Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 240(4): 1574-1586, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37334569

RESUMEN

Strong paleoclimatic change and few Late Quaternary megafauna extinctions make mainland Africa unique among continents. Here, we hypothesize that, compared with elsewhere, these conditions created the ecological opportunity for the macroevolution and geographic distribution of large fruits. We assembled global phylogenetic, distribution and fruit size data for palms (Arecaceae), a pantropical, vertebrate-dispersed family with > 2600 species, and integrated these with data on extinction-driven body size reduction in mammalian frugivore assemblages since the Late Quaternary. We applied evolutionary trait, linear and null models to identify the selective pressures that have shaped fruit sizes. We show that African palm lineages have evolved towards larger fruit sizes and exhibited faster trait evolutionary rates than lineages elsewhere. Furthermore, the global distribution of the largest palm fruits across species assemblages was explained by occurrence in Africa, especially under low canopies, and extant megafauna, but not by mammalian downsizing. These patterns strongly deviated from expectations under a null model of stochastic (Brownian motion) evolution. Our results suggest that Africa provided a distinct evolutionary arena for palm fruit size evolution. We argue that megafaunal abundance and the expansion of savanna habitat since the Miocene provided selective advantages for the persistence of African plants with large fruits.


Asunto(s)
Arecaceae , Frutas , Animales , Frutas/genética , Filogenia , Mamíferos , Vertebrados , África
2.
Mol Phylogenet Evol ; 161: 107163, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33831546

RESUMEN

Atlantic Forest Inselbergs (AFI) and Campos Rupestres (CR) are mountains and highlands of eastern South America, relatively poorly studied and highly threatened, which display extraordinary levels of plant endemism and richness. In spite of their geographical and environmental differences, the origin of the flora of CR and AFI are likely linked to each other, because several plant clades are distributed across both ecosystems. In addition to these studies, little has been investigated about the historical biogeographical connections between AFI and CR and most evolutionary studies are restricted to CR. Barbacenia (Velloziaceae) is widely spread and nearly endemic to the AFI and CR outcrops and thus represent an ideal system to study the biogeographical connections between CR and AFI. Besides, given the remarkable diversity of Barbacenia in CR compared to AFI, it appears that different factors were important drivers in the diversification of Barbacenia lineages, likely leading to different patterns of morphological diversification. Here, we integrate phylogenetic, biogeographic and morphological approaches to: (i) address whether AFI species of Barbacenia are monophyletic and thus a single colonization of AFI can be inferred; (ii) understand the timing and geographical origin of CR and AFI clades; (iii) compare morphological diversity between Barbacenia from AFI and CR under the hypothesis that these two systems have experienced similar levels of morphological diversification during their evolutionary history. To this end, we presented a phylogeny inferred using plastid (atpB-rbcL, trnH-psbA and trnL-trnF) and nuclear (ITS) markers and a complete sampling of AFI Barbacenia, estimated divergence times, reconstructed the ancestral areas of Barbacenia clades and compared their morphological diversity based on a dataset of 16 characters. Our results provided evidence for a diversification of Barbacenia from the Middle Miocene to Pleistocene, as suggested in previous studies. We suggest that stepping-stone dispersal across mountaintops in interplay with paleovegetation dynamics during the global Miocene cooling and Pleistocene climatic oscillations may played an important role in the range expansion of modern AFI Barbacenia lineages. Finally, our results also showed a significant differences in morphological diversity between AFI and CR clades, suggesting a long-term morphological stasis in AFI species.


Asunto(s)
Evolución Biológica , Ecosistema , Magnoliopsida/anatomía & histología , Magnoliopsida/clasificación , Filogenia , Filogeografía
3.
Ecology ; 100(2): e02541, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30707454

RESUMEN

Epiphytes are hyper-diverse and one of the frequently undervalued life forms in plant surveys and biodiversity inventories. Epiphytes of the Atlantic Forest, one of the most endangered ecosystems in the world, have high endemism and radiated recently in the Pliocene. We aimed to (1) compile an extensive Atlantic Forest data set on vascular, non-vascular plants (including hemiepiphytes), and lichen epiphyte species occurrence and abundance; (2) describe the epiphyte distribution in the Atlantic Forest, in order to indicate future sampling efforts. Our work presents the first epiphyte data set with information on abundance and occurrence of epiphyte phorophyte species. All data compiled here come from three main sources provided by the authors: published sources (comprising peer-reviewed articles, books, and theses), unpublished data, and herbarium data. We compiled a data set composed of 2,095 species, from 89,270 holo/hemiepiphyte records, in the Atlantic Forest of Brazil, Argentina, Paraguay, and Uruguay, recorded from 1824 to early 2018. Most of the records were from qualitative data (occurrence only, 88%), well distributed throughout the Atlantic Forest. For quantitative records, the most common sampling method was individual trees (71%), followed by plot sampling (19%), and transect sampling (10%). Angiosperms (81%) were the most frequently registered group, and Bromeliaceae and Orchidaceae were the families with the greatest number of records (27,272 and 21,945, respectively). Ferns and Lycophytes presented fewer records than Angiosperms, and Polypodiaceae were the most recorded family, and more concentrated in the Southern and Southeastern regions. Data on non-vascular plants and lichens were scarce, with a few disjunct records concentrated in the Northeastern region of the Atlantic Forest. For all non-vascular plant records, Lejeuneaceae, a family of liverworts, was the most recorded family. We hope that our effort to organize scattered epiphyte data help advance the knowledge of epiphyte ecology, as well as our understanding of macroecological and biogeographical patterns in the Atlantic Forest. No copyright restrictions are associated with the data set. Please cite this Ecology Data Paper if the data are used in publication and teaching events.

4.
PeerJ ; 8: e9916, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33062422

RESUMEN

Species occurrence records provide the basis for many biodiversity studies. They derive from georeferenced specimens deposited in natural history collections and visual observations, such as those obtained through various mobile applications. Given the rapid increase in availability of such data, the control of quality and accuracy constitutes a particular concern. Automatic filtering is a scalable and reproducible means to identify potentially problematic records and tailor datasets from public databases such as the Global Biodiversity Information Facility (GBIF; http://www.gbif.org), for biodiversity analyses. However, it is unclear how much data may be lost by filtering, whether the same filters should be applied across all taxonomic groups, and what the effect of filtering is on common downstream analyses. Here, we evaluate the effect of 13 recently proposed filters on the inference of species richness patterns and automated conservation assessments for 18 Neotropical taxa, including terrestrial and marine animals, fungi, and plants downloaded from GBIF. We find that a total of 44.3% of the records are potentially problematic, with large variation across taxonomic groups (25-90%). A small fraction of records was identified as erroneous in the strict sense (4.2%), and a much larger proportion as unfit for most downstream analyses (41.7%). Filters of duplicated information, collection year, and basis of record, as well as coordinates in urban areas, or for terrestrial taxa in the sea or marine taxa on land, have the greatest effect. Automated filtering can help in identifying problematic records, but requires customization of which tests and thresholds should be applied to the taxonomic group and geographic area under focus. Our results stress the importance of thorough recording and exploration of the meta-data associated with species records for biodiversity research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA