Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 167(5): 1369-1384.e19, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863249

RESUMEN

Long-range interactions between regulatory elements and gene promoters play key roles in transcriptional regulation. The vast majority of interactions are uncharted, constituting a major missing link in understanding genome control. Here, we use promoter capture Hi-C to identify interacting regions of 31,253 promoters in 17 human primary hematopoietic cell types. We show that promoter interactions are highly cell type specific and enriched for links between active promoters and epigenetically marked enhancers. Promoter interactomes reflect lineage relationships of the hematopoietic tree, consistent with dynamic remodeling of nuclear architecture during differentiation. Interacting regions are enriched in genetic variants linked with altered expression of genes they contact, highlighting their functional role. We exploit this rich resource to connect non-coding disease variants to putative target promoters, prioritizing thousands of disease-candidate genes and implicating disease pathways. Our results demonstrate the power of primary cell promoter interactomes to reveal insights into genomic regulatory mechanisms underlying common diseases.


Asunto(s)
Células Sanguíneas/citología , Enfermedad/genética , Regiones Promotoras Genéticas , Linaje de la Célula , Separación Celular , Cromatina , Elementos de Facilitación Genéticos , Epigenómica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Hematopoyesis , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
2.
Cell ; 167(5): 1398-1414.e24, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863251

RESUMEN

Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+ monocytes, CD16+ neutrophils, and naive CD4+ T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.


Asunto(s)
Epigenómica , Enfermedades del Sistema Inmune/genética , Monocitos/metabolismo , Neutrófilos/metabolismo , Linfocitos T/metabolismo , Transcripción Genética , Adulto , Anciano , Empalme Alternativo , Femenino , Predisposición Genética a la Enfermedad , Células Madre Hematopoyéticas/metabolismo , Código de Histonas , Humanos , Masculino , Persona de Mediana Edad , Sitios de Carácter Cuantitativo , Adulto Joven
3.
Nucleic Acids Res ; 51(5): 2319-2332, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36806949

RESUMEN

During mammalian spermatogenesis, the paternal genome is extensively remodelled via replacement of histones with protamines forming the highly compact mature sperm nucleus. Compaction occurs in post-meiotic spermatids and is accompanied by extensive double strand break (DSB) formation. We investigate the epigenomic and genomic context of mouse spermatid DSBs, identifying primary sequence motifs, secondary DNA structures and chromatin contexts associated with this damage. Consistent with previously published results we find spermatid DSBs positively associated with short tandem repeats and LINE elements. We further show spermatid DSBs preferentially occur in association with (CA)n, (NA)n and (RY)n repeats, in predicted Z-DNA, are not associated with G-quadruplexes, are preferentially found in regions of low histone mark coverage and engage the remodelling/NHEJ factor BRD4. Locations incurring DSBs in spermatids also show distinct epigenetic profiles throughout later developmental stages: regions retaining histones in mature sperm, regions susceptible to oxidative damage in mature sperm, and fragile two-cell like embryonic stem cell regions bound by ZSCAN4 all co-localise with spermatid DSBs and with each other. Our results point to a common 'vulnerability code' unifying several types of DNA damage occurring on the paternal genome during reproduction, potentially underpinned by torsional changes during sperm chromatin remodelling.


Asunto(s)
Histonas , Proteínas Nucleares , Masculino , Ratones , Animales , Histonas/genética , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Semen/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina/genética , Cromatina/metabolismo , Espermátides/metabolismo , Espermatogénesis/genética , Daño del ADN , Mamíferos/genética
4.
Blood ; 136(17): 1956-1967, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32693407

RESUMEN

Gray platelet syndrome (GPS) is a rare recessive disorder caused by biallelic variants in NBEAL2 and characterized by bleeding symptoms, the absence of platelet α-granules, splenomegaly, and bone marrow (BM) fibrosis. Due to the rarity of GPS, it has been difficult to fully understand the pathogenic processes that lead to these clinical sequelae. To discern the spectrum of pathologic features, we performed a detailed clinical genotypic and phenotypic study of 47 patients with GPS and identified 32 new etiologic variants in NBEAL2. The GPS patient cohort exhibited known phenotypes, including macrothrombocytopenia, BM fibrosis, megakaryocyte emperipolesis of neutrophils, splenomegaly, and elevated serum vitamin B12 levels. Novel clinical phenotypes were also observed, including reduced leukocyte counts and increased presence of autoimmune disease and positive autoantibodies. There were widespread differences in the transcriptome and proteome of GPS platelets, neutrophils, monocytes, and CD4 lymphocytes. Proteins less abundant in these cells were enriched for constituents of granules, supporting a role for Nbeal2 in the function of these organelles across a wide range of blood cells. Proteomic analysis of GPS plasma showed increased levels of proteins associated with inflammation and immune response. One-quarter of plasma proteins increased in GPS are known to be synthesized outside of hematopoietic cells, predominantly in the liver. In summary, our data show that, in addition to the well-described platelet defects in GPS, there are immune defects. The abnormal immune cells may be the drivers of systemic abnormalities such as autoimmune disease.


Asunto(s)
Gránulos Citoplasmáticos/patología , Heterogeneidad Genética , Síndrome de Plaquetas Grises , Sistema Inmunológico/patología , Fenotipo , Biopsia , Proteínas Sanguíneas/genética , Estudios de Casos y Controles , Estudios de Cohortes , Gránulos Citoplasmáticos/metabolismo , Diagnóstico Diferencial , Frecuencia de los Genes , Estudios de Asociación Genética , Síndrome de Plaquetas Grises/clasificación , Síndrome de Plaquetas Grises/genética , Síndrome de Plaquetas Grises/inmunología , Síndrome de Plaquetas Grises/patología , Humanos , Sistema Inmunológico/fisiología , Enfermedades del Sistema Inmune/sangre , Enfermedades del Sistema Inmune/diagnóstico , Enfermedades del Sistema Inmune/genética , Enfermedades del Sistema Inmune/patología , Mutación
5.
Blood ; 134(23): 2070-2081, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31217188

RESUMEN

To identify novel causes of hereditary thrombocytopenia, we performed a genetic association analysis of whole-genome sequencing data from 13 037 individuals enrolled in the National Institute for Health Research (NIHR) BioResource, including 233 cases with isolated thrombocytopenia. We found an association between rare variants in the transcription factor-encoding gene IKZF5 and thrombocytopenia. We report 5 causal missense variants in or near IKZF5 zinc fingers, of which 2 occurred de novo and 3 co-segregated in 3 pedigrees. A canonical DNA-zinc finger binding model predicts that 3 of the variants alter DNA recognition. Expression studies showed that chromatin binding was disrupted in mutant compared with wild-type IKZF5, and electron microscopy revealed a reduced quantity of α granules in normally sized platelets. Proplatelet formation was reduced in megakaryocytes from 7 cases relative to 6 controls. Comparison of RNA-sequencing data from platelets, monocytes, neutrophils, and CD4+ T cells from 3 cases and 14 healthy controls showed 1194 differentially expressed genes in platelets but only 4 differentially expressed genes in each of the other blood cell types. In conclusion, IKZF5 is a novel transcriptional regulator of megakaryopoiesis and the eighth transcription factor associated with dominant thrombocytopenia in humans.


Asunto(s)
Plaquetas , Enfermedades Genéticas Congénitas , Mutación de Línea Germinal , Factor de Transcripción Ikaros , Mutación Missense , Trombocitopenia , Trombopoyesis/genética , Plaquetas/metabolismo , Plaquetas/ultraestructura , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestructura , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/ultraestructura , Femenino , Regulación de la Expresión Génica , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Células HEK293 , Humanos , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Masculino , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/patología
6.
Haematologica ; 106(10): 2613-2623, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32703790

RESUMEN

Transcriptional profiling of hematopoietic cell subpopulations has helped to characterize the developmental stages of the hematopoietic system and the molecular bases of malignant and non-malignant blood diseases. Previously, only the genes targeted by expression microarrays could be profiled genome-wide. High-throughput RNA sequencing, however, encompasses a broader repertoire of RNA molecules, without restriction to previously annotated genes. We analyzed the BLUEPRINT consortium RNA-sequencing data for mature hematopoietic cell types. The data comprised 90 total RNA-sequencing samples, each composed of one of 27 cell types, and 32 small RNA-sequencing samples, each composed of one of 11 cell types. We estimated gene and isoform expression levels for each cell type using existing annotations from Ensembl. We then used guided transcriptome assembly to discover unannotated transcripts. We identified hundreds of novel non-coding RNA genes and showed that the majority have cell type-dependent expression. We also characterized the expression of circular RNA and found that these are also cell type-specific. These analyses refine the active transcriptional landscape of mature hematopoietic cells, highlight abundant genes and transcriptional isoforms for each blood cell type, and provide a valuable resource for researchers of hematologic development and diseases. Finally, we made the data accessible via a web-based interface: https://blueprint.haem.cam.ac.uk/bloodatlas/.


Asunto(s)
ARN Largo no Codificante , Transcriptoma , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Circular , ARN Largo no Codificante/genética , Análisis de Secuencia de ARN
7.
Haematologica ; 104(5): 1036-1045, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30467204

RESUMEN

Sphingolipids are fundamental to membrane trafficking, apoptosis, and cell differentiation and proliferation. KDSR or 3-keto-dihydrosphingosine reductase is an essential enzyme for de novo sphingolipid synthesis, and pathogenic mutations in KDSR result in the severe skin disorder erythrokeratodermia variabilis et progressiva-4 Four of the eight reported cases also had thrombocytopenia but the underlying mechanism has remained unexplored. Here we expand upon the phenotypic spectrum of KDSR deficiency with studies in two siblings with novel compound heterozygous variants associated with thrombocytopenia, anemia, and minimal skin involvement. We report a novel phenotype of progressive juvenile myelofibrosis in the propositus, with spontaneous recovery of anemia and thrombocytopenia in the first decade of life. Examination of bone marrow biopsies showed megakaryocyte hyperproliferation and dysplasia. Megakaryocytes obtained by culture of CD34+ stem cells confirmed hyperproliferation and showed reduced proplatelet formation. The effect of KDSR insufficiency on the sphingolipid profile was unknown, and was explored in vivo and in vitro by a broad metabolomics screen that indicated activation of an in vivo compensatory pathway that leads to normalization of downstream metabolites such as ceramide. Differentiation of propositus-derived induced pluripotent stem cells to megakaryocytes followed by expression of functional KDSR showed correction of the aberrant cellular and biochemical phenotypes, corroborating the critical role of KDSR in proplatelet formation. Finally, Kdsr depletion in zebrafish recapitulated the thrombocytopenia and showed biochemical changes similar to those observed in the affected siblings. These studies support an important role for sphingolipids as regulators of cytoskeletal organization during megakaryopoiesis and proplatelet formation.


Asunto(s)
Oxidorreductasas de Alcohol/deficiencia , Plaquetas/patología , Células Madre Pluripotentes Inducidas/patología , Megacariocitos/patología , Esfingolípidos/metabolismo , Trombocitopenia/etiología , Oxidorreductasas de Alcohol/genética , Animales , Plaquetas/metabolismo , Diferenciación Celular , Células Cultivadas , Niño , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Megacariocitos/metabolismo , Metabolómica , Mutación , Linaje , Pronóstico , Trombocitopenia/metabolismo , Trombocitopenia/patología , Pez Cebra
8.
Med ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38906141

RESUMEN

BACKGROUND: Obesity rates have nearly tripled in the past 50 years, and by 2030 more than 1 billion individuals worldwide are projected to be obese. This creates a significant economic strain due to the associated non-communicable diseases. The root cause is an energy expenditure imbalance, owing to an interplay of lifestyle, environmental, and genetic factors. Obesity has a polygenic genetic architecture; however, single genetic variants with large effect size are etiological in a minority of cases. These variants allowed the discovery of novel genes and biology relevant to weight regulation and ultimately led to the development of novel specific treatments. METHODS: We used a case-control approach to determine metabolic differences between individuals homozygous for a loss-of-function genetic variant in the small integral membrane protein 1 (SMIM1) and the general population, leveraging data from five cohorts. Metabolic characterization of SMIM1-/- individuals was performed using plasma biochemistry, calorimetric chamber, and DXA scan. FINDINGS: We found that individuals homozygous for a loss-of-function genetic variant in SMIM1 gene, underlying the blood group Vel, display excess body weight, dyslipidemia, altered leptin to adiponectin ratio, increased liver enzymes, and lower thyroid hormone levels. This was accompanied by a reduction in resting energy expenditure. CONCLUSION: This research identified a novel genetic predisposition to being overweight or obese. It highlights the need to investigate the genetic causes of obesity to select the most appropriate treatment given the large cost disparity between them. FUNDING: This work was funded by the National Institute of Health Research, British Heart Foundation, and NHS Blood and Transplant.

9.
Antimicrob Agents Chemother ; 56(3): 1364-75, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22203606

RESUMEN

PF-05095808 is a novel biological agent for chronic hepatitis C virus (HCV) therapy. It comprises a recombinant adeno-associated virus (AAV) DNA vector packaged into an AAV serotype 8 capsid. The vector directs expression of three short hairpin RNAs (shRNAs) targeted to conserved regions of the HCV genome. These shRNAs are processed by the host cell into the small interfering RNAs which mediate sequence-specific cleavage of target regions. For small-molecule inhibitors the key screens needed to assess in vitro activity are well defined; we developed new assays to assess this RNA interference agent and so to understand its therapeutic potential. Following administration of PF-05095808 or corresponding synthetic shRNAs, sequence-specific antiviral activity was observed in HCV replicon and infectious virus systems. To quantify the numbers of shRNA molecules required for antiviral activity in vitro and potentially also in vivo, a universal quantitative PCR (qPCR) assay was developed. The number of shRNA molecules needed to drive antiviral activity proved to be independent of the vector delivery system used for PF-05095808 administration. The emergence of resistant variants at the target site of one shRNA was characterized. A novel RNA cleavage assay was developed to confirm the spectrum of activity of PF-05095808 against common HCV clinical isolates. In summary, our data both support antiviral activity consistent with an RNA interference mechanism and demonstrate the potential of PF-05095808 as a therapeutic agent for chronic HCV infection.


Asunto(s)
Dependovirus/genética , Terapia Genética , Hepacivirus/genética , Hepatitis C Crónica/terapia , Secuencia de Bases , Bioensayo , Cápside , Línea Celular Tumoral , Farmacorresistencia Viral/genética , Genes Reporteros , Vectores Genéticos , Genoma Viral , Hepacivirus/aislamiento & purificación , Hepatitis C Crónica/virología , Humanos , Luciferasas , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , División del ARN , Interferencia de ARN , ARN Interferente Pequeño/genética , Replicón/genética , Replicación Viral/efectos de los fármacos
10.
J Clin Immunol ; 32(5): 1082-92, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22476912

RESUMEN

BACKGROUND AND OBJECTIVE: Synthetic TLR7 agonists have been proposed as oral replacements for interferonα (IFNα) therapy in the treatment of hepatitis C virus infection. However, adverse effects, such as lymphopenia and cardiovascular irregularities, have been observed in the clinical following treatment with TLR7 agonists. We wished to understand and characterise the relationship between TLR7 agonism and adverse effects. METHODS: We compared responses to two prototypic TLR7 agonists (Resiquimod: R-848; and PF-04878691) in a mouse model and compared the responses to treatment with IFNα. We measured clinically relevant adverse effects such as lymphopenia and cardiovascular irregularities and related them to plasma drug levels and clinically relevant efficacy biomarkers such as the pro-inflammatory cytokine IP-10, 2'5'OAS and TLR7 receptor expression. RESULTS: By 2 h post dose all agents had induced a dose-dependent transient lymphopenia. IFNα increased heart rate immediately following dosing, persisting for 5 h, whilst PF-04878691 induced significant reductions in blood pressure. Lymphopenia co-incided with maximum plasma drug levels, raised levels of IP-10 and the auto-induction of TLR7 expression in the blood and lymph nodes. Peak levels of 2'5'OAS occurred at 24 h post-dose and only at doses which also induced lymphopenia. CONCLUSIONS: We conclude that systemic delivery of TLR7 agonists or IFNα induces similar exaggerated pharmacology, consistent with there being a narrow therapeutic window between efficacy and safety. This clinically validated mouse model will help to investigate whether more potent agonists or optimised dosing schedules, will be successful strategies for targeting TLR7 in patients.


Asunto(s)
Aminoquinolinas/efectos adversos , Hipotensión/inducido químicamente , Imidazoles/efectos adversos , Linfopenia/inducido químicamente , Sulfonamidas/efectos adversos , Receptor Toll-Like 7/agonistas , 2',5'-Oligoadenilato Sintetasa/metabolismo , Aminoquinolinas/sangre , Aminoquinolinas/farmacocinética , Animales , Biomarcadores/metabolismo , Presión Sanguínea/efectos de los fármacos , Quimiocina CXCL10/metabolismo , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Hipotensión/metabolismo , Imidazoles/sangre , Imidazoles/farmacocinética , Interferón-alfa/efectos adversos , Interferón-alfa/sangre , Interferón-alfa/farmacocinética , Hígado/efectos de los fármacos , Hígado/metabolismo , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/metabolismo , Recuento de Linfocitos , Linfopenia/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Quinolinas , Sulfonamidas/sangre , Sulfonamidas/farmacocinética , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo
11.
Nat Commun ; 13(1): 2608, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35546158

RESUMEN

Chromosome folding has profound impacts on gene regulation, whose evolutionary consequences are far from being understood. Here we explore the relationship between 3D chromatin remodelling in mouse germ cells and evolutionary changes in genome structure. Using a comprehensive integrative computational analysis, we (i) reconstruct seven ancestral rodent genomes analysing whole-genome sequences of 14 species representatives of the major phylogroups, (ii) detect lineage-specific chromosome rearrangements and (iii) identify the dynamics of the structural and epigenetic properties of evolutionary breakpoint regions (EBRs) throughout mouse spermatogenesis. Our results show that EBRs are devoid of programmed meiotic DNA double-strand breaks (DSBs) and meiotic cohesins in primary spermatocytes, but are associated in post-meiotic cells with sites of DNA damage and functional long-range interaction regions that recapitulate ancestral chromosomal configurations. Overall, we propose a model that integrates evolutionary genome reshuffling with DNA damage response mechanisms and the dynamic spatial genome organisation of germ cells.


Asunto(s)
Ensamble y Desensamble de Cromatina , Células Germinativas , Animales , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Roturas del ADN de Doble Cadena , Genoma , Masculino , Meiosis/genética , Ratones , Espermatogénesis/genética
12.
Clin Epigenetics ; 14(1): 39, 2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35279219

RESUMEN

BACKGROUND: This work is aimed at improving the understanding of cardiometabolic syndrome pathophysiology and its relationship with thrombosis by generating a multi-omic disease signature. METHODS/RESULTS: We combined classic plasma biochemistry and plasma biomarkers with the transcriptional and epigenetic characterisation of cell types involved in thrombosis, obtained from two extreme phenotype groups (morbidly obese and lipodystrophy) and lean individuals to identify the molecular mechanisms at play, highlighting patterns of abnormal activation in innate immune phagocytic cells. Our analyses showed that extreme phenotype groups could be distinguished from lean individuals, and from each other, across all data layers. The characterisation of the same obese group, 6 months after bariatric surgery, revealed the loss of the abnormal activation of innate immune cells previously observed. However, rather than reverting to the gene expression landscape of lean individuals, this occurred via the establishment of novel gene expression landscapes. NETosis and its control mechanisms emerge amongst the pathways that show an improvement after surgical intervention. CONCLUSIONS: We showed that the morbidly obese and lipodystrophy groups, despite some differences, shared a common cardiometabolic syndrome signature. We also showed that this could be used to discriminate, amongst the normal population, those individuals with a higher likelihood of presenting with the disease, even when not displaying the classic features.


Asunto(s)
Lipodistrofia , Síndrome Metabólico , Obesidad Mórbida , Metilación de ADN , Epigénesis Genética , Humanos , Síndrome Metabólico/genética , Obesidad Mórbida/cirugía , Fenotipo
13.
Antimicrob Agents Chemother ; 55(9): 4311-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21709085

RESUMEN

The current standard of care for hepatitis C virus (HCV) patients is cotreatment with human alpha interferon (IFN-α) and ribavirin. The host factor USP18 functions to regulate the interferon signaling pathway by acting as an off-switch. In order to understand whether the inhibition of USP18 represents a valid target for the enhancement of interferon treatment for chronic viral diseases, we have used a wide range of RNA interference (RNAi) reagents to suppress USP18 gene expression in Huh7 cell lines. We demonstrate that a USP18 knockdown results in IFN-α2a signaling (measured by increased IFN-stimulated response element [ISRE] reporter gene activity, 2',5'-oligoadenylate synthetase [2-5 OAS] expression, and ISG15 induction) that is increased by ∼100-fold, whereas the antiviral (AV) potency in both the Huh7 HCV subgenomic replicon assay and the Huh7.5 HCV infectious virus assay increased by ∼3-fold. While the degree of the USP18 knockdown of USP18 elicited by the different RNAi reagents correlated with the enhancement of IFN-α2a signaling, it did not correlate with the enhancement of AV activity. The failure of increased IFN-α2a signaling to fully translate into increased AV potency was also observed for encephalomyocarditis virus (EMCV) assays using Huh7.5 cells. These data suggest that the IFN-mediated AV response in Huh7.5 cells has only a limited dependence on USP18 activity.


Asunto(s)
Antivirales/uso terapéutico , Endopeptidasas/genética , Interferón-alfa/uso terapéutico , Ribavirina/uso terapéutico , Western Blotting , Línea Celular , Humanos , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Ubiquitina Tiolesterasa
14.
J Thromb Haemost ; 19(5): 1236-1249, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33587817

RESUMEN

BACKGROUND: Megakaryocytes (MKs) originate from cells immuno-phenotypically indistinguishable from hematopoietic stem cells (HSCs), bypassing intermediate progenitors. They mature within the adult bone marrow and release platelets into the circulation. Until now, there have been no transcriptional studies of primary human bone marrow MKs. OBJECTIVES: To characterize MKs and HSCs from human bone marrow using single-cell RNA sequencing, to investigate MK lineage commitment, maturation steps, and thrombopoiesis. RESULTS: We show that MKs at different levels of polyploidization exhibit distinct transcriptional states. Although high levels of platelet-specific gene expression occur in the lower ploidy classes, as polyploidization increases, gene expression is redirected toward translation and posttranslational processing transcriptional programs, in preparation for thrombopoiesis. Our findings are in keeping with studies of MK ultrastructure and supersede evidence generated using in vitro cultured MKs. Additionally, by analyzing transcriptional signatures of a single HSC, we identify two MK-biased HSC subpopulations exhibiting unique differentiation kinetics. We show that human bone marrow MKs originate from these HSC subpopulations, supporting the notion that they display priming for MK differentiation. Finally, to investigate transcriptional changes in MKs associated with stress thrombopoiesis, we analyzed bone marrow MKs from individuals with recent myocardial infarction and found a specific gene expression signature. Our data support the modulation of MK differentiation in this thrombotic state. CONCLUSIONS: Here, we use single-cell sequencing for the first time to characterize the human bone marrow MK transcriptome at different levels of polyploidization and investigate their differentiation from the HSC.


Asunto(s)
Megacariocitos , Trombopoyesis , Plaquetas , Médula Ósea , Diferenciación Celular , Humanos , Trombopoyesis/genética
15.
Nat Commun ; 12(1): 2298, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863903

RESUMEN

Neutrophils play fundamental roles in innate immune response, shape adaptive immunity, and are a potentially causal cell type underpinning genetic associations with immune system traits and diseases. Here, we profile the binding of myeloid master regulator PU.1 in primary neutrophils across nearly a hundred volunteers. We show that variants associated with differential PU.1 binding underlie genetically-driven differences in cell count and susceptibility to autoimmune and inflammatory diseases. We integrate these results with other multi-individual genomic readouts, revealing coordinated effects of PU.1 binding variants on the local chromatin state, enhancer-promoter contacts and downstream gene expression, and providing a functional interpretation for 27 genes underlying immune traits. Collectively, these results demonstrate the functional role of PU.1 and its target enhancers in neutrophil transcriptional control and immune disease susceptibility.


Asunto(s)
Enfermedades Autoinmunes/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/inmunología , Neutrófilos/inmunología , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Adulto , Anciano , Enfermedades Autoinmunes/inmunología , Cromatina/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neutrófilos/metabolismo , Regiones Promotoras Genéticas/genética , Sitios de Carácter Cuantitativo/genética , Sitios de Carácter Cuantitativo/inmunología , Adulto Joven
16.
Violence Vict ; 25(2): 202-23, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20514817

RESUMEN

In this experiment, 123 sixth and seventh grade classrooms from Cleveland area schools were randomly assigned to one of two five-session curricula addressing gender violence/ sexual harassment (GV/SH) or to a no-treatment control. Three-student surveys were administered. Students in the law and justice curricula, compared to the control group, had significantly improved outcomes in awareness of their abusive behaviors, attitudes toward GV/SH and personal space, and knowledge. Students in the interaction curricula experienced lower rates of victimization, increased awareness of abusive behaviors, and improved attitudes toward personal space. Neither curricula affected perpetration or victimization of sexual harassment. While the intervention appeared to reduce peer violence victimization and perpetration, a conflicting finding emerged-the intervention may have increased dating violence perpetration (or at least the reporting of it) but not dating violence victimization.


Asunto(s)
Conducta del Adolescente/psicología , Conducta Infantil/psicología , Víctimas de Crimen/psicología , Maltrato Conyugal/prevención & control , Estudiantes/psicología , Adolescente , Niño , Consejo/métodos , Cortejo , Curriculum , Femenino , Humanos , Relaciones Interpersonales , Delincuencia Juvenil/prevención & control , Masculino , Ohio , Grupo Paritario , Factores Sexuales , Encuestas y Cuestionarios
17.
Genome Biol ; 18(1): 165, 2017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28870212

RESUMEN

BACKGROUND: Autoimmune disease-associated variants are preferentially found in regulatory regions in immune cells, particularly CD4+ T cells. Linking such regulatory regions to gene promoters in disease-relevant cell contexts facilitates identification of candidate disease genes. RESULTS: Within 4 h, activation of CD4+ T cells invokes changes in histone modifications and enhancer RNA transcription that correspond to altered expression of the interacting genes identified by promoter capture Hi-C. By integrating promoter capture Hi-C data with genetic associations for five autoimmune diseases, we prioritised 245 candidate genes with a median distance from peak signal to prioritised gene of 153 kb. Just under half (108/245) prioritised genes related to activation-sensitive interactions. This included IL2RA, where allele-specific expression analyses were consistent with its interaction-mediated regulation, illustrating the utility of the approach. CONCLUSIONS: Our systematic experimental framework offers an alternative approach to candidate causal gene identification for variants with cell state-specific functional effects, with achievable sample sizes.


Asunto(s)
Enfermedades Autoinmunes/genética , Linfocitos T CD4-Positivos/inmunología , Mapeo Cromosómico , Activación de Linfocitos/genética , Regiones Promotoras Genéticas , Enfermedades Autoinmunes/inmunología , Cromatina , Elementos de Facilitación Genéticos , Humanos , Subunidad alfa del Receptor de Interleucina-2/genética , Transcriptoma
18.
Nat Commun ; 8: 16058, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28703137

RESUMEN

Linking non-coding genetic variants associated with the risk of diseases or disease-relevant traits to target genes is a crucial step to realize GWAS potential in the introduction of precision medicine. Here we set out to determine the mechanisms underpinning variant association with platelet quantitative traits using cell type-matched epigenomic data and promoter long-range interactions. We identify potential regulatory functions for 423 of 565 (75%) non-coding variants associated with platelet traits and we demonstrate, through ex vivo and proof of principle genome editing validation, that variants in super enhancers play an important role in controlling archetypical platelet functions.


Asunto(s)
Plaquetas/fisiología , Elementos de Facilitación Genéticos , Eritroblastos/química , Variación Genética , Megacariocitos/química , Cromatina , Humanos , Regiones Promotoras Genéticas
19.
Cell Rep ; 17(8): 2101-2111, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851971

RESUMEN

DNA methylation and the localization and post-translational modification of nucleosomes are interdependent factors that contribute to the generation of distinct phenotypes from genetically identical cells. With 112 whole-genome bisulfite sequencing datasets from the BLUEPRINT Epigenome Project, we analyzed the global development of DNA methylation patterns during lineage commitment and maturation of a range of immune system effector cells and the cancers that arise from them. We show clear trends in methylation patterns that are distinct in the innate and adaptive arms of the human immune system, both globally and in relation to consistently positioned nucleosomes. Most notable are a progressive loss of methylation in developing lymphocytes and the consistent occurrence of non-CG methylation in specific cell types. Cancer samples from the two lineages are further polarized, suggesting the involvement of distinct lineage-specific epigenetic mechanisms. We anticipate broad utility for this resource as a basis for further comparative epigenetic analyses.


Asunto(s)
Inmunidad Adaptativa/genética , Metilación de ADN/genética , Inmunidad Innata/genética , Linfocitos B/metabolismo , Secuencia de Bases , Sitios de Unión , Factor de Unión a CCCTC , Fosfatos de Dinucleósidos/genética , Exones/genética , Humanos , Linfocitos/metabolismo , Células Mieloides/metabolismo , Nucleosomas
20.
Nat Commun ; 7: 13555, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27898055

RESUMEN

The incidence of type 1 diabetes (T1D) has substantially increased over the past decade, suggesting a role for non-genetic factors such as epigenetic mechanisms in disease development. Here we present an epigenome-wide association study across 406,365 CpGs in 52 monozygotic twin pairs discordant for T1D in three immune effector cell types. We observe a substantial enrichment of differentially variable CpG positions (DVPs) in T1D twins when compared with their healthy co-twins and when compared with healthy, unrelated individuals. These T1D-associated DVPs are found to be temporally stable and enriched at gene regulatory elements. Integration with cell type-specific gene regulatory circuits highlight pathways involved in immune cell metabolism and the cell cycle, including mTOR signalling. Evidence from cord blood of newborns who progress to overt T1D suggests that the DVPs likely emerge after birth. Our findings, based on 772 methylomes, implicate epigenetic changes that could contribute to disease pathogenesis in T1D.


Asunto(s)
Metilación de ADN/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Islas de CpG/genética , Sangre Fetal/metabolismo , Humanos , Anotación de Secuencia Molecular , Factores de Tiempo , Gemelos Monocigóticos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA