Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 610(7931): 313-318, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198797

RESUMEN

Pterosaurs, the first vertebrates to evolve powered flight, were key components of Mesozoic terrestrial ecosystems from their sudden appearance in the Late Triassic until their demise at the end of the Cretaceous1-6. However, the origin and early evolution of pterosaurs are poorly understood owing to a substantial stratigraphic and morphological gap between these reptiles and their closest relatives6, Lagerpetidae7. Scleromochlus taylori, a tiny reptile from the early Late Triassic of Scotland discovered over a century ago, was hypothesized to be a key taxon closely related to pterosaurs8, but its poor preservation has limited previous studies and resulted in controversy over its phylogenetic position, with some even doubting its identification as an archosaur9. Here we use microcomputed tomographic scans to provide the first accurate whole-skeletal reconstruction and a revised diagnosis of Scleromochlus, revealing new anatomical details that conclusively identify it as a close pterosaur relative1 within Pterosauromorpha (the lagerpetid + pterosaur clade). Scleromochlus is anatomically more similar to lagerpetids than to pterosaurs and retains numerous features that were probably present in very early diverging members of Avemetatarsalia (bird-line archosaurs). These results support the hypothesis that the first flying reptiles evolved from tiny, probably facultatively bipedal, cursorial ancestors1.


Asunto(s)
Dinosaurios , Fósiles , Filogenia , Animales , Dinosaurios/clasificación , Ecosistema , Modelos Biológicos
2.
Development ; 150(11)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37260147

RESUMEN

Multipotent epithelial progenitor cells can be expanded from human embryonic lungs as organoids and maintained in a self-renewing state using a defined medium. The organoid cells are columnar, resembling the cell morphology of the developing lung tip epithelium in vivo. Cell shape dynamics and fate are tightly coordinated during development. We therefore used the organoid system to identify signalling pathways that maintain the columnar shape of human lung tip progenitors. We found that EGF, FGF7 and FGF10 have distinct functions in lung tip progenitors. FGF7 activates MAPK/ERK and PI3K/AKT signalling, and is sufficient to promote columnar cell shape in primary tip progenitors. Inhibitor experiments show that MAPK/ERK and PI3K/AKT signalling are key downstream pathways, regulating cell proliferation, columnar cell shape and cell junctions. We identified integrin signalling as a key pathway downstream of MAPK/ERK in the tip progenitors; disrupting integrin alters polarity, cell adhesion and tight junction assembly. By contrast, stimulation with FGF10 or EGF alone is not sufficient to maintain organoid columnar cell shape. This study employs organoids to provide insight into the cellular mechanisms regulating human lung development.


Asunto(s)
Factor de Crecimiento Epidérmico , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Forma de la Célula , Células Epiteliales/metabolismo , Pulmón , Células Madre/metabolismo , Uniones Intercelulares/metabolismo , Integrinas/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35074915

RESUMEN

An important characteristic of cell differentiation is its stability. Only rarely do cells or their stem cell progenitors change their differentiation pathway. If they do, it is often accompanied by a malfunction such as cancer. A mechanistic understanding of the stability of differentiated states would allow better prospects of alleviating the malfunctioning. However, such complete information is yet elusive. Earlier experiments performed in Xenopus oocytes to address this question suggest that a cell may maintain its gene expression by prolonged binding of cell type-specific transcription factors. Here, using DNA competition experiments, we show that the stability of gene expression in a nondividing cell could be caused by the local entrapment of part of the general transcription machinery in transcriptionally active regions. Strikingly, we found that transcriptionally active and silent forms of the same DNA template can stably coexist within the same nucleus. Both DNA templates are associated with the gene-specific transcription factor Ascl1, the core factor TBP2, and the polymerase II (Pol-II) ser5 C-terminal domain (CTD) phosphorylated form, while Pol-II ser2 CTD phosphorylation is restricted to the transcriptionally dominant template. We discover that the active and silent DNA forms are physically separated in the oocyte nucleus through partition into liquid-liquid phase-separated condensates. Altogether, our study proposes a mechanism of transcriptional regulation involving a spatial entrapment of general transcription machinery components to stabilize the active form of a gene in a nondividing cell.


Asunto(s)
ADN/genética , Regulación de la Expresión Génica , Oocitos/metabolismo , Transcripción Genética , Animales , Diferenciación Celular , ADN/metabolismo , Humanos , Oocitos/citología , Fosforilación , ARN Polimerasa II/metabolismo , Moldes Genéticos , Xenopus
4.
J Neurosci ; 43(48): 8090-8103, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37758475

RESUMEN

During brain development, excess synapses are pruned (i.e., removed), in part by microglial phagocytosis, and dysregulated synaptic pruning can lead to behavioral deficits. The P2Y6 receptor (P2Y6R) is known to regulate microglial phagocytosis of neurons, and to regulate microglial phagocytosis of synapses in cell culture and in vivo during aging. However, currently it is unknown whether P2Y6R regulates synaptic pruning during development. Here, we show that P2Y6R KO mice of both sexes had strongly reduced microglial internalization of synaptic material, measured as Vglut1 within CD68-staining lysosomes of microglia at postnatal day 30 (P30), suggesting reduced microglial phagocytosis of synapses. Consistent with this, we found an increased density of synapses in the somatosensory cortex and the CA3 region and dentate gyrus of the hippocampus at P30. We also show that adult P2Y6R KO mice have impaired short- and long-term spatial memory and impaired short- and long-term recognition memory compared with WT mice, as measured by novel location recognition, novel object recognition, and Y-maze memory tests. Overall, this indicates that P2Y6R regulates microglial phagocytosis of synapses during development, and this contributes to memory capacity.SIGNIFICANCE STATEMENT The P2Y6 receptor (P2Y6R) is activated by uridine diphosphate released by neurons, inducing microglial phagocytosis of such neurons or synapses. We tested whether P2Y6R regulates developmental synaptic pruning in mice and found that P2Y6R KO mice have reduced synaptic material within microglial lysosomes, and increased synaptic density in the brains of postnatal day 30 mice, consistent with reduced synaptic pruning during development. We also found that adult P2Y6R KO mice had reduced memory, consistent with persistent deficits in brain function, resulting from impaired synaptic pruning. Overall, the results suggest that P2Y6R mediates microglial phagocytosis of synapses during development, and the absence of this results in memory deficits in the adult.


Asunto(s)
Microglía , Sinapsis , Masculino , Femenino , Ratones , Animales , Microglía/fisiología , Fagocitosis/fisiología , Neuronas
5.
Development ; 147(3)2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31988186

RESUMEN

Regeneration-competent vertebrates are considered to suppress inflammation faster than non-regenerating ones. Hence, understanding the cellular mechanisms affected by immune cells and inflammation can help develop strategies to promote tissue repair and regeneration. Here, we took advantage of naturally occurring tail regeneration-competent and -incompetent developmental stages of Xenopus tadpoles. We first establish the essential role of the myeloid lineage for tail regeneration in the regeneration-competent tadpoles. We then reveal that upon tail amputation there is a myeloid lineage-dependent change in amputation-induced apoptosis levels, which in turn promotes tissue remodelling, and ultimately leads to the relocalization of the regeneration-organizing cells responsible for progenitor proliferation. These cellular mechanisms failed to be executed in regeneration-incompetent tadpoles. We demonstrate that regeneration incompetency is characterized by inflammatory myeloid cells whereas regeneration competency is associated with reparative myeloid cells. Moreover, treatment of regeneration-incompetent tadpoles with immune-suppressing drugs restores myeloid lineage-controlled cellular mechanisms. Collectively, our work reveals the effects of differential activation of the myeloid lineage on the creation of a regeneration-permissive environment and could be further exploited to devise strategies for regenerative medicine purposes.


Asunto(s)
Linaje de la Célula/fisiología , Células Mieloides/fisiología , Regeneración/fisiología , Cola (estructura animal)/fisiología , Xenopus laevis/fisiología , Animales , Apoptosis/efectos de los fármacos , Matriz Extracelular/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Inmunosupresores/farmacología , Larva/fisiología , Regeneración/efectos de los fármacos , Medicina Regenerativa/métodos
6.
Nature ; 544(7651): 484-487, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28405026

RESUMEN

The relationship between dinosaurs and other reptiles is well established, but the sequence of acquisition of dinosaurian features has been obscured by the scarcity of fossils with transitional morphologies. The closest extinct relatives of dinosaurs either have highly derived morphologies or are known from poorly preserved or incomplete material. Here we describe one of the stratigraphically lowest and phylogenetically earliest members of the avian stem lineage (Avemetatarsalia), Teleocrater rhadinus gen. et sp. nov., from the Middle Triassic epoch. The anatomy of T. rhadinus provides key information that unites several enigmatic taxa from across Pangaea into a previously unrecognized clade, Aphanosauria. This clade is the sister taxon of Ornithodira (pterosaurs and birds) and shortens the ghost lineage inferred at the base of Avemetatarsalia. We demonstrate that several anatomical features long thought to characterize Dinosauria and dinosauriforms evolved much earlier, soon after the bird-crocodylian split, and that the earliest avemetatarsalians retained the crocodylian-like ankle morphology and hindlimb proportions of stem archosaurs and early pseudosuchians. Early avemetatarsalians were substantially more species-rich, widely geographically distributed and morphologically diverse than previously recognized. Moreover, several early dinosauromorphs that were previously used as models to understand dinosaur origins may represent specialized forms rather than the ancestral avemetatarsalian morphology.


Asunto(s)
Aves/clasificación , Dinosaurios/anatomía & histología , Dinosaurios/clasificación , Fósiles , Filogenia , Caimanes y Cocodrilos/anatomía & histología , Caimanes y Cocodrilos/clasificación , Animales , Aves/anatomía & histología , Miembro Posterior/anatomía & histología , Esqueleto/anatomía & histología , Tanzanía
7.
PLoS Genet ; 16(12): e1008948, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33320862

RESUMEN

During metazoan development, the cell cycle is remodelled to coordinate proliferation with differentiation. Developmental cues cause dramatic changes in the number and timing of replication initiation events, but the mechanisms and physiological importance of such changes are poorly understood. Cyclin-dependent kinases (CDKs) are important for regulating S-phase length in many metazoa, and here we show in the nematode Caenorhabditis elegans that an essential function of CDKs during early embryogenesis is to regulate the interactions between three replication initiation factors SLD-3, SLD-2 and MUS-101 (Dpb11/TopBP1). Mutations that bypass the requirement for CDKs to generate interactions between these factors is partly sufficient for viability in the absence of Cyclin E, demonstrating that this is a critical embryonic function of this Cyclin. Both SLD-2 and SLD-3 are asymmetrically localised in the early embryo and the levels of these proteins inversely correlate with S-phase length. We also show that SLD-2 asymmetry is determined by direct interaction with the polarity protein PKC-3. This study explains an essential function of CDKs for replication initiation in a metazoan and provides the first direct molecular mechanism through which polarization of the embryo is coordinated with DNA replication initiation factors.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Caenorhabditis elegans/genética , Quinasas Ciclina-Dependientes/metabolismo , Replicación del ADN , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Quinasas Ciclina-Dependientes/genética , Mutación , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo
8.
Plant Cell ; 31(9): 2010-2034, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31266899

RESUMEN

The order of enzymatic activity across Golgi cisternae is essential for complex molecule biosynthesis. However, an inability to separate Golgi cisternae has meant that the cisternal distribution of most resident proteins, and their underlying localization mechanisms, are unknown. Here, we exploit differences in surface charge of intact cisternae to perform separation of early to late Golgi subcompartments. We determine protein and glycan abundance profiles across the Golgi; over 390 resident proteins are identified, including 136 new additions, with over 180 cisternal assignments. These assignments provide a means to better understand the functional roles of Golgi proteins and how they operate sequentially. Protein and glycan distributions are validated in vivo using high-resolution microscopy. Results reveal distinct functional compartmentalization among resident Golgi proteins. Analysis of transmembrane proteins shows several sequence-based characteristics relating to pI, hydrophobicity, Ser abundance, and Phe bilayer asymmetry that change across the Golgi. Overall, our results suggest that a continuum of transmembrane features, rather than discrete rules, guide proteins to earlier or later locations within the Golgi stack.


Asunto(s)
Aparato de Golgi/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Aparato de Golgi/ultraestructura , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Intracelulares , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Proteoma
9.
Nature ; 529(7586): 403-407, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26751055

RESUMEN

Nanog, a core pluripotency factor in the inner cell mass of blastocysts, is also expressed in unipotent primordial germ cells (PGCs) in mice, where its precise role is yet unclear. We investigated this in an in vitro model, in which naive pluripotent embryonic stem (ES) cells cultured in basic fibroblast growth factor (bFGF) and activin A develop as epiblast-like cells (EpiLCs) and gain competence for a PGC-like fate. Consequently, bone morphogenetic protein 4 (BMP4), or ectopic expression of key germline transcription factors Prdm1, Prdm14 and Tfap2c, directly induce PGC-like cells (PGCLCs) in EpiLCs, but not in ES cells. Here we report an unexpected discovery that Nanog alone can induce PGCLCs in EpiLCs, independently of BMP4. We propose that after the dissolution of the naive ES-cell pluripotency network during establishment of EpiLCs, the epigenome is reset for cell fate determination. Indeed, we found genome-wide changes in NANOG-binding patterns between ES cells and EpiLCs, indicating epigenetic resetting of regulatory elements. Accordingly, we show that NANOG can bind and activate enhancers of Prdm1 and Prdm14 in EpiLCs in vitro; BLIMP1 (encoded by Prdm1) then directly induces Tfap2c. Furthermore, while SOX2 and NANOG promote the pluripotent state in ES cells, they show contrasting roles in EpiLCs, as Sox2 specifically represses PGCLC induction by Nanog. This study demonstrates a broadly applicable mechanistic principle for how cells acquire competence for cell fate determination, resulting in the context-dependent roles of key transcription factors during development.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Células Germinativas/citología , Células Germinativas/metabolismo , Estratos Germinativos/citología , Proteínas de Homeodominio/metabolismo , Células Madre Embrionarias de Ratones/citología , Factores de Transcripción/genética , Activinas/farmacología , Animales , Proteína Morfogenética Ósea 4/metabolismo , Diferenciación Celular/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN , Epigénesis Genética , Femenino , Factor 2 de Crecimiento de Fibroblastos/farmacología , Regulación del Desarrollo de la Expresión Génica , Genoma/genética , Estratos Germinativos/efectos de los fármacos , Estratos Germinativos/metabolismo , Proteínas de Homeodominio/antagonistas & inhibidores , Masculino , Ratones , Células Madre Embrionarias de Ratones/efectos de los fármacos , Proteína Homeótica Nanog , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Unión Proteica , Proteínas de Unión al ARN , Factores de Transcripción SOXB1/metabolismo , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo , Factores de Transcripción/metabolismo
10.
Proc Biol Sci ; 288(1953): 20210692, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34157868

RESUMEN

In order for palaeontological data to be informative to ecologists seeking to understand the causes of today's diversity patterns, palaeontologists must demonstrate that actual biodiversity patterns are preserved in our reconstructions of past ecosystems. During the Late Cretaceous, North America was divided into two landmasses, Laramidia and Appalachia. Previous work has suggested strong faunal provinciality on Laramidia at this time, but these arguments are almost entirely qualitative. We quantitatively investigated faunal provinciality in ceratopsid and hadrosaurid dinosaurs using a biogeographic network approach and investigated sampling biases by examining correlations between dinosaur occurrences and collections. We carried out a model-fitting approach using generalized least-squares regression to investigate the sources of sampling bias we identified. We find that while the raw data strongly support faunal provinciality, this result is driven by sampling bias. The data quality of ceratopsids and hadrosaurids is currently too poor to enable fair tests of provincialism, even in this intensively sampled region, which probably represents the best-known Late Cretaceous terrestrial ecosystem on Earth. To accurately reconstruct biodiversity patterns in deep time, future work should focus on smaller scale, higher resolution case studies in which the effects of sampling bias can be better controlled.


Asunto(s)
Dinosaurios , Fósiles , Animales , Biodiversidad , Dinosaurios/anatomía & histología , Ecosistema , América del Norte
11.
FASEB J ; 34(3): 3537-3553, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31950564

RESUMEN

Voltage-gated sodium channels comprise an ion-selective α-subunit and one or more associated ß-subunits. The ß3-subunit (encoded by the SCN3B gene) is an important physiological regulator of the heart-specific sodium channel, Nav1.5. We have previously shown that when expressed alone in HEK293F cells, the full-length ß3-subunit forms trimers in the plasma membrane. We extend this result with biochemical assays and use the proximity ligation assay (PLA) to identify oligomeric ß3-subunits, not just at the plasma membrane, but throughout the secretory pathway. We then investigate the corresponding clustering properties of the α-subunit and the effects upon these of the ß3-subunits. The oligomeric status of the Nav1.5 α-subunit in vivo, with or without the ß3-subunit, has not been previously investigated. Using super-resolution fluorescence imaging, we show that under conditions typically used in electrophysiological studies, the Nav1.5 α-subunit assembles on the plasma membrane of HEK293F cells into spatially localized clusters rather than individual and randomly dispersed molecules. Quantitative analysis indicates that the ß3-subunit is not required for this clustering but ß3 does significantly change the distribution of cluster sizes and nearest-neighbor distances between Nav1.5 α-subunits. However, when assayed by PLA, the ß3-subunit increases the number of PLA-positive signals generated by anti-(Nav1.5 α-subunit) antibodies, mainly at the plasma membrane. Since PLA can be sensitive to the orientation of proteins within a cluster, we suggest that the ß3-subunit introduces a significant change in the relative alignment of individual Nav1.5 α-subunits, but the clustering itself depends on other factors. We also show that these structural and higher-order changes induced by the ß3-subunit do not alter the degree of electrophysiological gating cooperativity between Nav1.5 α-subunits. Our data provide new insights into the role of the ß3-subunit and the supramolecular organization of sodium channels, in an important model cell system that is widely used to study Nav channel behavior.


Asunto(s)
Membrana Celular/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Subunidades de Proteína/metabolismo , Electrofisiología , Células HEK293 , Humanos , Inmunoprecipitación , Cinética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Técnicas de Placa-Clamp , Subunidades de Proteína/química , Subunidades de Proteína/genética
12.
Biol Lett ; 17(7): 20210168, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34256583

RESUMEN

The ability of palaeontologists to correctly diagnose and classify new fossil species from incomplete morphological data is fundamental to our understanding of evolution. Different parts of the vertebrate skeleton have different likelihoods of fossil preservation and varying amounts of taxonomic information, which could bias our interpretations of fossil material. Substantial previous research has focused on the diversity and macroevolution of non-avian theropod dinosaurs. Theropods provide a rich dataset for analysis of the interactions between taxonomic diagnosability and fossil preservation. We use specimen data and formal taxonomic diagnoses to create a new metric, the Likelihood of Diagnosis, which quantifies the diagnostic likelihood of fossil species in relation to bone preservation potential. We use this to assess whether a taxonomic identification bias impacts the non-avian theropod fossil record. We find that the patterns of differential species abundance and clade diversity are not a consequence of their relative diagnosability. Although there are other factors that bias the theropod fossil record that are not investigated here, our results suggest that patterns of relative abundance and diversity for theropods might be more representative of Mesozoic ecology than often considered.


Asunto(s)
Dinosaurios , Animales , Evolución Biológica , Dinosaurios/anatomía & histología , Fósiles , Filogenia , Esqueleto
13.
Nurs Outlook ; 69(1): 84-95, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32859425

RESUMEN

BACKGROUND: Numerous studies have identified a relationship between nurse staffing and adverse patient outcomes in medical / surgical patient populations. However, little is known about the impact of labor and delivery (L&D) nurse staffing and adverse birth outcomes, such as unintended cesarean delivery, in low-risk term-gestation women. PURPOSE: We examined nurse staffing patterns on the likelihood of cesarean sections (C-sections) among low- risk, full gestation births and provided a testing framework to distinguish optimal from ineffective levels of nurse staffing. METHODS: This retrospective descriptive study used hours of productive nursing time per delivery as the treatment variable to determine direct nursing time per delivery and its impact on the likelihood of a C-section. For comparisons, we also assessed the likelihood of augmentations and of inductions, as well as the number of neonatal intensive care unit (NICU) hours per birth. We limited our sample to those births between 37 and 42 weeks of gestation. Two complimentary models (the quadratic and piecewise regressions) distinguishing optimal staffing patterns from ineffective staffing patterns were developed. The study was implemented in eleven hospitals that are part of a large, integrated healthcare system in the Southwest. DISCUSSION: While a simple linear regression of the likelihood of a C-section on nursing hours per delivery indicated no statistically distinguishable effect, our 'optimal staffing' model indicated that nurse staffing hours employed by using a large sample of hospitals were actually minimizing C-sections (robustness checks are provided using similar model comparisons for the likelihood of augmentation and induction, and NICU hours). Where the optimal staffing models did not appear to be effective for augmentations, inductions, and NICU hours, we found significant differences between facilities (i.e., significant fixed effects for hospitals). In all specifications, we also controlled for weeks of gestation, race, sex of the child, and mother's age.


Asunto(s)
Cesárea/enfermería , Enfermeras y Enfermeros/provisión & distribución , Admisión y Programación de Personal/normas , Carga de Trabajo/normas , Adulto , Cesárea/normas , Cesárea/tendencias , Femenino , Humanos , Recién Nacido , Enfermeras y Enfermeros/estadística & datos numéricos , Enfermería Obstétrica/métodos , Enfermería Obstétrica/normas , Enfermería Obstétrica/tendencias , Admisión y Programación de Personal/estadística & datos numéricos , Embarazo , Calidad de la Atención de Salud/normas , Calidad de la Atención de Salud/estadística & datos numéricos , Estudios Retrospectivos , Factores de Riesgo , Carga de Trabajo/psicología , Carga de Trabajo/estadística & datos numéricos
14.
Nurs Outlook ; 69(1): 96-102, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33023759

RESUMEN

BACKGROUND: The National Academies of Medicine describes clinician burnout as a serious threat to organizational health, including employee turnover. PURPOSE: To determine the relationship between resilience, burnout, and organizational and position turnover. METHODS: We surveyed direct care nurses in three hospitals 1 year apart between 2018 and 2019; 1,688 nurses completed 3,135 surveys included in analysis. FINDINGS: Fifty-four percent of nurses in our sample suffer from moderate burnout, with emotional exhaustion scores increasing by 10% and cynicism scores increasing 19% after 1 year. The impact of burnout on organizational turnover was significant, with a 12% increase in a nurse leaving for each unit increase on the emotional exhaustion scale, though it was not a factor in position turnover. DISCUSSION: These findings contribute to the growing body of evidence of nurse burnout and support policies and programs for annual measurement of burnout, increased employee wellbeing support, and improved work environments.


Asunto(s)
Agotamiento Profesional/complicaciones , Enfermeras y Enfermeros/psicología , Cultura Organizacional , Reorganización del Personal/estadística & datos numéricos , Adulto , Agotamiento Profesional/psicología , Estudios Transversales , Femenino , Humanos , Satisfacción en el Trabajo , Masculino , Persona de Mediana Edad , Encuestas y Cuestionarios , Lugar de Trabajo/psicología , Lugar de Trabajo/normas
15.
Kidney Int ; 98(4): 883-896, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32919786

RESUMEN

Loss-of-function mutations in the OCRL gene, which encodes the phosphatidylinositol [PI] 4,5-bisphosphate [PI(4,5)P2] 5-phosphatase OCRL, cause defective endocytosis and proximal tubule dysfunction in Lowe syndrome and Dent disease 2. The defect is due to increased levels of PI(4,5)P2 and aberrant actin polymerization, blocking endosomal trafficking. PI 3-phosphate [PI(3)P] has been recently identified as a coactivator with PI(4,5)P2 in the actin pathway. Here, we tested the hypothesis that phosphoinositide 3-kinase (PI3K) inhibitors may rescue the endocytic defect imparted by OCRL loss, by rebalancing phosphoinositide signals to the actin machinery. The broad-range PI3K inhibitor copanlisib and class IA p110α PI3K inhibitor alpelisib reduced aberrant actin polymerization in OCRL-deficient human kidney cells in vitro. Levels of PI 3,4,5-trisphosphate, PI(4,5)P2 and PI(3)P were all reduced with alpelisib treatment, and siRNA knockdown of the PI3K catalytic subunit p110α phenocopied the actin phenotype. In a humanized OcrlY/- mouse model, alpelisib reduced endosomal actin staining while restoring stress fiber architecture and levels of megalin at the plasma membrane of proximal tubule cells, reflected by improved endocytic uptake of low molecular weight proteins in vivo. Thus, our findings support the link between phosphoinositide lipids, actin polymerization and endocytic trafficking in the proximal tubule and represent a proof-of-concept for repurposing alpelisib in Lowe syndrome/Dent disease 2.


Asunto(s)
Enfermedad de Dent , Síndrome Oculocerebrorrenal , Actinas , Humanos , Ratones , Síndrome Oculocerebrorrenal/genética , Fosfatidilinositol 3-Quinasas , Fosfatos de Fosfatidilinositol , Inhibidores de las Quinasa Fosfoinosítidos-3 , Monoéster Fosfórico Hidrolasas/genética , Tiazoles
16.
Proc Biol Sci ; 287(1924): 20200372, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32259471

RESUMEN

There is no consensus about how terrestrial biodiversity was assembled through deep time, and in particular whether it has risen exponentially over the Phanerozoic. Using a database of 60 859 fossil occurrences, we show that the spatial extent of the worldwide terrestrial tetrapod fossil record itself expands exponentially through the Phanerozoic. Changes in spatial sampling explain up to 67% of the change in known fossil species counts, and these changes are decoupled from variation in habitable land area that existed through time. Spatial sampling therefore represents a real and profound sampling bias that cannot be explained as redundancy. To address this bias, we estimate terrestrial tetrapod diversity for palaeogeographical regions of approximately equal size. We find that regional-scale diversity was constrained over timespans of tens to hundreds of millions of years, and similar patterns are recovered for major subgroups, such as dinosaurs, mammals and squamates. Although the Cretaceous/Palaeogene mass extinction catalysed an abrupt two- to three-fold increase in regional diversity 66 million years ago, no further increases occurred, and recent levels of regional diversity do not exceed those of the Palaeogene. These results parallel those recovered in analyses of local community-level richness. Taken together, our findings strongly contradict past studies that suggested unbounded diversity increases at local and regional scales over the last 100 million years.


Asunto(s)
Biodiversidad , Extinción Biológica , Sesgo de Selección , Animales , Evolución Biológica , Dinosaurios , Fósiles , Mamíferos
17.
J Anat ; 237(2): 323-333, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32255518

RESUMEN

Theropod dinosaurs were relatively scarce in the Late Cretaceous ecosystems of southeast Brazil. Instead, hypercarnivorous crocodyliforms known as baurusuchids were abundant and probably occupied the ecological role of apex predators. Baurusuchids exhibited a series of morphological adaptations hypothesized to be associated with this ecological role, but quantitative biomechanical analyses of their morphology have so far been lacking. Here, we employ a biomechanical modelling approach, applying finite element analysis (FEA) to models of the skull and mandibles of a baurusuchid specimen. This allows us to characterize the craniomandibular apparatus of baurusuchids, as well as to compare the functional morphology of the group with that of other archosaurian carnivores, such as theropods and crocodylians. Our results support the ecological role of baurusuchids as specialized apex predators in the continental Late Cretaceous ecosystems of South America. With a relatively weak bite force (~600 N), the predation strategies of baurusuchids likely relied on other morphological specializations, such as ziphodont dentition and strong cervical musculature. Comparative assessments of the stress distribution and magnitude of scaled models of other predators (the theropod Allosaurus fragilis and the living crocodylian Alligator mississippiensis) consistently show different responses to loadings under the same functional scenarios, suggesting distinct predatory behaviors for these animals. The unique selective pressures in the arid to semi-arid Late Cretaceous ecosystems of southeast Brazil, which were dominated by crocodyliforms, possibly drove the emergence and evolution of the biomechanical features seen in baurusuchids, which are distinct from those previously reported for other predatory taxa.


Asunto(s)
Caimanes y Cocodrilos/anatomía & histología , Evolución Biológica , Dinosaurios/anatomía & histología , Conducta Predatoria , Cráneo/anatomía & histología , Animales , Brasil , Análisis de Elementos Finitos , Fósiles , Filogenia , Diente/anatomía & histología
18.
BMC Evol Biol ; 19(1): 167, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31390981

RESUMEN

BACKGROUND: Little is known about the long-term patterns of body size evolution in Crocodylomorpha, the > 200-million-year-old group that includes living crocodylians and their extinct relatives. Extant crocodylians are mostly large-bodied (3-7 m) predators. However, extinct crocodylomorphs exhibit a wider range of phenotypes, and many of the earliest taxa were much smaller (< 1.2 m). This suggests a pattern of size increase through time that could be caused by multi-lineage evolutionary trends of size increase or by selective extinction of small-bodied species. Here, we characterise patterns of crocodylomorph body size evolution using a model fitting-approach (with cranial measurements serving as proxies). We also estimate body size disparity through time and quantitatively test hypotheses of biotic and abiotic factors as potential drivers of crocodylomorph body size evolution. RESULTS: Crocodylomorphs reached an early peak in body size disparity during the Late Jurassic, and underwent an essentially continual decline since then. A multi-peak Ornstein-Uhlenbeck model outperforms all other evolutionary models fitted to our data (including both uniform and non-uniform), indicating that the macroevolutionary dynamics of crocodylomorph body size are better described within the concept of an adaptive landscape, with most body size variation emerging after shifts to new macroevolutionary regimes (analogous to adaptive zones). We did not find support for a consistent evolutionary trend towards larger sizes among lineages (i.e., Cope's rule), or strong correlations of body size with climate. Instead, the intermediate to large body sizes of some crocodylomorphs are better explained by group-specific adaptations. In particular, the evolution of a more aquatic lifestyle (especially marine) correlates with increases in average body size, though not without exceptions. CONCLUSIONS: Shifts between macroevolutionary regimes provide a better explanation of crocodylomorph body size evolution on large phylogenetic and temporal scales, suggesting a central role for lineage-specific adaptations rather than climatic forcing. Shifts leading to larger body sizes occurred in most aquatic and semi-aquatic groups. This, combined with extinctions of groups occupying smaller body size regimes (particularly during the Late Cretaceous and Cenozoic), gave rise to the upward-shifted body size distribution of extant crocodylomorphs compared to their smaller-bodied terrestrial ancestors.


Asunto(s)
Tamaño Corporal , Fósiles , Reptiles/genética , Animales , Evolución Biológica , Modelos Genéticos , Filogenia , Reptiles/clasificación , Reptiles/fisiología , Cráneo/anatomía & histología
19.
Development ; 143(8): 1271-83, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26952987

RESUMEN

Dynamic control of gene expression is essential for the development of a totipotent zygote into an embryo with defined cell lineages. The accessibility of genes responsible for cell specification to transcriptional machinery is dependent on chromatin remodelling complexes such as the SWI\SNF (BAF) complex. However, the role of the BAF complex in early mouse development has remained unclear. Here, we demonstrate that BAF155, a major BAF complex subunit, regulates the assembly of the BAF complex in vivo and regulates lineage specification of the mouse blastocyst. We find that associations of BAF155 with other BAF complex subunits become enriched in extra-embryonic lineages just prior to implantation. This enrichment is attributed to decreased mobility of BAF155 in extra-embryonic compared with embryonic lineages. Downregulation of BAF155 leads to increased expression of the pluripotency marker Nanog and its ectopic expression in extra-embryonic lineages, whereas upregulation of BAF155 leads to the upregulation of differentiation markers. Finally, we show that the arginine methyltransferase CARM1 methylates BAF155, which differentially influences assembly of the BAF complex between the lineages and the expression of pluripotency markers. Together, our results indicate a novel role of BAF-dependent chromatin remodelling in mouse development via regulation of lineage specification.


Asunto(s)
Linaje de la Célula/genética , Desarrollo Embrionario/genética , Epigénesis Genética , Factores de Transcripción/fisiología , Animales , Blastocisto/citología , Ensamble y Desensamble de Cromatina , Femenino , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Proteína-Arginina N-Metiltransferasas/metabolismo , Factores de Transcripción/genética
20.
PLoS Biol ; 14(1): e1002359, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26807777

RESUMEN

How did evolution generate the extraordinary diversity of vertebrates on land? Zero species are known prior to ~380 million years ago, and more than 30,000 are present today. An expansionist model suggests this was achieved by large and unbounded increases, leading to substantially greater diversity in the present than at any time in the geological past. This model contrasts starkly with empirical support for constrained diversification in marine animals, suggesting different macroevolutionary processes on land and in the sea. We quantify patterns of vertebrate standing diversity on land during the Mesozoic-early Paleogene interval, applying sample-standardization to a global fossil dataset containing 27,260 occurrences of 4,898 non-marine tetrapod species. Our results show a highly stable pattern of Mesozoic tetrapod diversity at regional and local levels, underpinned by a weakly positive, but near-zero, long-term net diversification rate over 190 million years. Species diversity of non-flying terrestrial tetrapods less than doubled over this interval, despite the origins of exceptionally diverse extant groups within mammals, squamates, amphibians, and dinosaurs. Therefore, although speciose groups of modern tetrapods have Mesozoic origins, rates of Mesozoic diversification inferred from the fossil record are slow compared to those inferred from molecular phylogenies. If high speciation rates did occur in the Mesozoic, then they seem to have been balanced by extinctions among older clades. An apparent 4-fold expansion of species richness after the Cretaceous/Paleogene (K/Pg) boundary deserves further examination in light of potential taxonomic biases, but is consistent with the hypothesis that global environmental disturbances such as mass extinction events can rapidly adjust limits to diversity by restructuring ecosystems, and suggests that the gradualistic evolutionary diversification of tetrapods was punctuated by brief but dramatic episodes of radiation.


Asunto(s)
Biodiversidad , Evolución Biológica , Fósiles , Vertebrados , Animales , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA