Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(15): 8416-8423, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32229560

RESUMEN

Bipedalism is a defining trait of the hominin lineage, associated with a transition from a more arboreal to a more terrestrial environment. While there is debate about when modern human-like bipedalism first appeared in hominins, all known South African hominins show morphological adaptations to bipedalism, suggesting that this was their predominant mode of locomotion. Here we present evidence that hominins preserved in the Sterkfontein Caves practiced two different locomotor repertoires. The trabecular structure of a proximal femur (StW 522) attributed to Australopithecus africanus exhibits a modern human-like bipedal locomotor pattern, while that of a geologically younger specimen (StW 311) attributed to either Homo sp. or Paranthropus robustus exhibits a pattern more similar to nonhuman apes, potentially suggesting regular bouts of both climbing and terrestrial bipedalism. Our results demonstrate distinct morphological differences, linked to behavioral differences between Australopithecus and later hominins in South Africa and contribute to the increasing evidence of locomotor diversity within the hominin clade.


Asunto(s)
Hominidae/fisiología , Animales , Antropología , Evolución Biológica , Fémur/anatomía & histología , Fémur/fisiología , Fósiles/historia , Historia Antigua , Hominidae/anatomía & histología , Humanos , Locomoción , Sudáfrica
2.
J Hum Evol ; 159: 103049, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34455262

RESUMEN

Ancient DNA analyses have shown that interbreeding between hominin taxa occurred multiple times. Although admixture is often reflected in skeletal phenotype, the relationship between the two remains poorly understood, hampering interpretation of the hominin fossil record. Direct study of this relationship is often impossible due to the paucity of hominin fossils and difficulties retrieving ancient genetic material. Here, we use a sample of known ancestry hybrids between two closely related nonhuman primate taxa (Indian and Chinese Macaca mulatta) to investigate the effect of admixture on skeletal morphology. We focus on pelvic shape, which has potential fitness implications in hybrids, as mismatches between maternal pelvic and fetal cranial morphology are often fatal to mother and offspring. As the pelvis is also one of the skeletal regions that differs most between Homo sapiens and Neanderthals, investigating the pelvic consequences of interbreeding could be informative regarding the viability of their hybrids. We find that the effect of admixture in M. mulatta is small and proportional to the relatively small morphological difference between the parent taxa. Sexual dimorphism appears to be the main determinant of pelvic shape in M. mulatta. The lack of difference in pelvic shape between Chinese and Indian M. mulatta is in contrast to that between Neanderthals and H. sapiens, despite a similar split time (in generations) between the hybridizing pairs. Greater phenotypic divergence between hominins may relate to adaptations to disparate environments but may also highlight how the unique degree of cultural buffering in hominins allowed for greater neutral divergence. In contrast to some previous work identifying extreme morphologies in first- and second-generation hybrids, here the relationship between pelvic shape and admixture is linear. This linearity may be because most sampled animals have a multigenerational admixture history or because of relatively high constraints on the pelvis compared with other skeletal regions.


Asunto(s)
Hominidae , Hombre de Neandertal , Animales , Evolución Biológica , Fósiles , Macaca , Pelvis
3.
Evol Anthropol ; 30(3): 199-220, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33951239

RESUMEN

Questions surrounding the timing, extent, and evolutionary consequences of archaic admixture into human populations have a long history in evolutionary anthropology. More recently, advances in human genetics, particularly in the field of ancient DNA, have shed new light on the question of whether or not Homo sapiens interbred with other hominin groups. By the late 1990s, published genetic work had largely concluded that archaic groups made no lasting genetic contribution to modern humans; less than a decade later, this conclusion was reversed following the successful DNA sequencing of an ancient Neanderthal. This reversal of consensus is noteworthy, but the reasoning behind it is not widely understood across all academic communities. There remains a communication gap between population geneticists and paleoanthropologists. In this review, we endeavor to bridge this gap by outlining how technological advancements, new statistical methods, and notable controversies ultimately led to the current consensus.


Asunto(s)
Evolución Biológica , ADN Antiguo/análisis , Introgresión Genética/genética , Hombre de Neandertal/genética , Animales , Antropología Física , ADN Mitocondrial/genética , Hominidae/clasificación , Hominidae/genética , Humanos , Hombre de Neandertal/clasificación
4.
J Anat ; 234(5): 679-693, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30793309

RESUMEN

Studies of femoral trabecular structure have shown that the orientation and volume of bone are associated with variation in loading and could be informative about individual joint positioning during locomotion. In this study, we analyse for the first time trabecular bone patterns throughout the femoral head using a whole-epiphysis approach to investigate how potential trabecular variation in humans and great apes relates to differences in locomotor modes. Trabecular architecture was analysed using microCT scans of Pan troglodytes (n = 20), Gorilla gorilla (n = 14), Pongo sp. (n = 5) and Homo sapiens (n = 12) in medtool 4.1. Our results revealed differences in bone volume fraction (BV/TV) distribution patterns, as well as overall trabecular parameters of the femoral head between great apes and humans. Pan and Gorilla showed two regions of high BV/TV in the femoral head, consistent with hip posture and loading during two discrete locomotor modes: knuckle-walking and climbing. Most Pongo specimens also displayed two regions of high BV/TV, but these regions were less discrete and there was more variability across the sample. In contrast, Homo showed only one main region of high BV/TV in the femoral head and had the lowest BV/TV, as well as the most anisotropic trabeculae. The Homo trabecular structure is consistent with stereotypical loading with a more extended hip compared with great apes, which is characteristic of modern human bipedalism. Our results suggest that holistic evaluations of femoral head trabecular architecture can reveal previously undetected patterns linked to locomotor behaviour in extant apes and can provide further insight into hip joint loading in fossil hominins and other primates.


Asunto(s)
Hueso Esponjoso/anatomía & histología , Cabeza Femoral/anatomía & histología , Hominidae/anatomía & histología , Animales , Evolución Biológica , Fémur/anatomía & histología , Gorilla gorilla/anatomía & histología , Articulación de la Cadera/anatomía & histología , Humanos , Locomoción/fisiología , Pan troglodytes/anatomía & histología , Pongo/anatomía & histología , Postura/fisiología
6.
Sci Adv ; 8(42): eabp9767, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36269821

RESUMEN

The frontal sinuses are cavities inside the frontal bone located at the junction between the face and the cranial vault and close to the brain. Despite a long history of study, understanding of their origin and variation through evolution is limited. This work compares most hominin species' holotypes and other key individuals with extant hominids. It provides a unique and valuable perspective of the variation in sinuses position, shape, and dimensions based on a simple and reproducible methodology. We also observed a covariation between the size and shape of the sinuses and the underlying frontal lobes in hominin species from at least the appearance of Homo erectus. Our results additionally undermine hypotheses stating that hominin frontal sinuses were directly affected by biomechanical constraints resulting from either chewing or adaptation to climate. Last, we demonstrate their substantial potential for discussions of the evolutionary relationships between hominin species.


Asunto(s)
Fósiles , Hominidae , Animales , Humanos , Cráneo/anatomía & histología , Encéfalo , Clima
7.
Anat Rec (Hoboken) ; 304(12): 2645-2660, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33586866

RESUMEN

Maternal malnutrition during gestation and lactation is known to have adverse effects on offspring. We evaluate the impact of maternal diet on offspring bony labyrinth morphology. The bony labyrinth develops early and is thought to be stable to protect vital sensory organs within. For these reasons, bony labyrinth morphology has been used extensively to assess locomotion, hearing function, and phylogeny in primates and numerous other taxa. While variation related to these parameters has been documented, there is still a component of intraspecific variation that is unexplained. Although the labyrinthine developmental window is small, it may provide the opportunity for developmental instability to produce corresponding shape differences, as measured by fluctuating asymmetry (FA). We hypothesized that (a) offspring with poor maternal diet would exhibit increased FA, but (b) no unilateral shape difference. To test these hypotheses, we used two groups of rats (Rattus norvegicus; Crl:WI[Han] strain), one control group and one group exposed to a isocaloric, protein-restricted maternal diet during gestation and suckling. Individuals were sampled at weaning, sexual maturity, and old age. A Procrustes analysis of variance identified statistically significant FA in all diet-age subgroups. No differences in level of FA were identified among the subgroups, rejecting our first hypothesis. A principal components analysis identified no unilateral shape differences, supporting our second hypothesis. These results indicate that bony labyrinth morphology is remarkably stable and likely protected from a poor maternal diet during development. In light of this result, other factors must be explored to explain intraspecific variation in labyrinthine shape.


Asunto(s)
Oído Interno , Desnutrición , Animales , Femenino , Intercambio Materno-Fetal , Embarazo , Ratas
8.
Sci Adv ; 6(24): eaaz0183, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32582847

RESUMEN

Africa hosts the greatest human genetic diversity globally, but legacies of ancient population interactions and dispersals across the continent remain understudied. Here, we report genome-wide data from 20 ancient sub-Saharan African individuals, including the first reported ancient DNA from the DRC, Uganda, and Botswana. These data demonstrate the contraction of diverse, once contiguous hunter-gatherer populations, and suggest the resistance to interaction with incoming pastoralists of delayed-return foragers in aquatic environments. We refine models for the spread of food producers into eastern and southern Africa, demonstrating more complex trajectories of admixture than previously suggested. In Botswana, we show that Bantu ancestry post-dates admixture between pastoralists and foragers, suggesting an earlier spread of pastoralism than farming to southern Africa. Our findings demonstrate how processes of migration and admixture have markedly reshaped the genetic map of sub-Saharan Africa in the past few millennia and highlight the utility of combined archaeological and archaeogenetic approaches.

9.
Nat Ecol Evol ; 2(5): 800-809, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29632352

RESUMEN

Understanding the timing and character of the expansion of Homo sapiens out of Africa is critical for inferring the colonization and admixture processes that underpin global population history. It has been argued that dispersal out of Africa had an early phase, particularly ~130-90 thousand years ago (ka), that reached only the East Mediterranean Levant, and a later phase, ~60-50 ka, that extended across the diverse environments of Eurasia to Sahul. However, recent findings from East Asia and Sahul challenge this model. Here we show that H. sapiens was in the Arabian Peninsula before 85 ka. We describe the Al Wusta-1 (AW-1) intermediate phalanx from the site of Al Wusta in the Nefud desert, Saudi Arabia. AW-1 is the oldest directly dated fossil of our species outside Africa and the Levant. The palaeoenvironmental context of Al Wusta demonstrates that H. sapiens using Middle Palaeolithic stone tools dispersed into Arabia during a phase of increased precipitation driven by orbital forcing, in association with a primarily African fauna. A Bayesian model incorporating independent chronometric age estimates indicates a chronology for Al Wusta of ~95-86 ka, which we correlate with a humid episode in the later part of Marine Isotope Stage 5 known from various regional records. Al Wusta shows that early dispersals were more spatially and temporally extensive than previously thought. Early H. sapiens dispersals out of Africa were not limited to winter rainfall-fed Levantine Mediterranean woodlands immediately adjacent to Africa, but extended deep into the semi-arid grasslands of Arabia, facilitated by periods of enhanced monsoonal rainfall.


Asunto(s)
Fósiles , Migración Humana , Arqueología , Ambiente , Humanos , Arabia Saudita
10.
Curr Biol ; 24(6): R214-5, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24650901
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA