Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Fungal Genet Biol ; 166: 103799, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37105080

RESUMEN

C. glabrata, an opportunistic fungal pathogen, can adapt and resist to different stress conditions. It is highly resistant to oxidant stress compared to other Candida spp and to the phylogenetically related but non-pathogen Saccharomyces cerevisiae. In this work, we describe the Trx/Trr system of C. glabrata composed of Trr1 and Trr2 (thioredoxin reductases) and Trx2 (thioredoxin) that are localized in the cytoplasm and Trx3 present in the mitochondrion. The transcriptional induction of TRR2 and TRX2 by oxidants depends on Yap1 and Skn7 and TRR1 and TRX3 have a low expression level. Both TRR2 and TRX2 play an important role in the oxidative stress response. The absence of TRX2 causes auxotrophy of methionine and cysteine. Trr1 and Trr2 are necessary for survival at high temperatures and for the chronological life span of C. glabrata. Furthermore, the Trx/Trr system is needed for survival in the presence of neutrophils. The role of TRR1 and TRX3 is not clear, but in the presence of neutrophils, they have non-overlapping functions with their TRR2 and TRX2 paralogues.


Asunto(s)
Candida glabrata , Saccharomyces cerevisiae , Candida glabrata/genética , Saccharomyces cerevisiae/metabolismo , Oxidantes/metabolismo , Oxidantes/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Oxidativo/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
2.
Microbiology (Reading) ; 161(Pt 2): 300-310, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25479837

RESUMEN

The fungal pathogen Candida glabrata has a well-defined oxidative stress response, is extremely resistant to oxidative stress and can survive inside phagocytic cells. In order to further our understanding of the oxidative stress response in C. glabrata, we characterized the superoxide dismutases (SODs) Cu,ZnSOD (Sod1) and MnSOD (Sod2). We found that Sod1 is the major contributor to total SOD activity and is present in cytoplasm, whereas Sod2 is a mitochondrial protein. Both SODs played a central role in the oxidative stress response but Sod1 was more important during fermentative growth and Sod2 during respiration and growth in non-fermentable carbon sources. Interestingly, C. glabrata cells lacking both SODs showed auxotrophy for lysine, a high rate of spontaneous mutation and reduced chronological lifespan. Thus, our study reveals that SODs play an important role in metabolism, lysine biosynthesis, DNA protection and aging in C. glabrata.


Asunto(s)
Candida glabrata/enzimología , Candida glabrata/crecimiento & desarrollo , ADN de Hongos/genética , Proteínas Fúngicas/metabolismo , Lisina/biosíntesis , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Candida glabrata/genética , Candida glabrata/metabolismo , ADN de Hongos/metabolismo , Proteínas Fúngicas/genética , Viabilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética
3.
Curr Genet ; 61(4): 529-44, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25586543

RESUMEN

Candida glabrata has emerged as an important opportunistic pathogen in both mucosal and bloodstream infections. C. glabrata contains 67 adhesin-like glycosylphosphatidylinositol-cell-wall proteins (GPI-CWPs), which are classified into seven groups and the largest is the Epa family. Epa proteins are very diverse and their expression is differentially regulated. Like many of the EPA genes, EPA2 is localized in a subtelomeric region where it is subject to chromatin-based transcriptional silencing and its role remains largely unexplored. In this study, we show that EPA2 gene is induced specifically in vitro in the presence of oxidative stress generated by H2O2. This induction is dependent on both Yap1 and Skn7, whereas Msn4 represses EPA2 expression. Interestingly, EPA2 is not induced during phagocytosis, but its expression can be identified in the liver in a murine model of systemic infection. Epa2 has no effect on the virulence of C. glabrata. The work presented herein provides a foundation for future studies to dissect the molecular mechanism(s) by which EPA2 of C. glabrata can be induced in the presence of oxidative stress in a region subject to subtelomeric silencing.


Asunto(s)
Candida glabrata/genética , Candida glabrata/patogenicidad , Moléculas de Adhesión Celular/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Factores de Transcripción/genética , Animales , Candida glabrata/efectos de los fármacos , Candida glabrata/metabolismo , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Moléculas de Adhesión Celular/metabolismo , Proteínas Fúngicas/metabolismo , Silenciador del Gen , Peróxido de Hidrógeno/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones , Estrés Oxidativo , Fagocitosis/genética , Telómero/química , Telómero/metabolismo , Factores de Transcripción/metabolismo , Virulencia
4.
Mol Microbiol ; 88(6): 1135-48, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23651300

RESUMEN

In Candida glabrata, the sirtuins Sir2 and Hst1 control the expression of a wide number of genes including adhesins required for host colonization and niacin transporters needed for growth. Given that these sirtuins can be inactivated during infection, we asked if their inhibition could modify the response of C. glabrata to other stressful conditions. Here, we found that deletion of HST1 decreases susceptibility of C. glabrata to fluconazole and hydrogen peroxide. The transcription factor Pdr1 and the ABC transporter Cdr1 mediated the fluconazole resistance phenotype of the hst1Δ cells, whereas the transcriptional activator Msn4 and the catalase Cta1 are necessary to provide oxidative stress resistance. We show that the transcription factor Sum1 interacts with Hst1 and participate in the regulation of these genes. Interestingly, even though C. glabrata and Saccharomyces cerevisiae are closely related phylogenetically, deletion of HST1 decreased susceptibility to fluconazole and hydrogen peroxide only in C. glabrata but not in S. cerevisiae, indicating a different transcriptional control by two similar sirtuins. Our findings suggest that Hst1 acts as a regulator of stress resistance associated-genes.


Asunto(s)
Candida glabrata/genética , Farmacorresistencia Fúngica Múltiple , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Estrés Oxidativo , Sirtuinas/metabolismo , Antifúngicos/farmacología , Candida glabrata/efectos de los fármacos , Candida glabrata/fisiología , Fluconazol/farmacología , Eliminación de Gen , Peróxido de Hidrógeno/toxicidad , Mapeo de Interacción de Proteínas , Estrés Fisiológico , Factores de Transcripción/metabolismo
5.
Eukaryot Cell ; 7(5): 814-25, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18375620

RESUMEN

We characterized the oxidative stress response of Candida glabrata to better understand the virulence of this fungal pathogen. C. glabrata could withstand higher concentrations of H(2)O(2) than Saccharomyces cerevisiae and even Candida albicans. Stationary-phase cells were extremely resistant to oxidative stress, and this resistance was dependent on the concerted roles of stress-related transcription factors Yap1p, Skn7p, and Msn4p. We showed that growing cells of C. glabrata were able to adapt to high levels of H(2)O(2) and that this adaptive response was dependent on Yap1p and Skn7p and partially on the general stress transcription factors Msn2p and Msn4p. C. glabrata has a single catalase gene, CTA1, which was absolutely required for resistance to H(2)O(2) in vitro. However, in a mouse model of systemic infection, a strain lacking CTA1 showed no effect on virulence.


Asunto(s)
Candida glabrata/metabolismo , Candida glabrata/patogenicidad , Candidiasis/microbiología , Catalasa/metabolismo , Estrés Oxidativo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Candida glabrata/efectos de los fármacos , Candida glabrata/crecimiento & desarrollo , Catalasa/química , Catalasa/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Humanos , Peróxido de Hidrógeno/farmacología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Alineación de Secuencia , Eliminación de Secuencia , Factores de Transcripción/genética , Virulencia
6.
Rev Iberoam Micol ; 31(1): 67-71, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24270068

RESUMEN

Organisms have evolved different strategies to respond to oxidative stress generated as a by-product of aerobic respiration and thus maintain the redox homeostasis within the cell. In particular, fungal pathogens are exposed to reactive oxygen species (ROS) when they interact with the phagocytic cells of the host which are the first line of defense against fungal infections. These pathogens have co-opted the enzymatic (catalases, superoxide dismutases (SODs), and peroxidases) and non-enzymatic (glutathione) mechanisms used to maintain the redox homeostasis within the cell, to resist oxidative stress and ensure survival within the host. Several virulence factors have been related to the response to oxidative stress in pathogenic fungi. The opportunistic fungal pathogen Candida glabrata (C. glabrata) is the second most common cause of candidiasis after Candida albicans (C. albicans). C. glabrata has a well defined oxidative stress response (OSR), which include both enzymatic and non-enzymatic mechanisms. C. glabrata OSR is controlled by the well-conserved transcription factors Yap1, Skn7, Msn2 and Msn4. In this review, we describe the OSR of C. glabrata, what is known about its core elements, its regulation and how C. glabrata interacts with the host. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).


Asunto(s)
Candida glabrata/metabolismo , Interacciones Huésped-Patógeno/fisiología , Estrés Oxidativo , Adaptación Fisiológica , Candida glabrata/patogenicidad , Candidiasis/microbiología , Catalasa/fisiología , Proteínas Fúngicas/fisiología , Glutatión/fisiología , Humanos , Huésped Inmunocomprometido , Metalotioneína/fisiología , Infecciones Oportunistas/microbiología , Fagocitosis , Pigmentos Biológicos/fisiología , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/fisiología , Tiorredoxinas/fisiología , Factores de Transcripción/fisiología , Virulencia
7.
Rev. iberoam. micol ; 31(1): 67-71, ene.-mar. 2014.
Artículo en Inglés | IBECS (España) | ID: ibc-120471

RESUMEN

Organisms have evolved different strategies to respond to oxidative stress generated as a by-product of aerobic respiration and thus maintain the redox homeostasis within the cell. In particular, fungal pathogens are exposed to reactive oxygen species (ROS) when they interact with the phagocytic cells of the host which are the first line of defense against fungal infections. These pathogens have co-opted the enzymatic (catalases, superoxide dismutases (SODs), and peroxidases) and non-enzymatic (glutathione) mechanisms used to maintain the redox homeostasis within the cell, to resist oxidative stress and ensure survival within the host. Several virulence factors have been related to the response to oxidative stress in pathogenic fungi. The opportunistic fungal pathogen Candida glabrata (C. glabrata) is the second most common cause of candidiasis after Candida albicans (C. albicans). C. glabrata has a well defined oxidative stress response (OSR), which include both enzymatic and non-enzymatic mechanisms. C. glabrata OSR is controlled by the well-conserved transcription factors Yap1, Skn7, Msn2 and Msn4. In this review, we describe the OSR of C. glabrata, what is known about its core elements, its regulation and how C. glabrata interacts with the host. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012) (AU)


Los microorganismos han establecido diferentes estrategias para controlar el estrés oxidante generado durante la respiración aeróbica y, por consiguiente, mantener la homeostasia redox en la célula. En particular, los hongos patógenos se exponen a especies reactivas del oxígeno cuando interactúan con las células fagocíticas del huésped que son la primera línea de defensa contra estos agentes infecciosos. Estos patógenos han reclutado sistemas enzimáticos (catalasas, superóxido dismutasas y peroxidasas) y no enzimáticos (glutatión) que normalmente utilizan para mantener la homeostasis redox en la célula, para resistir frente al estrés oxidante y garantizar la supervivencia dentro del huésped. Varios factores de virulencia se han relacionado con la respuesta al estrés oxidante de los hongos patógenos. El hongo patógeno oportunista Candida glabrata (C. glabrata) es la segunda causa más frecuente de candidiasis después de Candida albicans (C. albicans). C. glabrata tiene una respuesta bien definida al estrés oxidante, que incluye sistemas enzimáticos y no enzimáticos y está regulada por los factores de transcripción Yap1, Skn7, Msn2 y Msn4. En esta revisión, describimos los elementos de la respuesta de C. glabrata a dicho estrés, cómo se regula y cómo C. glabrata interacciona con el huésped.Este artículo forma parte de una serie de estudios presentados en el «V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi» (Oaxaca, México, 2012) (AU)


Asunto(s)
Humanos , Masculino , Femenino , Candida glabrata/aislamiento & purificación , Candida glabrata/patogenicidad , Estrés Oxidativo/genética , Estrés Oxidativo/inmunología , Estrés Oxidativo/fisiología , Glutatión/análisis , Glutatión , Virulencia , Virulencia/inmunología , Candida glabrata , Candida glabrata/inmunología , Candida glabrata/metabolismo , Noxas/análisis , Noxas/inmunología , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA