tióctico/metabolismo
6.
ACS Bio Med Chem Au ; 3(6): 507-515, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38144256

RESUMEN

Lpd (lipoamide dehydrogenase) in Mycobacterium tuberculosis (Mtb) is required for virulence and is a genetically validated tuberculosis (TB) target. Numerous screens have been performed over the last decade, yet only two inhibitor series have been identified. Recent advances in large-scale virtual screening methods combined with make-on-demand compound libraries have shown the potential for finding novel hits. In this study, the Enamine REAL library consisting of ∼1.12 billion compounds was efficiently screened using the GPU Shape screen method against Mtb Lpd to find additional chemical matter that would expand on the known sulfonamide inhibitor series. We identified six new inhibitors with IC50 in the range of 5-100 µM. While these compounds remained chemically close to the already known sulfonamide series inhibitors, some diversity was found in the cores of the hits. The two most potent hits were further validated by one-step potency optimization to submicromolar levels. The co-crystal structure of optimized analogue TDI-13537 provided new insights into the potency determinants of the series.

7.
Bioorg Med Chem Lett ; 21(13): 4108-14, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21632247

RESUMEN

We report the identification of new, structurally diverse inhibitors of interferon-induced, double-stranded RNA-activated protein kinase (PKR) using a combined experimental and computational approach. A training set with which to build a predictive statistical model was generated by screening a set of 80 known Ser/Thr kinase inhibitors against recombinant human PKR, resulting in the identification of 28 compounds from 18 chemical classes with <0.1 µM ≤ IC(50) ≤ 20 µM. The model built with this data was used to screen a database of 5 million commercially available compounds in silico to identify candidate inhibitors. Testing of 128 structurally diverse candidates resulted in the confirmation of 20 new inhibitors from 11 chemical classes with 2 µM ≤ IC(50) ≤ 20 µM. Testing of 34 analogs in the newly identified pyrimidin-2-amine active series provided initial SAR. One newly identified inhibitor, N-[2-(1H-indol-3-yl)ethyl]-4-(2-methyl-1H-indol-3-yl)pyrimidin-2-amine (compound 51), inhibited intracellular PKR activation in a dose-dependent manner in primary mouse macrophages without evident toxicity at effective concentrations.


Asunto(s)
Simulación por Computador , Inhibidores Enzimáticos/síntesis química , eIF-2 Quinasa/antagonistas & inhibidores , Animales , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Macrófagos/efectos de los fármacos , Ratones , Modelos Estadísticos , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
8.
ACS Infect Dis ; 7(2): 435-444, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33527832

RESUMEN

Tuberculosis remains a leading cause of death from a single bacterial infection worldwide. Efforts to develop new treatment options call for expansion into an unexplored target space to expand the drug pipeline and bypass resistance to current antibiotics. Lipoamide dehydrogenase is a metabolic and antioxidant enzyme critical for mycobacterial growth and survival in mice. Sulfonamide analogs were previously identified as potent and selective inhibitors of mycobacterial lipoamide dehydrogenase in vitro but lacked activity against whole mycobacteria. Here we present the development of analogs with improved permeability, potency, and selectivity, which inhibit the growth of Mycobacterium tuberculosis in axenic culture on carbohydrates and within mouse primary macrophages. They increase intrabacterial pyruvate levels, supporting their on-target activity within mycobacteria. Distinct modalities of binding between the mycobacterial and human enzymes contribute to improved potency and hence selectivity through induced-fit tight binding interactions within the mycobacterial but not human enzyme, as indicated by kinetic analysis and crystallography.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Antibacterianos/uso terapéutico , Dihidrolipoamida Deshidrogenasa/metabolismo , Humanos , Cinética , Ratones , Mycobacterium tuberculosis/metabolismo , Tuberculosis/tratamiento farmacológico
9.
Biochemistry ; 49(8): 1616-27, 2010 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-20078138

RESUMEN

Mycobacterium tuberculosis (Mtb) remains the leading single cause of death from bacterial infection. Here we explored the possibility of species-selective inhibition of lipoamide dehydrogenase (Lpd), an enzyme central to Mtb's intermediary metabolism and antioxidant defense. High-throughput screening of combinatorial chemical libraries identified triazaspirodimethoxybenzoyls as high-nanomolar inhibitors of Mtb's Lpd that were noncompetitive versus NADH, NAD(+), and lipoamide and >100-fold selective compared to human Lpd. Efficacy required the dimethoxy and dichlorophenyl groups. The structure of an Lpd-inhibitor complex was resolved to 2.42 A by X-ray crystallography, revealing that the inhibitor occupied a pocket adjacent to the Lpd NADH/NAD(+) binding site. The inhibitor did not overlap with the adenosine moiety of NADH/NAD(+) but did overlap with positions predicted to bind the nicotinamide rings in NADH and NAD(+) complexes. The dimethoxy ring occupied a deep pocket adjacent to the FAD flavin ring where it would block coordination of the NADH nicotinamide ring, while the dichlorophenyl group occupied a more exposed pocket predicted to coordinate the NAD(+) nicotinamide. Several residues that are not conserved between the bacterial enzyme and its human homologue were predicted to contribute both to inhibitor binding and to species selectivity, as confirmed for three residues by analysis of the corresponding mutant Mtb Lpd proteins. Thus, nonconservation of residues lining the electron-transfer tunnel in Mtb Lpd can be exploited for development of species-selective Lpd inhibitors.


Asunto(s)
Antituberculosos/química , Antituberculosos/metabolismo , Dihidrolipoamida Deshidrogenasa/antagonistas & inhibidores , Dihidrolipoamida Deshidrogenasa/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Mycobacterium tuberculosis/enzimología , Animales , Antituberculosos/efectos adversos , Antituberculosos/farmacología , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cristalografía por Rayos X , Dihidrolipoamida Deshidrogenasa/química , Dihidrolipoamida Deshidrogenasa/genética , Inhibidores Enzimáticos/efectos adversos , Inhibidores Enzimáticos/farmacología , Macrófagos/citología , Ratones , Modelos Biológicos , Estructura Molecular , Mutagénesis Sitio-Dirigida , NAD/química , NAD/metabolismo , Relación Estructura-Actividad , Ácido Tióctico/análogos & derivados , Ácido Tióctico/química , Ácido Tióctico/metabolismo
10.
Nat Chem Biol ; 4(10): 609-16, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18724363

RESUMEN

A screen of a genomic library from Mycobacterium tuberculosis (Mtb) identified a small, unannotated open reading frame (MT0196) that encodes a 4.9-kDa, cysteine-rich protein. Despite extensive nucleotide divergence, the amino acid sequence is highly conserved among mycobacteria that are pathogenic in vertebrate hosts. We synthesized the protein and found that it preferentially binds up to six Cu(I) ions in a solvent-shielded core. Copper, cadmium and compounds that generate nitric oxide or superoxide induced the gene's expression in Mtb up to 1,000-fold above normal expression. The native protein bound copper within Mtb and partially protected Mtb from copper toxicity. We propose that the product of the MT0196 gene be named mycobacterial metallothionein (MymT). To our knowledge, MymT is the first metallothionein of a Gram-positive bacterium with a demonstrated function.


Asunto(s)
Cobre/química , Metalotioneína/genética , Mycobacterium tuberculosis/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Regulación Bacteriana de la Expresión Génica , Metalotioneína/química , Datos de Secuencia Molecular , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Alineación de Secuencia
11.
Tuberculosis (Edinb) ; 95(6): 689-694, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26547230

RESUMEN

We compared phenotypes of five strains of Mycobacterium tuberculosis (Mtb) differing in their expression of rv1248c and its product, 2-hydroxy-3-oxoadipate synthase (HOAS), with a focus on carbon source-dependent growth rates and attenuation in mice. Surprisingly, an rv1248c transposon mutant on a CDC1551 background grew differently than an rv1248c deletion mutant on the same background. Moreover, the same rv1248c deletion in two different yet genetically similar strain backgrounds (CDC1551 and H37Rv) gave different phenotypes, though each could be complemented. Whole genome re-sequencing did not provide an obvious explanation for these discrepancies. These observations offer a cautionary lesson about the strength of inference from complementation and sequence analysis, and commend consideration of more complex phenomena than usually contemplated in Mtb, such as epigenetic control.


Asunto(s)
Transferasas de Aldehído-Cetona/genética , Proteínas Bacterianas/genética , Elementos Transponibles de ADN , Mycobacterium tuberculosis/genética , Eliminación de Secuencia , Tuberculosis Pulmonar/microbiología , Transferasas de Aldehído-Cetona/metabolismo , Animales , Carga Bacteriana , Proteínas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Genotipo , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/crecimiento & desarrollo , Fenotipo , Factores de Tiempo
12.
Cell Host Microbe ; 9(1): 21-31, 2011 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-21238944

RESUMEN

Mycobacterium tuberculosis (Mtb) adapts to persist in a nutritionally limited macrophage compartment. Lipoamide dehydrogenase (Lpd), the third enzyme (E3) in Mtb's pyruvate dehydrogenase complex (PDH), also serves as E1 of peroxynitrite reductase/peroxidase (PNR/P), which helps Mtb resist host-reactive nitrogen intermediates. In contrast to Mtb lacking dihydrolipoamide acyltransferase (DlaT), the E2 of PDH and PNR/P, Lpd-deficient Mtb is severely attenuated in wild-type and immunodeficient mice. This suggests that Lpd has a function that DlaT does not share. When DlaT is absent, Mtb upregulates an Lpd-dependent branched-chain keto acid dehydrogenase (BCKADH) encoded by pdhA, pdhB, pdhC, and lpdC. Without Lpd, Mtb cannot metabolize branched-chain amino acids and potentially toxic branched-chain intermediates accumulate. Mtb deficient in both DlaT and PdhC phenocopies Lpd-deficient Mtb. Thus, Mtb critically requires BCKADH along with PDH and PNR/P for pathogenesis. These findings position Lpd as a potential target for anti-infectives against Mtb.


Asunto(s)
Dihidrolipoamida Deshidrogenasa/metabolismo , Mycobacterium tuberculosis/patogenicidad , Factores de Virulencia/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Carga Bacteriana , Dihidrolipoamida Deshidrogenasa/deficiencia , Modelos Animales de Enfermedad , Pulmón/microbiología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Complejos Multienzimáticos/deficiencia , Complejos Multienzimáticos/metabolismo , Bazo/microbiología , Tuberculosis/microbiología , Tuberculosis/patología , Virulencia , Factores de Virulencia/deficiencia
13.
Trends Microbiol ; 19(7): 307-14, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21561773

RESUMEN

Recent advances in liquid chromatography and mass spectrometry have enabled the highly parallel, quantitative measurement of metabolites within a cell and the ability to trace their biochemical fates. In Mycobacterium tuberculosis (Mtb), these advances have highlighted major gaps in our understanding of central carbon metabolism (CCM) that have prompted fresh interpretations of the composition and structure of its metabolic pathways and the phenotypes of Mtb strains in which CCM genes have been deleted. High-throughput screens have demonstrated that small chemical compounds can selectively inhibit some enzymes of Mtb's CCM while sparing homologs in the host. Mtb's CCM has thus emerged as a frontier for both fundamental and translational research.


Asunto(s)
Carbono/metabolismo , Genes Bacterianos , Mycobacterium tuberculosis/metabolismo , Antibacterianos , Vías Biosintéticas , Biología Computacional , Evolución Molecular , Genómica , Metabolómica , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética
14.
Tuberculosis (Edinb) ; 88 Suppl 1: S25-33, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18762150

RESUMEN

How we develop antibiotics is shaped by how we view infectious disease. Given the urgent need for new chemotherapeutics for tuberculosis and other infectious diseases, it is timely to reconsider a view of infectious disease that is strongly supported by contemporary evidence but that has rarely been applied in antibiotic development. This view recognizes the importance of nonreplicating bacteria in persistent infections, acknowledges the heterogeneity and stringency of chemical environments encountered by the pathogen in the host, and emphasizes metabolic adaptation of the host and the pathogen during their competition. For example, efforts in our lab are guided by the perspective that Mycobacterium tuberculosis (Mtb) has co-evolved with the human immune response, with the result that Mtb turns host-imposed metabolic adversity to its own advantage. We seek chemotherapeutics that turn Mtb's adversity to the host's advantage.


Asunto(s)
Antituberculosos/uso terapéutico , Filosofía Médica , Tuberculosis/tratamiento farmacológico , Antibacterianos/uso terapéutico , Antituberculosos/farmacología , Enfermedades Transmisibles/tratamiento farmacológico , Enfermedades Transmisibles/microbiología , Interacciones Huésped-Patógeno , Humanos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/fisiología , Tuberculosis/microbiología
15.
Cell Host Microbe ; 3(3): 137-45, 2008 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-18329613

RESUMEN

Antibiotics are typically more effective against replicating rather than nonreplicating bacteria. However, a major need in global health is to eradicate persistent or nonreplicating subpopulations of bacteria such as Mycobacterium tuberculosis (Mtb). Hence, identifying chemical inhibitors that selectively kill bacteria that are not replicating is of practical importance. To address this, we screened for inhibitors of dihydrolipoamide acyltransferase (DlaT), an enzyme required by Mtb to cause tuberculosis in guinea pigs and used by the bacterium to resist nitric oxide-derived reactive nitrogen intermediates, a stress encountered in the host. Chemical screening for inhibitors of Mtb DlaT identified select rhodanines as compounds that almost exclusively kill nonreplicating mycobacteria in synergy with products of host immunity, such as nitric oxide and hypoxia, and are effective on bacteria within macrophages, a cellular reservoir for latent Mtb. Compounds that kill nonreplicating pathogens in cooperation with host immunity could complement the conventional chemotherapy of infectious disease.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Viabilidad Microbiana/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/inmunología , Rodanina/farmacología , Aciltransferasas/genética , Animales , Proteínas Bacterianas/genética , Células Cultivadas , Recuento de Colonia Microbiana , Inhibidores Enzimáticos/farmacología , Eliminación de Gen , Prueba de Complementación Genética , Cobayas , Hipoxia/inmunología , Pulmón/microbiología , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Estructura Molecular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Óxido Nítrico/inmunología , Rodanina/química , Rodanina/toxicidad , Tuberculosis/inmunología , Tuberculosis/microbiología , Virulencia , Factores de Virulencia/antagonistas & inhibidores , Factores de Virulencia/genética
16.
Mol Microbiol ; 57(3): 859-68, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16045627

RESUMEN

Mycobacterium tuberculosis (Mtb) persists for prolonged periods in macrophages, where it must adapt to metabolic limitations and oxidative/nitrosative stress. However, little is known about Mtb's intermediary metabolism or antioxidant defences. We recently identified a peroxynitrite reductase-peroxidase complex in Mtb that included products of the genes sucB and lpd, which are annotated to encode the dihydrolipoamide succinyltransferase (E2) and lipoamide dehydrogenase (E3) components of alpha-ketoglutarate dehydrogenase (KDH). However, we could detect no KDH activity in Mtb lysates, nor could we reconstitute KDH by combining the recombinant proteins SucA (annotated as the E1 component of KDH), SucB and Lpd. We therefore renamed the sucB product dihydrolipoamide acyltransferase (DlaT). Mtb lysates contained pyruvate dehydrogenase (PDH) activity, which was lost when the dlaT gene (formerly, sucB) was disrupted. Purification of PDH from Mtb yielded AceE, annotated as an E1 component of PDH, along with DlaT and Lpd. Moreover, anti-DlaT antibody coimmunoprecipitated AceE. Finally, recombinant AceE, DlaT and Lpd, although encoded by genes that are widely separated on the chromosome, reconstituted PDH in vitro with Km values typical of bacterial PDH complexes. In sum, Mtb appears to lack KDH. Instead, DlaT and Lpd join with AceE to constitute PDH.


Asunto(s)
Complejo Cetoglutarato Deshidrogenasa/metabolismo , Mycobacterium tuberculosis/enzimología , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Dihidrolipoamida Deshidrogenasa/genética , Dihidrolipoamida Deshidrogenasa/metabolismo , Mycobacterium tuberculosis/genética , Proteínas Recombinantes/metabolismo
17.
Proc Natl Acad Sci U S A ; 102(30): 10670-5, 2005 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-16027371

RESUMEN

Mycobacterium tuberculosis (Mtb) has adapted its metabolism for persistence in the human macrophage. The adaptations are likely to involve Mtb's core intermediary metabolism, whose enzymes have been little studied. The tricarboxylic acid cycle is expected to yield precursors for energy, lipids, amino acids, and heme. The genome sequence of Mtb H37Rv predicts the presence of a complete tricarboxylic acid cycle, but we recently found that alpha-ketoglutarate dehydrogenase (KDH) activity is lacking in Mtb lysates. Here we showed that citrate synthase, aconitase, isocitrate dehydrogenase, fumarase, malate dehydrogenase, and succinate dehydrogenase, but not KDH, are present, raising the possibility of separate oxidative and reductive half-cycles. As a potential link between the half-cycles, we found that Rv1248c, annotated as encoding SucA, the putative E1 component of KDH, instead encodes alpha-ketoglutarate decarboxylase (Kgd) and produces succinic semialdehyde. Succinic semialdehyde dehydrogenase activity was detected in Mtb lysates and recapitulated with recombinant proteins GabD1 (encoded by Rv0234c) and GabD2 (encoded by Rv1731). Kgd and GabD1 or GabD2 form an alternative pathway from alpha-ketoglutarate to succinate. Rv1248c, which is essential or required for normal growth of Mtb [Sassetti, C., Boyd, D. H. & Rubin, E. J. (2003) Mol. Microbiol 48, 77-84] is the first gene shown to encode a Kgd. Kgd is lacking in humans and may represent a potential target for chemotherapy of tuberculosis.


Asunto(s)
Carboxiliasas/metabolismo , Ciclo del Ácido Cítrico/fisiología , Mycobacterium tuberculosis/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Western Blotting , Enzimas/metabolismo , Ácido Glutámico/metabolismo , Mycobacterium tuberculosis/fisiología , Resonancia Magnética Nuclear Biomolecular , Especificidad de la Especie , Ácido gamma-Aminobutírico/análogos & derivados , Ácido gamma-Aminobutírico/metabolismo
18.
J Biol Chem ; 280(40): 33977-83, 2005 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-16093239

RESUMEN

We report the 2.4 A crystal structure for lipoamide dehydrogenase encoded by lpdC from Mycobacterium tuberculosis. Based on the Lpd structure and sequence alignment between bacterial and eukaryotic Lpd sequences, we generated single point mutations in Lpd and assayed the resulting proteins for their ability to catalyze lipoamide reduction/oxidation alone and in complex with other proteins that participate in pyruvate dehydrogenase and peroxidase activities. The results suggest that amino acid residues conserved in mycobacterial species but not conserved in eukaryotic Lpd family members modulate either or both activities and include Arg-93, His-98, Lys-103, and His-386. In addition, Arg-93 and His-386 are involved in forming both "open" and "closed" active site conformations, suggesting that these residues play a role in dynamically regulating Lpd function. Taken together, these data suggest protein surfaces that should be considered while developing strategies for inhibiting this enzyme.


Asunto(s)
Dihidrolipoamida Deshidrogenasa/química , Dihidrolipoamida Deshidrogenasa/metabolismo , Mycobacterium tuberculosis/enzimología , Secuencia de Aminoácidos , ADN Bacteriano/análisis , Datos de Secuencia Molecular , Mutación Puntual , Conformación Proteica , Alineación de Secuencia , Análisis de Secuencia de ADN , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA