RESUMEN
Mechanisms underlying the SARS-CoV-2-triggered hyperacute thrombo-inflammatory response that causes multi-organ damage in coronavirus disease 2019 (COVID-19) are poorly understood. Several lines of evidence implicate overactivation of complement. To delineate the involvement of complement in COVID-19, we prospectively studied 25 ICU-hospitalized patients for up to 21 days. Complement biomarkers in patient sera and healthy controls were quantified by enzyme-linked immunosorbent assays. Correlations with respiratory function and mortality were analyzed. Activation of complement via the classical/lectin pathways was variably increased. Strikingly, all patients had increased activation of the alternative pathway (AP) with elevated levels of activation fragments, Ba and Bb. This was associated with a reduction of the AP negative regulator, factor (F) H. Correspondingly, terminal pathway biomarkers of complement activation, C5a and sC5b-9, were significantly elevated in all COVID-19 patient sera. C5a and AP constituents Ba and Bb, were significantly associated with hypoxemia. Ba and FD at the time of ICU admission were strong independent predictors of mortality in the following 30 days. Levels of all complement activation markers were sustained throughout the patients' ICU stays, contrasting with the varying serum levels of IL-6, C-reactive protein, and ferritin. Severely ill COVID-19 patients have increased and persistent activation of complement, mediated strongly via the AP. Complement activation biomarkers may be valuable measures of severity of lung disease and the risk of mortality. Large-scale studies will reveal the relevance of these findings to thrombo-inflammation in acute and post-acute COVID-19.
Asunto(s)
COVID-19 , Biomarcadores , Activación de Complemento , Mortalidad Hospitalaria , Humanos , Hipoxia , SARS-CoV-2RESUMEN
We investigate the self-assembly dynamics of an imine-based pentafoil knot and related pentameric circular helicates, each derived from a common bis(formylpyridine)bipyridyl building block, iron(II) chloride, and either monoamines or a diamine. The mixing of circular helicates derived from different amines led to the complete exchange of the N-alkyl residues on the periphery of the metallo-supramolecular scaffolds over 4 days in DMSO at 60 °C. Under similar conditions, deuterium-labeled and nonlabeled building blocks showed full dialdehyde building block exchange over 13 days for open circular helicates but was much slower for the analogous closed-loop pentafoil knot (>60 days). Although both knots and open circular helicates self-assemble under thermodynamic control given sufficiently long reaction times, this is significantly longer than the time taken to afford the maximum product yield (2 days). Highly effective error correction occurs during the synthesis of imine-based pentafoil molecular knots and pentameric circular helicates despite, in practice, the systems not operating under full thermodynamic control.
RESUMEN
A molecular pentafoil knot and doubly and triply entwined [2]catenanes based on circular Fe(II) double helicate scaffolds bind halide anions in their central cavities through electrostatic and CH···X(-) hydrogen-bonding interactions. The binding is up to (3.6 ± 0.2) × 10(10) M(-1) in acetonitrile (for pentafoil knot [2·Cl](PF6)9), making these topologically complex host molecules some of the strongest synthetic noncovalent binders of halide anions measured to date, comparable in chloride ion affinity to silver salts.
RESUMEN
This tutorial review outlines the different template strategies that chemists have employed to synthesise knotted molecular topologies. Metal ion coordination, hydrogen bonding and aromatic donor-acceptor interactions have all been used to direct the formation of well-defined crossing points for molecular strands. Advances in the methods used to covalently capture the interwoven structures are highlighted, including the active metal template strategy in which metal ions both organise crossing points and catalyse the bond forming reactions that close the loop to form the topologically complex product. Although most non-trivial knots prepared to date from small-molecule building blocks have been trefoil knots, the first pentafoil knot was recently synthesised. Possible future directions and strategies in this rapidly evolving area of chemistry are discussed.
RESUMEN
We report on multicomponent self-sorting to form open circular helicates of different sizes from a primary monoamine, Fe(II) ions, and dialdehyde ligand strands that differ in length and structure by only two oxygen atoms. The corresponding closed circular helicates that are formed from a diamine--a molecular Solomon link and a pentafoil knot--also self-sort, but up to two of the Solomon-link-forming ligand strands can be accommodated within the pentafoil knot structure and are either incorporated or omitted depending on the stage that the components are mixed.
RESUMEN
A [2]rotaxane was produced through the assembly of a picolinaldehyde, an amine, and a bipyridine macrocycle around a Cu(I) template by imine bond formation in close-to-quantitative yield. An analogous [3]rotaxane is obtained in excellent yield by replacing the amine with a diamine, thus showing the suitability of the system for the construction of higher order interlocked structures. The rotaxanes are formed within a few minutes simply through mixing the components in solution at room temperature and they can be isolated through removal of the solvent or precipitation.
RESUMEN
Age-related macular degeneration (AMD) is a chronic and progressive inflammatory disease of the retina characterized by photoceptor loss and significant central visual impairment due to either choroidal neovascularization or geographic atrophy. The pathophysiology of AMD is complex and multifactorial, driven by a combination of modifiable and non-modifiable risk factors, molecular mechanisms, and cellular processes that contribute to overall disease onset, severity, and progression. Unfortunately, due to the structural, cellular, and pathophysiologic complexity, therapeutic discovery is challenging. While purinergic signaling has been investigated for its role in the development and treatment of ocular pathologies including AMD, the potential crosstalk between known contributors to AMD, such as the complement cascade and inflammasome activation, and other biological systems, such as purinergic signaling, have not been fully characterized. In this review, we explore the interactions between purinergic signaling, ATP release, and known contributors to AMD pathogenesis including complement dysregulation and inflammasome activation. We begin by identifying what is known about purinergic receptors in cell populations of the outer retina and potential sources of extracellular ATP required to trigger purinergic receptor activation. Next, we examine evidence in the literature that the purinergic system accelerates AMD pathogenesis leading to apoptotic and pyroptotic cell death in retinal cells. To fully understand the potential role that purinergic signaling plays in AMD, more research is needed surrounding the expression, distribution, functions, and interactions of purinergic receptors within cells of the outer retina as well as potential crosstalk with other systems. By determining how these processes are affected in the context of purinergic signaling, it will improve our understanding of the mechanisms that drive AMD pathogenesis which is critical in developing treatment strategies that prevent or slow progression of the disease.
RESUMEN
More than a quarter of a century after the first metal template synthesis of a [2]catenane in Strasbourg, there now exists a plethora of strategies available for the construction of mechanically bonded and entwined molecular level structures. Catenanes, rotaxanes, knots and Borromean rings have all been successfully accessed by methods in which metal ions play a pivotal role. Originally metal ions were used solely for their coordination chemistry; acting either to gather and position the building blocks such that subsequent reactions generated the interlocked products or by being an integral part of the rings or "stoppers" of the interlocked assembly. Recently the role of the metal has evolved to encompass catalysis: the metal ions not only organize the building blocks in an entwined or threaded arrangement but also actively promote the reaction that covalently captures the interlocked structure. This Review outlines the diverse strategies that currently exist for forming mechanically bonded molecular structures with metal ions and details the tactics that the chemist can utilize for creating cross-over points, maximizing the yield of interlocked over non-interlocked products, and the reactions-of-choice for the covalent capture of threaded and entwined intermediates.
RESUMEN
Complement-mediated intravascular hemolysis occurs in canine immune-mediated hemolytic anemia (IMHA). Complement inhibitors might enhance treatment of this disease. Dimers of acetylsalicylic acid such as 5,5'-methylenebis(2-acetoxybenzoic acid) (DAS) have been reported to inhibit complement. This study aimed to characterize the pharmacokinetics and safety profile of a single 3 mg/kg IV dose of DAS in 6 healthy mixed-breed dogs. Serum concentrations of DAS and its primary metabolites were measured by liquid chromatography-tandem mass spectrometry at baseline and at 5, 10 and 30 min, and 1, 2, 4, 6, 8, 12, 18 and 24 h post-administration. Additional blood samples were collected 7 and 14 days after drug administration. Complete blood counts, serum chemistry panels, C-reactive protein measurements, coagulation testing and cytokine analyses were used for safety monitoring. Following IV administration of 3 mg/kg DAS, the estimated mean maximum plasma concentration was 54,709 ng/mL. Pharmacokinetic modeling suggested that DAS was eliminated with a half-life value of 8.1 h, equivalent to a clearance of 6.93 L/hr kg and a volume of distribution of 56 mL/kg. Plasma concentrations of the metabolites were measured rapidly (within 15-60 min for M1 and M2 respectively). Overall, the relative exposure to M1 and M2 suggest significant biotransformation of DAS occurred, but DAS was the most abundant circulating species. No adverse clinical reactions were noted following DAS administration and safety studies suggested DAS caused no inflammatory response or coagulation disturbance. Further clinical evaluation of DAS is warranted.
Asunto(s)
Aspirina/análogos & derivados , Compuestos de Bencidrilo/farmacocinética , Animales , Aspirina/farmacocinética , Cromatografía Liquida/veterinaria , Perros , Infusiones Intravenosas/veterinaria , CinéticaRESUMEN
Surfaces micropatterned with disjointed cell adhesive/non-adhesive regions allow for precise control of cell shape, internal organization and function. In particular, substrates prepared by the reaction-diffusion ASoMic (nisotropic lid roetching) method localize cells onto transparent micro-islands or tracks surrounded by an opaque, adhesion-resistant background. ASoMic is compatible with several important imaging modalities ( wide-field, fluorescent, TIRF and confocal microscopies), and can be used to study and quantify various intracellular and cellular processes related to cell motility. For cells constrained on the islands, the imposed geometry controls spatial organization of the cytoskeleton, while the transparency of the islands allows for real-time analysis of cytoskeletal dynamics. For cells on transparent, linear tracks, the high optical contrast between these adhesive regions and the surrounding non-adhesive background allows for straightforward quantification of the key parameters describing cell motility. Both types of systems provide analytical-quality data that can assist fundamental studies of cell locomotion and can provide a technological basis for cell motility microassays.
RESUMEN
The NMR spectra of four solutes, used as probes of liquid crystal orientational order, were analyzed. For each solute, samples were prepared at different solute concentrations, and the concentration dependence was used to extrapolate zero-concentration properties. The mean-field (Maier-Saupe) model when applied to solutes neglects solute-solute interactions and assumes all solutes in a mixed-solute sample see the same average environment. The first assumption is only valid as one approaches zero concentration, while experiments are typically carried out at concentrations between 0 and 10 mol %. The solute concentration dependence has in the past been "scaled out" using an internal solute reference as an orientational standard. We measured the concentration dependence of the orientational order parameter and calculate the corresponding interaction energies based on a mean-field interaction potential for a solute. We find agreement at the 3% level between experiments for different solutes while using (i) the zero-concentration values as solute-dependent orientational references and (ii) scaling to either order parameters or interaction energies; these two scalings gave equivalent but not identical results. We find, too, that errors inherent in the experiment and the calculations will limit attempts to refine the theory to push the comparisons beyond the 2% level.
RESUMEN
Dynamic self-assembly (DySA) processes occurring outside of thermodynamic equilibrium underlie many forms of adaptive and intelligent behaviors in natural systems. Relatively little, however, is known about the principles that govern DySA and the ways in which it can be extended to artificial ensembles. This article discusses recent advances in both the theory and the practice of nonequilibrium self-assembly. It is argued that a union of ideas from thermodynamics and dynamic systems' theory can provide a general description of DySA. In parallel, heuristic design rules can be used to construct DySA systems of increasing complexities based on a variety of suitable interactions/potentials on length scales from nanoscopic to macroscopic. Applications of these rules to magnetohydrodynamic DySA are also discussed.
Asunto(s)
Termodinámica , Oro/química , Magnetismo , Estructura Molecular , Propiedades de Superficie , Teoría de SistemasRESUMEN
OBJECTIVE: To estimate the prevalence of bacterial vaginosis by Nugent Gram stain criteria in a nonclinic national sample of young women entering recruit training; to examine clinical associations with bacterial vaginosis; and to evaluate the performance of a pH test card and Papanicolaou smear against Gram stain as screening tools for bacterial vaginosis. METHODS: A cross-sectional study of 1938 women was conducted. Self-collected vaginal swabs were applied to a colorimetric pH test card and a glass slide for Gram stain evaluation according to the Nugent criteria. Papanicolaou smears and samples for sexually transmitted diseases screening were collected during routine entry pelvic examinations. RESULTS: Bacterial vaginosis prevalence was 27%, with 28% in sexually experienced and 18% in non-sexually experienced women (P = .001). Bacterial vaginosis prevalence was 11% in Asian/Pacific Islanders, which was lower than in other nonwhite ethnic groups (P = .004). Clinically, bacterial vaginosis was directly related to multiple sexual partners (P = .026), self-report of vaginal discharge (P = .001), self-report of vaginal odor (P < .001), and concurrent Chlamydia trachomatis infection (P = .002), and inversely related to hormonal contraceptive use (P = .013). Vaginal discharge did not achieve statistical significance in multivariate analysis. Compared with the Nugent criteria, the sensitivities and specificities for bacterial vaginosis diagnosis were as follows: colorimetric pH test: 72% and 67%; Papanicolaou smear: 72% and 79%, respectively. CONCLUSION: Among these diverse young women, bacterial vaginosis occurs commonly in both sexually experienced and inexperienced young women and differs by race and ethnicity. The pH colorimetric test and Papanicolaou smear performed moderately well as screening tools for bacterial vaginosis. The inverse relationship of bacterial vaginosis with hormonal contraceptive use and its direct relationship with C. trachomatis need further study.
Asunto(s)
Violeta de Genciana/normas , Prueba de Papanicolaou , Fenazinas/normas , Conducta Sexual , Frotis Vaginal/normas , Vaginosis Bacteriana/epidemiología , Adolescente , Adulto , Chlamydia trachomatis/aislamiento & purificación , Estudios Transversales , Femenino , Humanos , Personal Militar/estadística & datos numéricos , Valor Predictivo de las Pruebas , Prevalencia , Sensibilidad y Especificidad , Parejas Sexuales , Estados Unidos/epidemiología , Vaginosis Bacteriana/etiologíaRESUMEN
Reactive wetting (RW) of alkane thiols and disulfides on gold is studied experimentally using the wet stamping technique. Theoretical description based on Langevin dynamics is developed to explain the experimental results and to clarify the physical processes underlying RW. In this description, thermal fluctuations of the three-phase contact line combine with the surface reaction to gradually build a low-energy self-assembled monolayer (SAM) onto which the front propagates. The results of the model match the experiments and allow determination of the kinetic rate constants of SAM formation.
Asunto(s)
Humectabilidad , Disulfuros/química , Oro/química , Cinética , Compuestos de Sulfhidrilo/químicaRESUMEN
When alkane thiols and disulfides coadsorb onto gold, they do not necessarily create a mixed monolayer. In particular, when thiols are terminated in groups capable of hydrogen bonding, they can altogether eliminate adsorption of disulfides. Such elimination can be observed directly by using fluorescently labeled disulfides and monitoring their adsorption (or lack of) by fluorescence microscopy. These experiments suggest a mechanism in which adsorption of thiols is facilitated by hydrogen bonding.
RESUMEN
Deformable, spherical aggregates of metal nanoparticles connected by long-chain dithiol ligands self-assemble into nanostructured materials of macroscopic dimensions. These materials are plastic and moldable against arbitrarily shaped masters and can be thermally hardened into polycrystalline metal structures of controllable porosity. In addition, in both plastic and hardened states, the assemblies are electrically conductive and exhibit Ohmic characteristics down to approximately 20 volts per meter. The self-assembly method leading to such materials is applicable both to pure metals and to bimetallic structures of various elemental compositions.
RESUMEN
Arrays of surface wrinkles of linearly increasing heights (from tens of nanometers to tens of micrometers) were prepared via a spontaneous reaction-diffusion process based on periodic precipitation. The slopes, dimensions, and positions of the precipitation bands could be controlled precisely by adjusting the concentrations of the participating chemicals as well as the material properties of patterned substrates. Additional control of periodic precipitation by localized UV irradiation allowed for the preparation of discontinuous and curvilinear structures. The nonbinary 3D surface topographies were replicated into poly(dimethylsiloxane), and the applications of replicas in microfluidics, microseparations, and cell biology have been suggested.
RESUMEN
A reaction-diffusion process induced from a micronetwork geometry amplifies changes in the molecular structure of a thin gel film into macroscopic readout patterns. When the gel undergoes a helix-to-coil phase transition, the patterns formed by RD switch from symmetry-broken to symmetric ones. Theoretical analysis explains how the system reconfigures internally in response to mass transfer between the applied network and the probed film.