Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(4): e3002052, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37040332

RESUMEN

Wheat, one of the most important food crops, is threatened by a blast disease pandemic. Here, we show that a clonal lineage of the wheat blast fungus recently spread to Asia and Africa following two independent introductions from South America. Through a combination of genome analyses and laboratory experiments, we show that the decade-old blast pandemic lineage can be controlled by the Rmg8 disease resistance gene and is sensitive to strobilurin fungicides. However, we also highlight the potential of the pandemic clone to evolve fungicide-insensitive variants and sexually recombine with African lineages. This underscores the urgent need for genomic surveillance to track and mitigate the spread of wheat blast outside of South America and to guide preemptive wheat breeding for blast resistance.


Asunto(s)
Pandemias , Triticum , Triticum/genética , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Genómica , Hongos
2.
Nature ; 573(7772): 126-129, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31462776

RESUMEN

Through the lens of evolution, climate change is an agent of natural selection that forces populations to change and adapt, or face extinction. However, current assessments of the risk of biodiversity associated with climate change1 do not typically take into account how natural selection influences populations differently depending on their genetic makeup2. Here we make use of the extensive genome information that is available for Arabidopsis thaliana and measure how manipulation of the amount of rainfall affected the fitness of 517 natural Arabidopsis lines that were grown in Spain and Germany. This allowed us to directly infer selection along the genome3. Natural selection was particularly strong in the hot-dry location in Spain, where 63% of lines were killed and where natural selection substantially changed the frequency of approximately 5% of all genome-wide variants. A significant portion of this climate-driven natural selection of variants was predictable from signatures of local adaptation (R2 = 29-52%), as genetic variants that were found in geographical areas with climates more similar to the experimental sites were positively selected. Field-validated predictions across the species range indicated that Mediterranean and western Siberian populations-at the edges of the environmental limits of this species-currently experience the strongest climate-driven selection. With more frequent droughts and rising temperatures in Europe4, we forecast an increase in directional natural selection moving northwards from the southern end of Europe, putting many native A. thaliana populations at evolutionary risk.


Asunto(s)
Aclimatación/genética , Arabidopsis/genética , Cambio Climático/estadística & datos numéricos , Genoma de Planta/genética , Selección Genética , Arabidopsis/crecimiento & desarrollo , Sequías/estadística & datos numéricos , Aptitud Genética , Mapeo Geográfico , Alemania , Calentamiento Global/estadística & datos numéricos , Polimorfismo de Nucleótido Simple/genética , Lluvia , Reproducibilidad de los Resultados , Siberia , España
3.
Nature ; 574(7778): E16, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31570884

RESUMEN

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
PLoS Genet ; 17(2): e1009386, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33591993

RESUMEN

Supernumerary mini-chromosomes-a unique type of genomic structural variation-have been implicated in the emergence of virulence traits in plant pathogenic fungi. However, the mechanisms that facilitate the emergence and maintenance of mini-chromosomes across fungi remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), mini-chromosomes have been first described in the early 1990s but, until very recently, have been overlooked in genomic studies. Here we investigated structural variation in four isolates of the blast fungus M. oryzae from different grass hosts and analyzed the sequences of mini-chromosomes in the rice, foxtail millet and goosegrass isolates. The mini-chromosomes of these isolates turned out to be highly diverse with distinct sequence composition. They are enriched in repetitive elements and have lower gene density than core-chromosomes. We identified several virulence-related genes in the mini-chromosome of the rice isolate, including the virulence-related polyketide synthase Ace1 and two variants of the effector gene AVR-Pik. Macrosynteny analyses around these loci revealed structural rearrangements, including inter-chromosomal translocations between core- and mini-chromosomes. Our findings provide evidence that mini-chromosomes emerge from structural rearrangements and segmental duplication of core-chromosomes and might contribute to adaptive evolution of the blast fungus.


Asunto(s)
Ascomicetos/genética , Cromosomas Fúngicos/genética , Reordenamiento Génico/genética , Genoma Fúngico/genética , Genómica/métodos , Ascomicetos/patogenicidad , Eleusine/genética , Eleusine/microbiología , Evolución Molecular , Genes Fúngicos/genética , Variación Genética , Interacciones Huésped-Patógeno/genética , Mijos/genética , Mijos/microbiología , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Virulencia/genética
5.
Cell ; 134(3): 416-26, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18692465

RESUMEN

A complete mitochondrial (mt) genome sequence was reconstructed from a 38,000 year-old Neandertal individual with 8341 mtDNA sequences identified among 4.8 Gb of DNA generated from approximately 0.3 g of bone. Analysis of the assembled sequence unequivocally establishes that the Neandertal mtDNA falls outside the variation of extant human mtDNAs, and allows an estimate of the divergence date between the two mtDNA lineages of 660,000 +/- 140,000 years. Of the 13 proteins encoded in the mtDNA, subunit 2 of cytochrome c oxidase of the mitochondrial electron transport chain has experienced the largest number of amino acid substitutions in human ancestors since the separation from Neandertals. There is evidence that purifying selection in the Neandertal mtDNA was reduced compared with other primate lineages, suggesting that the effective population size of Neandertals was small.


Asunto(s)
Evolución Molecular , Fósiles , Hominidae/genética , Análisis de Secuencia de ADN/métodos , Animales , Secuencia de Bases , Huesos/metabolismo , Croacia , Ciclooxigenasa 2/química , ADN Mitocondrial/genética , Genoma Mitocondrial , Humanos , Modelos Moleculares , Datos de Secuencia Molecular
6.
Mol Biol Evol ; 38(12): 5328-5344, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34499163

RESUMEN

Large-scale movement of organisms across their habitable range, or migration, is an important evolutionary process that can shape genetic diversity and influence the adaptive spread of alleles. Although human migrations have been studied in great detail with modern and ancient genomes, recent anthropogenic influence on reducing the biogeographical constraints on the migration of nonnative species has presented opportunities in several study systems to ask the questions about how repeated introductions shape genetic diversity in the introduced range. We present an extensive overview of population structure of North American Arabidopsis thaliana by studying a set of 500 whole-genome sequenced and over 2,800 RAD-seq genotyped individuals in the context of global diversity represented by Afro-Eurasian genomes. We use methods based on haplotype and rare-allele sharing as well as phylogenetic modeling to identify likely sources of introductions of extant N. American A. thaliana from the native range in Africa and Eurasia. We find evidence of admixture among the introduced lineages having increased haplotype diversity and reduced mutational load. We also detect signals of selection in immune-system-related genes that may impart qualitative disease resistance to pathogens of bacterial and oomycete origin. We conclude that multiple introductions to a nonnative range can rapidly enhance the adaptive potential of a colonizing species by increasing haplotypic diversity through admixture. Our results lay the foundation for further investigations into the functional significance of admixture.


Asunto(s)
Arabidopsis , África , Alelos , Arabidopsis/genética , Asia , Europa (Continente) , Variación Genética , Genética de Población , Haplotipos , América del Norte , Filogenia
7.
Nature ; 530(7591): 429-33, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26886800

RESUMEN

It has been shown that Neanderthals contributed genetically to modern humans outside Africa 47,000-65,000 years ago. Here we analyse the genomes of a Neanderthal and a Denisovan from the Altai Mountains in Siberia together with the sequences of chromosome 21 of two Neanderthals from Spain and Croatia. We find that a population that diverged early from other modern humans in Africa contributed genetically to the ancestors of Neanderthals from the Altai Mountains roughly 100,000 years ago. By contrast, we do not detect such a genetic contribution in the Denisovan or the two European Neanderthals. We conclude that in addition to later interbreeding events, the ancestors of Neanderthals from the Altai Mountains and early modern humans met and interbred, possibly in the Near East, many thousands of years earlier than previously thought.


Asunto(s)
Flujo Génico/genética , Hombre de Neandertal/genética , Altitud , Animales , Teorema de Bayes , Cromosomas Humanos Par 21/genética , Croacia/etnología , Genoma Humano/genética , Genómica , Haplotipos/genética , Heterocigoto , Humanos , Hibridación Genética/genética , Filogenia , Densidad de Población , Siberia , España/etnología , Factores de Tiempo
8.
Plant J ; 102(2): 222-229, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31788877

RESUMEN

Sequencing them all. That is the ambitious goal of the recently launched Earth BioGenome project (Proceedings of the National Academy of Sciences of the United States of America, 115, 4325-4333), which aims to produce reference genomes for all eukaryotic species within the next decade. In this perspective, we discuss the opportunities of this project with a plant focus, but highlight also potential limitations. This includes the question of how to best capture all plant diversity, as the green taxon is one of the most complex clades in the tree of life, with over 300 000 species. For this, we highlight four key points: (i) the unique biological insights that could be gained from studying plants, (ii) their apparent underrepresentation in sequencing efforts given the number of threatened species, (iii) the necessity of phylogenomic methods that are aware of differences in genome complexity and quality, and (iv) the accounting for within-species genetic diversity and the historical aspect of conservation genetics.


Asunto(s)
Conservación de los Recursos Naturales , Variación Genética , Genoma de Planta/genética , Genómica , Plantas/genética , Planeta Tierra , Filogenia
9.
PLoS Genet ; 14(2): e1007155, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29432421

RESUMEN

By following the evolution of populations that are initially genetically homogeneous, much can be learned about core biological principles. For example, it allows for detailed studies of the rate of emergence of de novo mutations and their change in frequency due to drift and selection. Unfortunately, in multicellular organisms with generation times of months or years, it is difficult to set up and carry out such experiments over many generations. An alternative is provided by "natural evolution experiments" that started from colonizations or invasions of new habitats by selfing lineages. With limited or missing gene flow from other lineages, new mutations and their effects can be easily detected. North America has been colonized in historic times by the plant Arabidopsis thaliana, and although multiple intercrossing lineages are found today, many of the individuals belong to a single lineage, HPG1. To determine in this lineage the rate of substitutions-the subset of mutations that survived natural selection and drift-, we have sequenced genomes from plants collected between 1863 and 2006. We identified 73 modern and 27 herbarium specimens that belonged to HPG1. Using the estimated substitution rate, we infer that the last common HPG1 ancestor lived in the early 17th century, when it was most likely introduced by chance from Europe. Mutations in coding regions are depleted in frequency compared to those in other portions of the genome, consistent with purifying selection. Nevertheless, a handful of mutations is found at high frequency in present-day populations. We link these to detectable phenotypic variance in traits of known ecological importance, life history and growth, which could reflect their adaptive value. Our work showcases how, by applying genomics methods to a combination of modern and historic samples from colonizing lineages, we can directly study new mutations and their potential evolutionary relevance.


Asunto(s)
Genoma de Planta , Tasa de Mutación , Mutación/fisiología , Desarrollo de la Planta/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Cruzamientos Genéticos , Evolución Molecular Dirigida , Evolución Molecular , Flujo Génico/fisiología , Especies Introducidas , Fenotipo , Filogenia , Malezas/genética , Malezas/crecimiento & desarrollo , Selección Genética , Análisis de Secuencia de ADN
10.
BMC Biol ; 18(1): 88, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32677941

RESUMEN

BACKGROUND: Understanding the mechanisms and timescales of plant pathogen outbreaks requires a detailed genome-scale analysis of their population history. The fungus Magnaporthe (Syn. Pyricularia) oryzae-the causal agent of blast disease of cereals- is among the most destructive plant pathogens to world agriculture and a major threat to the production of rice, wheat, and other cereals. Although M. oryzae is a multihost pathogen that infects more than 50 species of cereals and grasses, all rice-infecting isolates belong to a single genetically defined lineage. Here, we combined the two largest genomic datasets to reconstruct the genetic history of the rice-infecting lineage of M. oryzae based on 131 isolates from 21 countries. RESULTS: The global population of the rice blast fungus consists mainly of three well-defined genetic groups and a diverse set of individuals. Multiple population genetic tests revealed that the rice-infecting lineage of the blast fungus probably originated from a recombining diverse group in Southeast Asia followed by three independent clonal expansions that took place over the last ~ 200 years. Patterns of allele sharing identified a subpopulation from the recombining diverse group that introgressed with one of the clonal lineages before its global expansion. Remarkably, the four genetic lineages of the rice blast fungus vary in the number and patterns of presence and absence of candidate effector genes. These genes encode secreted proteins that modulate plant defense and allow pathogen colonization. In particular, clonal lineages carry a reduced repertoire of effector genes compared with the diverse group, and specific combinations of presence and absence of effector genes define each of the pandemic clonal lineages. CONCLUSIONS: Our analyses reconstruct the genetic history of the rice-infecting lineage of M. oryzae revealing three clonal lineages associated with rice blast pandemics. Each of these lineages displays a specific pattern of presence and absence of effector genes that may have shaped their adaptation to the rice host and their evolutionary history.


Asunto(s)
Ascomicetos/genética , Evolución Biológica , Genes Fúngicos/genética , Variación Genética , Enfermedades de las Plantas/microbiología , Genoma Fúngico
11.
BMC Genomics ; 21(1): 432, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32586278

RESUMEN

BACKGROUND: The identification of bona fide microbial taxa in microbiomes derived from ancient and historical samples is complicated by the unavoidable mixture between DNA from ante- and post-mortem microbial colonizers. One possibility to distinguish between these sources of microbial DNA is querying for the presence of age-associated degradation patterns typical of ancient DNA (aDNA). The presence of uracils, resulting from cytosine deamination, has been detected ubiquitously in aDNA retrieved from diverse sources, and used as an authentication criterion. Here, we employ a library preparation method that separates molecules that carry uracils from those that do not for a set of samples that includes Neandertal remains, herbarium specimens and archaeological plant remains. RESULTS: We show that sequencing DNA libraries enriched in molecules carrying uracils effectively amplifies age associated degradation patterns in microbial mixtures of ancient and historical origin. This facilitates the discovery of authentic ancient microbial taxa in cases where degradation patterns are difficult to detect due to large sequence divergence in microbial mixtures. Additionally, the relative enrichment of taxa in the uracil enriched fraction can help to identify bona fide ancient microbial taxa that could be missed using a more targeted approach. CONCLUSIONS: Our experiments show, that in addition to its use in enriching authentic endogenous DNA of organisms of interest, the selective enrichment of damaged DNA molecules can be a valuable tool in the discovery of ancient microbial taxa.


Asunto(s)
Bacterias/clasificación , ADN Antiguo/análisis , Fósiles/microbiología , Análisis de Secuencia de ADN/métodos , Uracilo/química , Animales , Bacterias/genética , ADN Antiguo/química , ADN Bacteriano/genética , Minería de Datos , Biblioteca de Genes , Metagenómica , Microbiota , Hombre de Neandertal/microbiología , Plantas/microbiología
12.
Annu Rev Genomics Hum Genet ; 18: 321-356, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28460196

RESUMEN

Microbial archaeology is flourishing in the era of high-throughput sequencing, revealing the agents behind devastating historical plagues, identifying the cryptic movements of pathogens in prehistory, and reconstructing the ancestral microbiota of humans. Here, we introduce the fundamental concepts and theoretical framework of the discipline, then discuss applied methodologies for pathogen identification and microbiome characterization from archaeological samples. We give special attention to the process of identifying, validating, and authenticating ancient microbes using high-throughput DNA sequencing data. Finally, we outline standards and precautions to guide future research in the field.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , ADN Antiguo/análisis , Metagenómica/métodos , Microbiota/genética , Análisis de Secuencia de ADN/métodos , Archaea/genética , Arqueología/métodos , Bacterias/genética , Genoma Arqueal , Genoma Bacteriano , Humanos
13.
Proc Natl Acad Sci U S A ; 114(20): 5213-5218, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28473417

RESUMEN

Over the past 20 y, many studies have examined the history of the plant ecological and molecular model, Arabidopsis thaliana, in Europe and North America. Although these studies informed us about the recent history of the species, the early history has remained elusive. In a large-scale genomic analysis of African A. thaliana, we sequenced the genomes of 78 modern and herbarium samples from Africa and analyzed these together with over 1,000 previously sequenced Eurasian samples. In striking contrast to expectations, we find that all African individuals sampled are native to this continent, including those from sub-Saharan Africa. Moreover, we show that Africa harbors the greatest variation and represents the deepest history in the A. thaliana lineage. Our results also reveal evidence that selfing, a major defining characteristic of the species, evolved in a single geographic region, best represented today within Africa. Demographic inference supports a model in which the ancestral A. thaliana population began to split by 120-90 kya, during the last interglacial and Abbassia pluvial, and Eurasian populations subsequently separated from one another at around 40 kya. This bears striking similarities to the patterns observed for diverse species, including humans, implying a key role for climatic events during interglacial and pluvial periods in shaping the histories and current distributions of a wide range of species.


Asunto(s)
Arabidopsis/genética , Genómica/métodos , África , África del Sur del Sahara , Secuencia de Bases , Evolución Biológica , Europa (Continente) , Evolución Molecular , Variación Genética/genética , Genética de Población/métodos , Genoma de Planta/genética , Haplotipos/genética , Filogenia , Análisis de Componente Principal
14.
New Phytol ; 221(1): 110-122, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30160314

RESUMEN

During the last centuries, humans have transformed global ecosystems. With their temporal dimension, herbaria provide the otherwise scarce long-term data crucial for tracking ecological and evolutionary changes over this period of intense global change. The sheer size of herbaria, together with their increasing digitization and the possibility of sequencing DNA from the preserved plant material, makes them invaluable resources for understanding ecological and evolutionary species' responses to global environmental change. Following the chronology of global change, we highlight how herbaria can inform about long-term effects on plants of at least four of the main drivers of global change: pollution, habitat change, climate change and invasive species. We summarize how herbarium specimens so far have been used in global change research, discuss future opportunities and challenges posed by the nature of these data, and advocate for an intensified use of these 'windows into the past' for global change research and beyond.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/métodos , Contaminación Ambiental , Especies Introducidas , Plantas , Academias e Institutos , Dióxido de Carbono , Cambio Climático , Jardines , Industrias , Metales Pesados/análisis , Museos , Nitrógeno
15.
BMC Bioinformatics ; 19(1): 122, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618319

RESUMEN

BACKGROUND: Intraspecific variation in ploidy occurs in a wide range of species including pathogenic and nonpathogenic eukaryotes such as yeasts and oomycetes. Ploidy can be inferred indirectly - without measuring DNA content - from experiments using next-generation sequencing (NGS). We present nQuire, a statistical framework that distinguishes between diploids, triploids and tetraploids using NGS. The command-line tool models the distribution of base frequencies at variable sites using a Gaussian Mixture Model, and uses maximum likelihood to select the most plausible ploidy model. nQuire handles large genomes at high coverage efficiently and uses standard input file formats. RESULTS: We demonstrate the utility of nQuire analyzing individual samples of the pathogenic oomycete Phytophthora infestans and the Baker's yeast Saccharomyces cerevisiae. Using these organisms we show the dependence between reliability of the ploidy assignment and sequencing depth. Additionally, we employ normalized maximized log- likelihoods generated by nQuire to ascertain ploidy level in a population of samples with ploidy heterogeneity. Using these normalized values we cluster samples in three dimensions using multivariate Gaussian mixtures. The cluster assignments retrieved from a S. cerevisiae population recovered the true ploidy level in over 96% of samples. Finally, we show that nQuire can be used regionally to identify chromosomal aneuploidies. CONCLUSIONS: nQuire provides a statistical framework to study organisms with intraspecific variation in ploidy. nQuire is likely to be useful in epidemiological studies of pathogens, artificial selection experiments, and for historical or ancient samples where intact nuclei are not preserved. It is implemented as a stand-alone Linux command line tool in the C programming language and is available at https://github.com/clwgg/nQuire under the MIT license.


Asunto(s)
Genoma Fúngico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Ploidias , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN/métodos , Programas Informáticos
16.
Nature ; 478(7370): 506-10, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21993626

RESUMEN

Technological advances in DNA recovery and sequencing have drastically expanded the scope of genetic analyses of ancient specimens to the extent that full genomic investigations are now feasible and are quickly becoming standard. This trend has important implications for infectious disease research because genomic data from ancient microbes may help to elucidate mechanisms of pathogen evolution and adaptation for emerging and re-emerging infections. Here we report a reconstructed ancient genome of Yersinia pestis at 30-fold average coverage from Black Death victims securely dated to episodes of pestilence-associated mortality in London, England, 1348-1350. Genetic architecture and phylogenetic analysis indicate that the ancient organism is ancestral to most extant strains and sits very close to the ancestral node of all Y. pestis commonly associated with human infection. Temporal estimates suggest that the Black Death of 1347-1351 was the main historical event responsible for the introduction and widespread dissemination of the ancestor to all currently circulating Y. pestis strains pathogenic to humans, and further indicates that contemporary Y. pestis epidemics have their origins in the medieval era. Comparisons against modern genomes reveal no unique derived positions in the medieval organism, indicating that the perceived increased virulence of the disease during the Black Death may not have been due to bacterial phenotype. These findings support the notion that factors other than microbial genetics, such as environment, vector dynamics and host susceptibility, should be at the forefront of epidemiological discussions regarding emerging Y. pestis infections.


Asunto(s)
Genoma Bacteriano/genética , Peste/microbiología , Yersinia pestis/genética , Yersinia pestis/aislamiento & purificación , Cromosomas Bacterianos/genética , Mapeo Contig , Pulpa Dental/microbiología , Evolución Molecular , Historia Medieval , Humanos , Londres/epidemiología , Datos de Secuencia Molecular , Filogenia , Peste/epidemiología , Peste/transmisión , Plásmidos/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Virulencia/genética , Yersinia pestis/clasificación
17.
Proc Natl Acad Sci U S A ; 111(18): 6666-71, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24753607

RESUMEN

We present the DNA sequence of 17,367 protein-coding genes in two Neandertals from Spain and Croatia and analyze them together with the genome sequence recently determined from a Neandertal from southern Siberia. Comparisons with present-day humans from Africa, Europe, and Asia reveal that genetic diversity among Neandertals was remarkably low, and that they carried a higher proportion of amino acid-changing (nonsynonymous) alleles inferred to alter protein structure or function than present-day humans. Thus, Neandertals across Eurasia had a smaller long-term effective population than present-day humans. We also identify amino acid substitutions in Neandertals and present-day humans that may underlie phenotypic differences between the two groups. We find that genes involved in skeletal morphology have changed more in the lineage leading to Neandertals than in the ancestral lineage common to archaic and modern humans, whereas genes involved in behavior and pigmentation have changed more on the modern human lineage.


Asunto(s)
Exoma , Variación Genética , Hombre de Neandertal/genética , Sustitución de Aminoácidos , Animales , Croacia , ADN/genética , Frecuencia de los Genes , Humanos , Paleontología , Filogenia , Polimorfismo de Nucleótido Simple , Siberia , España
18.
Plant J ; 81(4): 597-610, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25557441

RESUMEN

MicroRNAs (miRNAs) are short RNAs involved in gene regulation through translational inhibition and transcript cleavage. After processing from imperfect fold-back structures, miRNAs are incorporated into RNA-induced silencing complexes (RISCs) before targeting transcripts with varying degrees of complementarity. Some miRNAs are evolutionarily deep-rooted, and sequence complementarity with their targets is maintained through purifying selection. Both Arabidopsis and Capsella belong to the tribe Camelineae in the Brassicaceae, with Capsella rubella serving as an outgroup to the genus Arabidopsis. The genome sequence of C. rubella has recently been released, which allows characterization of its miRNA complement in comparison with Arabidopsis thaliana and Arabidopsis lyrata. Through next-generation sequencing, we identify high-confidence miRNA candidates specific to the C. rubella lineage. Only a few lineage-specific miRNAs have been studied for evolutionary constraints, and there have been no systematic studies of miRNA target diversity within or divergence between closely related plant species. Therefore we contrast sequence variation in miRNAs and their targets within A. thaliana, and between A. thaliana, A. lyrata and C. rubella. We document a surprising amount of small-scale variation in miRNA-target pairs, where many miRNAs are predicted to have species-specific targets in addition to ones that are shared between species. Our results emphasize that the transitive nature of many miRNA-target pairs can be observed even on a relatively short evolutionary time-scale, with non-random occurrences of differences in miRNAs and their complements in the miRNA precursors, the miRNA* sequences.


Asunto(s)
Arabidopsis/genética , Capsella/genética , Evolución Molecular , MicroARNs/genética , Arabidopsis/metabolismo , Capsella/metabolismo , MicroARNs/metabolismo , Polimorfismo Genético , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Sintenía
19.
Proc Natl Acad Sci U S A ; 110(6): 2223-7, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23341637

RESUMEN

Hominins with morphology similar to present-day humans appear in the fossil record across Eurasia between 40,000 and 50,000 y ago. The genetic relationships between these early modern humans and present-day human populations have not been established. We have extracted DNA from a 40,000-y-old anatomically modern human from Tianyuan Cave outside Beijing, China. Using a highly scalable hybridization enrichment strategy, we determined the DNA sequences of the mitochondrial genome, the entire nonrepetitive portion of chromosome 21 (∼30 Mbp), and over 3,000 polymorphic sites across the nuclear genome of this individual. The nuclear DNA sequences determined from this early modern human reveal that the Tianyuan individual derived from a population that was ancestral to many present-day Asians and Native Americans but postdated the divergence of Asians from Europeans. They also show that this individual carried proportions of DNA variants derived from archaic humans similar to present-day people in mainland Asia.


Asunto(s)
ADN Mitocondrial/genética , Hominidae/genética , Animales , Pueblo Asiatico/genética , Pueblo Asiatico/historia , Secuencia de Bases , China , Cromosomas Humanos Par 21/genética , ADN Mitocondrial/historia , ADN Mitocondrial/aislamiento & purificación , Fósiles , Biblioteca de Genes , Genética de Población , Historia Antigua , Humanos , Datos de Secuencia Molecular , Filogenia , Filogeografía , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
20.
Mol Biol Evol ; 30(4): 964-76, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23329688

RESUMEN

The rapid molecular evolution of reproductive genes is nearly ubiquitous across animals, yet the selective forces and functional targets underlying this divergence remain poorly understood. Humans and closely related species of great apes show strongly divergent mating systems, providing a powerful system to investigate the influence of sperm competition on the evolution of reproductive genes. This is complemented by detailed information on male reproductive biology and unparalleled genomic resources in humans. Here, we have used custom microarrays to capture and sequence 285 genes encoding proteins present in the ejaculate as well as 101 randomly selected control genes in 21 gorillas, 20 chimpanzees, 20 bonobos, and 20 humans. In total, we have generated >25× average genomic coverage per individual for over 1 million target base pairs. Our analyses indicate high levels of evolutionary constraint across much of the ejaculate combined with more rapid evolution of genes involved in immune defense and proteolysis. We do not find evidence for appreciably more positive selection along the lineage leading to bonobos and chimpanzees, although this would be predicted given more intense sperm competition in these species. Rather, the extent of positive and negative selection depended more on the effective population sizes of the species. Thus, general patterns of male reproductive protein evolution among apes and humans depend strongly on gene function but not on inferred differences in the intensity of sperm competition among extant species.


Asunto(s)
Hominidae/genética , Metagenómica , Proteínas de Plasma Seminal/genética , Animales , Evolución Molecular , Exones , Femenino , Frecuencia de los Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Polimorfismo Genético , Semen/metabolismo , Proteínas de Plasma Seminal/metabolismo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA