Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Anim Ecol ; 93(1): 57-70, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37975479

RESUMEN

The island species-area relationship (ISAR) describes how species richness increases with increasing area of a given island or island-like habitat, such as freshwater lakes. While the ISAR is one of the most common phenomena observed in ecology, there is variation in both the form of the relationship and its underlying mechanisms. We compiled a global data set of benthic macroinvertebrates from 524 shallow freshwater lakes, ranging from 1 to 293,300 ha in area. We used individual-based rarefaction to determine the degree to which ISAR was influenced by mechanisms other than passive sampling (larger islands passively sample more individuals from the regional pool and, therefore, have more species than smaller islands), which would bias results away from expected relationships between rarefied species richness (and other measures that capture relative abundances) and lake area. We also examined how climate may alter the shape of the ISARs. We found that both rarefied species richness (the number of species standardized by area or number of individuals) and a measure of evenness emphasizing common species exhibit shallow slopes in relationships with lake area, suggesting that the expected ISARs in these lakes most likely result from passive sampling. While there was considerable variation among ISARs across the investigated lakes, we found an overall positive rarefied ISAR for lakes in warm (i.e. tropical/subtropical) regions (n = 195), and in contrast, an overall negative rarefied ISAR in cool (i.e. north temperate) lakes (n = 329). This suggested that mechanisms beyond passive sampling (e.g. colonization-extinction dynamics and/or heterogeneity) were more likely to operate in warm lakes. One possible reason for this difference is that the area-dependent intensity of fish predation, which can lead to flatter ISARs, is weaker in warmer relative to cooler lakes. Our study illustrates the importance of understanding both the pattern and potential processes underlying the ISARs of freshwater lakes in different climatic regions. Furthermore, it provides a baseline for understanding how further changes to the ecosystem (i.e. in lake area or climate) might influence biodiversity patterns.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Lagos , Peces , Ecología
2.
Environ Res ; 243: 117872, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38086502

RESUMEN

Eutrophication impacts freshwater ecosystems and biodiversity across the world. While temporal monitoring has shown changes in the nutrient inputs in many areas, how spatial and temporal beta diversity change along the eutrophication gradient under a changing context remains unclear. In this regard, analyses based on time series spanning multiple years are particularly scarce. We sampled benthic macroinvertebrates in 32 sites across three lake habitat types (MACROPHYTE, OPEN WATER, PHYTOPLANKTON) along the eutrophication gradient of Lake Taihu in four seasons from 2007 to 2019. Our purpose was to identify the relative contributions of spatial and temporal dissimilarity (i.e., inter-annual dissimilarity and seasonal dissimilarity) to overall benthic biodiversity. We also examined spatio-temporal patterns in community assembly mechanisms and how associated variation in benthic macroinvertebrate communities responded to nutrient indicators. Results showed that eutrophication caused macroinvertebrate community homogenization both along spatial and temporal gradients. Though spatial variability dominated the variation of species richness, abundance and community dissimilarity, seasons within years dissimilarity, inter-annual dissimilarity and seasonal dissimilarity were much more sensitive to eutrophication. Moreover, eutrophication inhibited a strong environmental control in benthic macroinvertebrate community assembly, including a dominant role of deterministic process in the spatial variation of macroinvertebrate communities and transition from stochastic to deterministic process in the temporal assembly of macroinvertebrate communities along the eutrophication gradient. In addition, some sites in PHYTOPLANKTON habitats showed similar spatial dissimilarity and spatial SES as sites in MACROPHYTE habitats, and the decreased spatial dissimilarity of three habitats implying that lake ecosystem recovery projects have achieved their goal at least to a certain degree.


Asunto(s)
Ecosistema , Lagos , Monitoreo del Ambiente , Biodiversidad , Fitoplancton , Eutrofización , China
3.
Environ Res ; 214(Pt 3): 114118, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35985492

RESUMEN

The eastern route of the South-to-North Water Diversion Project (ER-SNWDP) is a major human health project designed to alleviate the water scarcity in the Beijing-Tianjin-Hebei region in China. Impounded lake water security is directly related to the water diversion project effectiveness. At present, there is not a thorough understanding of the sediment heavy metals in Lake Hongze, the largest impounded lake of the ER-SNWDP. Consequently, this study reports a distribution analysis of Cu, Zn, Pb, Cr, Cd, As, Hg, and Ni in 101 sediment samples from Lake Hongze; we, utilized the enrichment factor, geoaccumulation index, and potential ecological risk index for the are to determine the ecological risk of heavy metals. The heavy metal source was examined with correlation analysis and principal component analysis-multiple linear regressions. The results showed that the average heavy metal content (Cu, Zn, Pb, Cr, Cd, As, Hg, Ni) were 0.03-1.57 times greater than the Jiangsu Province background values. Cd, As, and Hg were the main contributors to the Lake Hongze ecological risk. Spatially, the open water area was the most polluted among the four lake parts, and most of the flushing area had a low ecological risk. Chengzi bay and the western lake area have similar risk profiles, but are lower than the open water area risk. Source analysis showed that nonpoint-source agricultural pollution and industrial production were important pollution sources, while a considerable portion of the heavy metal content came from atmospheric deposition and natural sources. This study identified the main contamination areas and revealed the possible sources of each heavy metal; as such, this study can serve as a reference for the remediation and management of Lake Hongze to ensure the water safety of the ER-SNWDP.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes Químicos del Agua , Cadmio/análisis , China , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/análisis , Humanos , Lagos , Plomo/análisis , Mercurio/análisis , Metales Pesados/análisis , Medición de Riesgo , Agua/análisis , Contaminantes Químicos del Agua/análisis
4.
J Environ Manage ; 260: 109923, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32090794

RESUMEN

Eutrophication and associated algal blooms are principal environmental challenges confronting lakes in China, particularly in the Eastern Plains ecoregion. The empirical relationships between nutrient and chlorophyll a (Chla) level and Secchi depth (SD) are widely used as a theoretical basis for lake eutrophication management. However, these relationships are largely influenced by hydromorphological conditions and biogeochemical processes. Thus, there is a need to establish a type-specific understanding of these interactions. In the current study, lakes in the Chinese Eastern Plains ecoregion were subdivided into four lake types according to water retention time (LRT), water depth, and water area. Regression analyses indicated that the impacts of nutrient (total nitrogen, TN; total phosphorus, TP) concentrations on summer Chla were significantly reduced in lakes with high inorganic suspended solids (ISS) (P<0.05). Meanwhile, the decrease in SD in these lakes were found to relate mainly to non-algal turbidity. In lakes characterized by both short LRT and high ISS content, the Chla exhibited limited response to nutrients. In contrast, in lakes with low ISS content and long LRT, the observed slopes of both Chla=f(TP) and SD=f(Chla) were significantly steeper (P < 0.05). The factors limiting summer algal growth and the development of type-specific nutrient criteria (TN and TP) of all four investigated lake types in the Eastern Plains ecoregion are discussed in the context of specific nutrients. Based on these results, we establish type-specific eutrophication assessment equations of TN, TP, Chla, and SD in our study lakes. Our results may provide essential information for achieving the cost-effective eutrophication management of lakes both in the Eastern Plains ecoregion and elsewhere with similar climatic and hydromorphological conditions. Moreover, we believe that the subdivision of lakes to allow type-specific eutrophication management framework may prove valuable for other ecoregions where the interpretation of empirical nutrient-Chla and SD relationships suffer from similar serious limitations.


Asunto(s)
Clorofila A , Lagos , China , Clorofila , Monitoreo del Ambiente , Eutrofización , Nitrógeno , Nutrientes , Fósforo
5.
Environ Monit Assess ; 192(12): 760, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184779

RESUMEN

Understanding the factors that control biodiversity in rivers is challenging due to the variety of potential sources, linkages, and processes. This research assesses the effects of land use on phytoplankton communities across water quality gradients. By employing abiotic and biotic datasets of 149 catchments in Lake Chaohu basin, China, and a structural equation model (SEM), the direct and indirect effects of land use and water quality on phytoplankton dynamic were analyzed. Both land use and water quality had statistically significant direct effects on phytoplankton community attribute and diversity, although these effects differed among these indices. For instance, farmland was found to positively affect the abundance and diversity indices, while total nitrogen (TN) had significant positive effects on species richness and abundance. Importantly, the average indirect effects strengthened the effects of land use (e.g., built-up land and woodland) up to 82.4% mainly through nutrients, while the average indirect effects weakened the effects of land use (e.g., farmland) by as much as 49.9% mainly due to nutrients, thus indicating the prevailing role of the effects of land use on phytoplankton based on nutrient concentrations. The results suggest that nutrients can regulate the effect of land use on phytoplankton community attribute and diversity indices. This study highlights the advantages of using an SEM because the potential linkages for phytoplankton diversities are more likely to be identified with this method than with a classical linear regression model. Therefore, SEM has wide application prospects in the field of the conservation of biodiversity in freshwater rivers.


Asunto(s)
Fitoplancton , Calidad del Agua , Agricultura , China , Monitoreo del Ambiente , Ríos
6.
Environ Monit Assess ; 191(4): 201, 2019 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-30826892

RESUMEN

Both environmental and geographic factors interact to structure the metacommunities in river networks, but the importance of these factors is difficult to distinguish. We used six aquatic taxonomic groups to test the relationship between environmental and geographic factors and their effect on species turnover patterns in an agriculturally dominated river (Chaohu Lake Basin, China). The relationships between three dissimilarity indices and geographic distance were assessed using the Mantel test while considering the differences in environmental factors between sites. Then, we employed a variation partitioning method to distinguish the isolated and combined effects of environmental and geographic distance on species turnover. There were significant relationships between environmental distance and species turnover in all groups. All organisms except periphytic diatoms were significantly correlated with two geographic (Euclidean and network) distances when the Chao dissimilarity index was considered. The results suggest that the strength of the correlations changed with environmental and geographic distances and with the aquatic community. The communities displayed more complex relationships with the distance measures when different dissimilarity (Jaccard, Chao, and Bray-Curtis dissimilarity) indices were considered. Nevertheless, aquatic communities are strongly influenced by both environmental and geographic distance, and the former has a stronger effect than the latter.


Asunto(s)
Biodiversidad , Diatomeas/clasificación , Monitoreo del Ambiente , Peces/clasificación , Fitoplancton/clasificación , Rotíferos/clasificación , Zooplancton/clasificación , Agricultura , Animales , China , Diatomeas/aislamiento & purificación , Geografía , Lagos , Fitoplancton/aislamiento & purificación , Ríos , Rotíferos/aislamiento & purificación , Zooplancton/aislamiento & purificación
7.
Ecotoxicol Environ Saf ; 142: 117-128, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28395204

RESUMEN

The residues of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in surface sediments from Taihu Lake basin (THB) and Taihu Lake body (THL) were investigated. Higher concentrations of both PAHs and OCPs were observed for THB than THL. The concentrations of PAHs ranged from 12.1 to 2281.1ngg-1 dw for THB and from 11.4 to 209.9ngg-1 dw for THL, while OCPs ranged from 16.3 to 96.9ngg-1 dw and from 16.8 to 61.9ngg-1 dw for THB and THL, respectively. Spatial distribution of PAHs and OCPs showed a high correspondence with the land use of THB and surrounding anthropogenic activity. Additionally, the Kriging interpolation plots demonstrated that the major upper reaches were more polluted than the lower reaches, indicating the transport of pollutants with the water flow direction. The organic matter contents were responsible for OCP distribution other than PAHs due to the biodegradation capacity difference of chemicals. Similar compositions of pollutants were observed with 3- and 4-ringed PAHs accounting for a total of 78.3% for THB and 85.8% for THL, respectively. HCHs and DDTs were predominant OCPs, which contributed to 31.8% and 21.7% for THB, and 33.6% and 21.9% for THL, respectively. The isomeric and parent substance/metabolite ratios implied fresh inputs of DDTs and chlordanes, while HCHs and endosulfans were mainly from old usage. PAH source identification performed by diagnostic ratios demonstrated the mixed sources of petrogenic and pyrogenic ones dominated by grass, wood and coal combustion. Furthermore, the hazard quotient (HQ) based on the consensus-based sediment quality guidelines (SQGs) was used to evaluate the ecological risks of sediments. Although no frequently adverse effects were observed, potential ecological risks induced by Ant, BaA, γ-HCH, dieldrin, p,p'-DDT and chlordanes should also be paid attention to considering the continuous inputs of such pollutants.


Asunto(s)
Sedimentos Geológicos/química , Hidrocarburos Clorados/análisis , Lagos/química , Plaguicidas/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , China , Monitoreo del Ambiente , Análisis Espacial
8.
Ecotoxicol Environ Saf ; 104: 323-31, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24732028

RESUMEN

The residual levels, tissue distribution and human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in edible fishes, bighead carp (Aristichthys nobilis) and silver carp (Hypophthalmichthys molitrix), from the largest freshwater lake in China, Poyang Lake, were studied. PAH concentrations ranged from 105 to 513ng g(-1)ww and from 53.9 to 401ng g(-1)ww in different tissues of bighead carp and silver carp, respectively. Low molecular weight (LMW) PAHs were the predominant compounds, suggesting the gill-water transfer might be the major exposure route for PAHs in the studied fish species. Tissue distribution indicated that the hepatobiliary system accumulated higher concentrations of PAHs than the extrahepatic tissues with bile being the most predominant tissue for both species. Composition analysis demonstrated that PAHs were from the combined petrogenic and pyrogenic origin, and the gasoline combustion might be the main source. A preliminary evaluation of human health risk using benzo[a]pyrene (BaP) potency equivalent concentration (PEC) as well as the incremental lifetime cancer risk (ILCR) indicated that PAHs in fish would induce potential carcinogenic effects.


Asunto(s)
Carpas , Monitoreo del Ambiente , Contaminación de Alimentos , Lagos/química , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Bilis/química , China , Branquias/química , Humanos , Hígado/química , Músculo Esquelético/química , Hidrocarburos Policíclicos Aromáticos/química , Medición de Riesgo , Piel/química
9.
Ecol Evol ; 14(5): e11466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38803609

RESUMEN

Floodplain wetlands are critical to the conservation of aquatic biodiversity and the ecological integrity of river networks. However, increasing drought severity and frequency caused by climate change can reduce floodplain wetlands' resistance and recovery capacities. Mollusks, which are common inhabitants of floodplain wetlands, are among the most vulnerable species to drought. However, the response of mollusk communities to drought has received little attention. Here, we investigated how the structure and functional traits of mollusk communities changed in response to varying hydrological conditions, including a flash drought (FD) in the Poyang Lake floodplain wetland. Our findings showed that FD strongly reduced mollusk abundance and biomass, decreased both α- and ß-diversity, and resulted in the extinction of bivalve taxa. A sudden shift in community trait structure was discovered due to the extinction of many species. These traits, which include deposit feeding, crawling, scraping, aerial respiration, and dormancy, help mollusks survive in FD and tolerate completely dry out of their Changhuchi habitat. Finally, we discovered that dissolved oxygen was an important controlling variable for mollusk communities during drought. Our findings provide a scientific basis for the management and conservation of floodplain wetland biodiversity in the context of increasing drought frequency and intensity.

10.
Sci Total Environ ; 945: 174045, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38908590

RESUMEN

Understanding diversity patterns and underlying drivers is one of the central topics in the fields of biogeography and community ecology. Aquatic macroinvertebrates are widely distributed in various wetlands and play vital ecological roles. Previous studies mainly have focused on macroinvertebrate diversity in a single type of wetland. Our understanding of the differences in diversity patterns and underlying drivers between different wetland types remains limited. Here, we compared diversity patterns and community assembly of floodplain wetlands (FWs) and non-floodplain wetlands (NWs) in the Sanjiang Plain, Northeast China. We found that the taxonomic richness and abundance were higher in NWs than those in FWs. Nineteen taxa were identified as habitat specialists in the NWs, whereas only four taxa were designated as habitat specialists in the FWs. In addition, the FW and NW assemblages exhibited contrasting compositions. Spatial and environmental variables explained the largest variations in the macroinvertebrate assemblages of NWs and FWs, respectively. Normalised stochasticity ratios and Sloan neutral models confirmed that the macroinvertebrate community assembly of both wetland types was driven largely by stochastic processes. Stochastic processes were more prominent in shaping macroinvertebrate communities of FWs, whereas a stronger dispersal limitation was detected in NWs. Our results revealed contrasting diversity patterns and assembly mechanisms of macroinvertebrate communities in FWs and NWs. We underscore the importance of flood disturbance in shaping wetland ecosystems in the Sanjiang Plain and highlight that conservation and restoration actions cover different types of wetland habitats.


Asunto(s)
Biodiversidad , Invertebrados , Humedales , Animales , Invertebrados/fisiología , China , Organismos Acuáticos/fisiología , Monitoreo del Ambiente , Ecosistema , Inundaciones
11.
J Hazard Mater ; 473: 134511, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38772103

RESUMEN

Phthalate esters (PAEs) are widely utilized and can accumulate in lacustrine ecosystems, posing significant ecological and human health hazards. Most studies on PAEs focus on individual lakes, lacking a comprehensive and systematic perspective. In response, we have focused our investigation on characteristic lakes situated along the Eastern Route of the South-to-north Water Diversion Project (SNWDP-ER) in China. We have detected 16 PAE compounds in the impounded lakes of the SNWDP-ER by collecting surface water samples using solid-phase extraction followed by gas chromatography analysis. The concentration of PAEs were found to between 0.80 to 12.92 µg L-1. Among them, Bis (2-ethylhexyl) phthalate (DEHP) was the most prevalent, with mean concentration of 1.56 ±â€¯0.62 µg L-1 (48.44%), followed by Diisobutyl phthalate (DIBP), 0.64 ±â€¯1.40 µg L-1 (19.87%). Spatial distribution showed an increasing trend in the direction of water flow. Retention of DEHP and DIBP has led to increased environmental risks. DEHP, Dimethyl phthalate (DMP) etc. determined by agriculture and human activities. Additionally, Dibutyl phthalate (DBP) and DIBP mainly related to the use of agricultural products. To mitigate the PAEs risk, focusing on integrated management of the lakes, along with the implementation of stringent regulations to control the use of plasticizes in products.

12.
Environ Sci Pollut Res Int ; 31(19): 28198-28209, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538996

RESUMEN

Freshwater lakes play a vital role in global hydrological and biogeochemical cycles, serving various functions and maintaining ecological balance. However, freshwater resources are more vulnerable to deterioration due to multiple stressors. Gaoyou Lake is one of the impounded lakes of the Eastern route of South-to-North Water Diversion Project in China, and as an important source of drinking water, the lake has been routinely monitored. Long-term monitoring of water quality in Gaoyou Lake showed that concentrations of nutrients and chlorophyll a as well as trophic state in the water column increased while water transparency decreased, indicating that the water quality has declined during the last 12 years. Specifically, there was a notable and statistically significant increase in chlorophyll a concentrations, averaging an annual rate of 9.9%. Despite a slight decline in trophic level index until 2014, subsequent years saw an upward trend, ranging from 50.7 to 56.4 and indicating a light eutrophic state. Spatially, the western area displayed higher nutrient and chlorophyll a concentrations. Changes in hydro-meteorological variables and nutrients from inflowing rivers were the main factors correlated with water quality in Gaoyou Lake. Thus, pollution source apportionment and management within Huaihe River basin should be considered to reduce the external loadings of nutrients in order to improve and sustain long-term water quality.


Asunto(s)
Clorofila A , Monitoreo del Ambiente , Lagos , Nutrientes , Calidad del Agua , Lagos/química , China , Nutrientes/análisis , Clorofila/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis
13.
Water Res ; 262: 122109, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39096537

RESUMEN

The Eastern Route of the South-to-North Water Diversion Project (ER-SNWDP) represents a crucial initiative aimed at alleviating water scarcity in China's northern region. Understanding the dynamics governing the composition and assembly processes of micro-eukaryotic communities within the canal during different water diversion periods holds paramount significance for the effective management of the ER-SNWDP. Our study systematically tracks the dynamics of the micro-eukaryotic community and its assembly processes along the 1045.4 km of canals and four impounded lakes, totaling 3455 km2, constituting the ER-SNWDP during a complete water diversion cycle, utilizing high-throughput sequencing, bioinformatics tools, and null modeling algorithms. The primary objectives of this study are to elucidate the spatial-temporal succession of micro-eukaryotic communities as the water diversion progresses, to delineate the relative importance of deterministic and stochastic processes in community assembly, and to identify the pivotal factors driving changes in micro-eukaryotic communities. Our findings indicate notable variations in the composition and diversity of micro-eukaryotic communities within the ER-SNWDP across different water diversion periods and geographic locations (P < 0.05). This variation is influenced by a confluence of temporal and environmental factors, with limited impacts from water diversion. In essence, the assembly of micro-eukaryotic communities within the ER-SNWDP primarily stemmed from heterogeneous selection driven by deterministic processes. Water diversion exhibited a tendency to decrease community beta diversity while augmenting the influence of stochastic processes in community assembly, albeit this effect attenuated over time. Furthermore, our analysis identified several pivotal environmental parameters, notably including nitrite-nitrogen, nitrate-nitrogen, orthophosphate, and water temperature, as exerting significant effects on micro-eukaryotic communities across different water diversion periods. Collectively, our study furnishes the inaugural comprehensive exploration of the dynamics, assembly processes, and influencing factors governing micro-eukaryotic communities within the ER-SNWDP, thus furnishing indispensable insights to inform the water quality management of this important project.


Asunto(s)
Lagos , China , Eucariontes , Abastecimiento de Agua
14.
Artículo en Inglés | MEDLINE | ID: mdl-38837538

RESUMEN

Habitat plays a crucial role in shaping the macroinvertebrate community structure in large shallow lakes. In the pursuit of improving the health of freshwater ecosystems, it is imperative to consider their habitat characteristics. To evaluate the impact of habitat variations on lake ecological health, we developed a macroinvertebrate-based multimetric index (MMI) for both the pelagic and littoral zones of Lake Hongze. Additionally, we employed structural equation models to explore the influence of utilization or phytoplankton biomass on ecological health. Historical data served as reference conditions for the pelagic. Seven key attributes were selected for the pelagic MMI, that is, Biological Monitoring Working Party (BMWP), the percentage of Mollusca taxa, the percentage of filter-collector taxa, the percentage of predator taxa, the percentage of gather-collector taxa, and the percentage of sensitive taxa and functional dispersion. The least minimally disturbed conditions and the best attainable conditions were used to develop the littoral. Four key metrics, that is, the percentage of scraper abundance, Mollusca taxa, Biological Pollution Index, and BMWP, were integrated into the littoral MMI. The assessment based on MMI revealed a "poor" health status for the pelagic zone and a "fair" health status for the littoral zone. These findings underscore the high applicability and efficacy of MMIs in assessing and monitoring ecological health in Lake Hongze. Notably, functional feeding groups exhibited heightened sensitivity to disturbance in both zones. Moreover, sediment organic matter strongly influenced the pelagic ecological health, while chlorophyll a and transparency emerged as primary factors influencing the littoral zone, attributable to varying littoral zone utilization. Integr Environ Assess Manag 2024;00:1-11. © 2024 SETAC.

15.
Sci Total Environ ; 933: 173036, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38740215

RESUMEN

The restoration of lakes and their buffer zones is crucial for understanding the intricate interplay between human activities and natural ecosystems resulting from the implementation of environmental policies. In this study, we investigated the ecological restoration of shallow lakes and buffer zones in the Yangtze-Huaihe River Basin, specifically focusing on the removal of polder and aquaculture enclosure areas within the lakes. By examining data from eight shallow lakes and their corresponding buffer zones, encompassing lake morphology, water quality parameters, and land use/land cover (LULC) data spanning from 2008 to 2022, which shed light on the complex relationships involved. During the process of restoring polder and aquaculture enclosure areas, we observed a general decrease in the extent of polders and aquaculture enclosures within the lakes. Notably, the removal of aquaculture enclosures had a more pronounced effect (reduction rate of 83.37 %) compared to the withdrawal of polders (reduction rate of 48.76 %). Linear regression analysis revealed a significant decrease in the concentrations of seven water quality parameters, including COD, CODMn, TN, TP, NH3-N, Chl-a, and F, while pH and DO factors exhibit a distinct increasing trend. The results of redundancy analysis and Pearson correlation analysis demonstrated significant correlations between the area of polders and aquaculture enclosures and the changes in lake water quality. Encouragingly, the withdrawal of polders and the removal of aquaculture enclosures had a positive impact on the lake water quality improvement. In contrast, the LULC in the buffer zones of the lakes experienced a gradual decline owing to land degradation, resulting in a reduction in ecosystem service value (ESV). These results offer valuable support for policymakers in their endeavors to restore lake water quality, mitigate the degradation of buffer zones land, and promote the sustainable development of land and water resources.

16.
Environ Sci Ecotechnol ; 21: 100434, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38989258

RESUMEN

Lake ecosystems confront escalating challenges to their stability and resilience, most intuitively leading to biodiversity loss, necessitating effective preservation strategies to safeguard aquatic environments. However, the complexity of ecological processes governing lake biodiversity under multi-stressor interactions remains an ongoing concern, primarily due to insufficient long-term bioindicator data, particularly concerning macroinvertebrate biodiversity. Here we utilize a unique, continuous, and in situ biomonitoring dataset spanning from 2011 to 2019 to investigate the spatio-temporal variation of macroinvertebrate communities. We assess the impact of four crucial environmental parameters on Lake Dongting and Lake Taihu, i.e., water quality, hydrology, climate change, and land use. These two systems are representative of lakes with Yangtze-connected and disconnected subtropical floodplains in China. We find an alarming trend of declining taxonomic and functional diversities among macroinvertebrate communities despite improvements in water quality. Primary contributing factors to this decline include persistent anthropogenic pressures, particularly alterations in human land use around the lakes, including intensified nutrient loads and reduced habitat heterogeneity. Notably, river-lake connectivity is pivotal in shaping differential responses to multiple stressors. Our results highlight a strong correlation between biodiversity alterations and land use within a 2-5 km radius and 0.05-2.5 km from the shorelines of Lakes Dongting and Taihu, respectively. These findings highlight the importance of implementing land buffer zones with specific spatial scales to enhance taxonomic and functional diversity, securing essential ecosystem services and enhancing the resilience of crucial lake ecosystems.

17.
Front Plant Sci ; 15: 1424300, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045598

RESUMEN

Globally, anthropogenic disturbance and climate change caused a rapid decline of submerged macrophytes in lake ecosystems. Potamogeton crispus (P. crispus), a species that germinates in winter, explosively expanded throughout many Chinese lakes, yet the underlying mechanism remained unclear. Here, this study examined the long-term changes in the distribution patterns of P. crispus in Lake Gaoyou by combining remote sensing images and hydrometeorological data from 1984 to 2022 and water quality data from 2009 to 2022. It aims to unravel the relationships between the distribution patterns of P. crispus and hydrometeorological and water quality factors. The results showed that the area of P. crispus in Lake Gaoyou showed a slight increase from 1984 to 2009, a marked increase from 2010 to 2019, followed by a decline after 2020. Spatially, P. crispus was primarily distributed in the western and northern parts of Lake Gaoyou, with less distribution in the central and southeastern parts of the lake. Wind speed (WS), temperature (Temp), water level (WL), ammonia nitrogen (NH3-N), and Secchi depth (SD) were identified as the key factors regulating the variation in the P. crispus area in Lake Gaoyou. We found that the P. crispus area showed an increasing trend with increasing Temp, WL, and SD and decreasing WS and NH3-N. The influence of environmental factors on the area of P. crispus in Lake Gaoyou varied among seasons. The results indicated that hydrometeorology (WS, Temp, and WL) may override water quality (NH3-N and SD) in driving the succession of P. crispus distribution. The findings of this study offer valuable insights into the recent widespread expansion of P. crispus in shallow lakes across Eastern China.

18.
Ecol Evol ; 13(1): e9751, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36699570

RESUMEN

Biodiversity, which strengthens ecosystem stability, ecosystem function, and ecosystem services, is threatened by anthropogenic perturbation and climate change worldwide. However, despite the study of the role of biodiversity in multiple facets of freshwater ecosystems, the linkages between macroinvertebrates diversity and ecosystem functioning have not yet been well-assessed in eutrophication gradients of lowland river-floodplain systems. In this study, we have examined the relationship between macroinvertebrates diversity (species diversity, functional diversity, phylogenetic diversity) and macroinvertebrates biomass across the three typically featured eutrophication gradients: "MACROPHYTE," "TRANSITION," and "PHYTOPLANKTON," of floodplain lakes in the middle and lower reaches of the Yangtze River (China). Our results suggest that macroinvertebrates diversity in three different lacustrine conditions, biomass, and the relationship between diversity and biomass varied along eutrophication gradients. Functional richness and variance (divergence in taxon community) were the two important macroinvertebrate diversity indices, which accounted for the largest amount of variation in the biomass (63% in PHYTOPLANKTON lakes and 57% in MACROPHYTE lakes, respectively). We also found that the macrophyte coverage is more important than the relative abundance in maintaining the macroinvertebrates diversity and biomass in lowland Yangtze floodplain lake systems, while the relative abundance of macrophyte would change the BEF relationship. Our results demonstrate the functional performance of Yangtze River lakes, which would change with increased nutrient loading and decreased macrophyte coverage and would highlight the significance of the restoration of macrophytes to reduce nutrient loads.

19.
Biology (Basel) ; 12(9)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37759646

RESUMEN

In eutrophic lakes, even if external loading is controlled, internal nutrient loading delays the recovery of lake eutrophication. When the input of external pollutants is reduced, the dissolved oxygen environment at the sediment interface improves in a season without algal blooms. As an important part of lake ecosystems, macroinvertebrates are sensitive to hypoxia caused by eutrophication; however, how this change affects macroinvertebrates is still unknown. In this study, we analysed the monitoring data of northern Lake Taihu from 2007 to 2019. After 2007, the external loading of Lake Taihu was relatively stable, but eutrophication began to intensify after 2013, and the nutrients in the sediments also began to decline, which was related to the efficient use of nutrients by algal blooms. The community structure and population density of macroinvertebrates showed different responses in different stages. In particular, the density of oligochaetes and the Shannon-Wiener index showed significant differences in their response to different stages, and their sensitivity to eutrophication was significantly reduced. Under eutrophication conditions dominated by internal loading, frequent hypoxia occurs at the sediment interface only when an algal bloom erupts. When there is no bloom, the probability of sediment hypoxia is significantly reduced under the disturbance of wind. Our results indicate that the current method for evaluating lake eutrophication based on oligochaetes and the Shannon-Wiener diversity index may lose its sensitivity.

20.
Sci Total Environ ; 867: 161538, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36640891

RESUMEN

The Taihu Lake ecosystem has been subjected to numerous anthropogenic stressors during the past decades, leading to substantial changes in nutrient dynamics and habitat quality. For instance, the northwestern lake bays receive large amounts of nutrient-rich wastewater and have frequently experienced algal blooms, while the eastern lake region is still dominated by submersed macrophytes. Such changes in environmental characteristics can greatly impact benthic macroinvertebrate communities. We used a 15-year monitoring data series collected by the Taihu Laboratory for Lake Ecosystem Research to examine the spatial and temporal variations of the benthic invertebrate fauna and evaluate its status and trends. We found that three major communities could be distinguished based on taxonomic group composition and abundance, and these corresponded well with three lake habitat types: algal-dominated, macrophyte-dominated, and open-lake zone. An analysis of temporal trends showed major changes in the macroinvertebrates during the study period, largely driven by a lake-wide and significant decline in the abundance of pollution-tolerant taxa. The spatial and temporal variations of macroinvertebrate communities were mainly explained by nutrients (e.g., total nitrogen and ammonium concentrations) and habitat factors (e.g., sediment substrates and macrophyte biomass) as indicated by Random Forests regression, but the major drivers of macroinvertebrate density differed among the three lake zones at the temporal scale. Moreover, our findings suggest that benthic invertebrates were more sensitive to the improvement of the lake's environmental conditions than the pelagic community was. This study provides insights into the responses of macroinvertebrates to ecological dynamics in lakes and highlights the importance of continued monitoring for tracking long-term changes.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Animales , Invertebrados/fisiología , Lagos/química , Nutrientes , Eutrofización , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA