Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34132546

RESUMEN

The experimental determination of ion-neutral collision cross sections (CCSs) is generally confined to ion mobility spectrometry (IMS) technologies that operate under the so-called low-field limit or those that enable empirical calibration strategies (e.g., traveling wave IMS; TWIMS). Correlation of ion trajectories to CCS in other non-linear IMS techniques that employ dynamic electric fields, such as differential mobility spectrometry (DMS), has remained a challenge since its inception. Here, we describe how an ion's CCS can be measured from DMS experiments using a machine learning (ML)-based calibration. The differential mobility of 409 molecular cations (m/z: 86-683 Da and CCS 110-236 Å2) was measured in a N2 environment to train the ML framework. Several open-source ML routines were tested and trained using DMS-MS data in the form of the parent ion's m/z and the compensation voltage required for elution at specific separation voltages between 1500 and 4000 V. The best performing ML model, random forest regression, predicted CCSs with a mean absolute percent error of 2.6 ± 0.4% for analytes excluded from the training set (i.e., out-of-the-bag external validation). This accuracy approaches the inherent statistical error of ∼2.2% for the MobCal-MPI CCS calculations employed for training purposes and the <2% threshold for matching literature CCSs with those obtained on a TWIMS platform.

2.
Analyst ; 146(15): 4737-4743, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34212943

RESUMEN

Although there has been a surge in popularity of differential mobility spectrometry (DMS) within analytical workflows, determining separation conditions within the DMS parameter space still requires manual optimization. A means of accurately predicting differential ion mobility would benefit practitioners by significantly reducing the time associated with method development. Here, we report a machine learning (ML) approach that predicts dispersion curves in an N2 environment, which are the compensation voltages (CVs) required for optimal ion transmission across a range of separation voltages (SVs) between 1500 to 4000 V. After training a random-forest based model using the DMS information of 409 cationic analytes, dispersion curves were reproduced with a mean absolute error (MAE) of ≤ 2.4 V, approaching typical experimental peak FWHMs of ±1.5 V. The predictive ML model was trained using only m/z and ion-neutral collision cross section (CCS) as inputs, both of which can be obtained from experimental databases before being extensively validated. By updating the model via inclusion of two CV datapoints at lower SVs (1500 V and 2000 V) accuracy was further improved to MAE ≤ 1.2 V. This improvement stems from the ability of the "guided" ML routine to accurately capture Type A and B behaviour, which was exhibited by only 2% and 17% of ions, respectively, within the dataset. Dispersion curve predictions of the database's most common Type C ions (81%) using the unguided and guided approaches exhibited average errors of 0.6 V and 0.1 V, respectively.


Asunto(s)
Aprendizaje Automático , Simulación por Computador , Iones , Análisis Espectral
3.
Phys Chem Chem Phys ; 23(36): 20607-20614, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34505849

RESUMEN

para-Aminobenzoic acid (PABA) was electrosprayed from mixtures of protic and aprotic solvents, leading to formation of two prototropic isomers in the gas phase whose relative populations depended on the composition of the electrospray solvent. The two ion populations were separated in the gas phase using differential mobility spectrometry (DMS) within a nitrogen-only environment at atmospheric pressure. Under high-field conditions, the two prototropic isomers eluted with baseline signal separation with the N-protonated isomer having a more negative CV shift than the O-protonated isomer, in accord with previous DMS studies. The conditions most favorable for formation and separation of each tautomer were used to trap each prototropic isomer in a quadrupole ion trap for photodissociation action spectroscopy experiments. Spectral interrogation of each prototropic isomer in the UV region (3-6 eV) showed good agreement with previously recorded spectra, although a previously reported band (4.8-5.4 eV) was less intense for the O-protonated isomer in our measured spectrum. Without DMS selection, the measured spectra contained features corresponding to both protonated isomers even when solvent conditions were optimised for formation of a single isomer. Interconversion between protonated isomers within the ion trap was observed when protic ESI solvents were employed, leading to spectral cross contamination even with mobility selection. CCSD vertical excitation energies and vertical gradient (VG) Franck-Condon simulations are presented and reproduce the measured spectral features with near-quantitative agreement, providing supporting evidence for spectral assignments.

4.
Phys Chem Chem Phys ; 23(35): 19892-19900, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34525152

RESUMEN

Two prototropic isomers of adenine are formed in an electrospray ion source and are resolved spatially in a differential mobility spectrometer before detection in a triple quadrupole mass spectrometer. Each isomer is gated in CV space before being trapped in the linear ion trap of the modified mass spectrometer, where they are irradiated by the tuneable output of an optical parametric oscillator and undergo photodissociation to form charged fragments with m/z 119, 109, and 94. The photon-normalised intensity of each fragmentation channel is measured and the action spectra for each DMS-gated tautomer are obtained. Our analysis of the action spectra, aided by calculated vibronic spectra and thermochemical data, allow us to assign the two signals in our measured ionograms to specific tautomers of protonated adenine.


Asunto(s)
Adenina/química , Espectrofotometría Infrarroja , Isomerismo , Fotólisis , Protones , Termodinámica , Rayos Ultravioleta
5.
J Phys Chem A ; 125(37): 8187-8195, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34432451

RESUMEN

Two ion populations of protonated Rivaroxaban, [C19H18ClN3O5S + H]+, are separated under pure N2 conditions using differential mobility spectrometry prior to characterization in a hybrid triple quadrupole linear ion trap mass spectrometer. These populations are attributed to bare protonated Rivaroxaban and to a proton-bound Rivaroxaban-ammonia complex, which dissociates prior to mass-selecting the parent ion. Ultraviolet photodissociation (UVPD) and collision-induced dissociation (CID) studies indicate that both protonated Rivaroxaban ion populations are comprised of the computed global minimum prototropic isomer. Two ion populations are also observed when the collision environment is modified with 1.5% (v/v) acetonitrile. In this case, the protonated Rivaroxaban ion populations are produced by the dissociation of the ammonium complex and by the dissociation of a proton-bound Rivaroxaban-acetonitrile complex prior to mass selection. Again, both populations exhibit a similar CID behavior; however, UVPD spectra indicate that the two ion populations are associated with different prototropic isomers. The experimentally acquired spectra are compared with computed spectra and are assigned to two prototropic isomers that exhibit proton sharing between distal oxygen centers.


Asunto(s)
Protones , Rivaroxabán/química , Rayos Ultravioleta , Teoría Funcional de la Densidad , Isomerismo , Espectrometría de Masas , Estructura Molecular
6.
Anal Chem ; 92(16): 11053-11061, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32698568

RESUMEN

Cyclosporins are an invaluable class of drug used to prevent the rejection of transplanted tissue. While the most popular drug in this group is cyclosporin A, several other analogues are available, including some enantiomeric and structurally isomeric forms. Unfortunately, the presence of such isomers can make the detection and identification of these drugs by mass spectrometry (MS) alone quite challenging. Here, we demonstrate the separation and analysis of six cyclosporin analogues using liquid chromatography (LC) and differential mobility spectroscopy (DMS) coupled to MS. Using DMS, we demonstrate the separation of three isomers: CycA and CycH (cyclosporin H), which are enantiomers, and isocyclosporin A (a structural isomer of CycA and CycH). For several of the cyclosporins, we can separate different conformers for each isomeric form. After DMS separation, tandem mass spectrometry (MS/MS) analyses of the separated isomers also distinguish these isomeric forms of cyclosporin. In addition, we have probed differences between each isomer by using gas-phase hydrogen-deuterium exchange (HDX) immediately after DMS separation, which reveals differences in the levels of intramolecular hydrogen bonding between each of the cyclosporins.

7.
Mass Spectrom Rev ; 38(3): 291-320, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30707468

RESUMEN

Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

8.
Anal Chem ; 91(15): 9916-9924, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31283185

RESUMEN

Mass spectrometry has proven itself to be an important technology for characterizing intact glycoproteins, glycopeptides, and released glycans. However, these molecules often present significant challenges during analysis. For example, glycans of identical molecular weights can be present in many isomeric forms, with one form having dramatically more biological activity than the others. Discriminating among these isomeric forms using mass spectrometry alone can be daunting, which is why orthogonal techniques, such as ion mobility spectrometry, have been explored. Here, we demonstrate the use of differential mobility spectrometry (DMS) to separate isomeric glycans differing only in the linkages of sialic acid groups (e.g., α 2,3 versus α 2,6). This ability extends from a small trisaccharide species to larger biantennary systems and is driven, in part, by the role of intramolecular solvation of the charge site(s) on these ions within the DMS environment.


Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Polisacáridos/análisis , Glicosilación , Isomerismo , Espectrometría de Masas , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/aislamiento & purificación , Polisacáridos/metabolismo
9.
Analyst ; 144(5): 1660-1670, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30649115

RESUMEN

Ion mobility-based separation prior to mass spectrometry has become an invaluable tool in the structural elucidation of gas-phase ions and in the characterization of complex mixtures. Application of ion mobility to structural studies requires an accurate methodology to bridge theoretical modelling of chemical structure with experimental determination of an ion's collision cross section (CCS). Herein, we present a refined methodology for calculating ion CCS using parallel computing architectures that makes use of atom specific parameters, which we have called MobCal-MPI. Tuning of ion-nitrogen van der Waals potentials on a diverse calibration set of 162 molecules returned a RMSE of 2.60% in CCS calculations of molecules containing the elements C, H, O, N, F, P, S, Cl, Br, and I. External validation of the ion-nitrogen potential was performed on an additional 50 compounds not present in the validation set, returning a RMSE of 2.31% for the CCSs of these compounds. Owing to the use of parameters from the MMFF94 forcefield, the calibration of the van der Waals potential can be extended to additional atoms defined in the MMFF94 forcefield (i.e., Li, Na, K, Si, Mg, Ca, Fe, Cu, Zn). We expect that the work presented here will serve as a foundation for facile determination of molecular CCSs, as MobCal-MPI boasts up to 64-fold speedups over traditional calculation packages.

10.
J Lipid Res ; 59(5): 910-919, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29540574

RESUMEN

We report a method for comprehensive structural characterization of lipids in animal tissues using a combination of differential ion mobility spectrometry (DMS) with electron-impact excitation of ions from organics (EIEIO) mass spectrometry. Singly charged lipid ions in protonated or sodiated forms were dissociated by an electron beam having a kinetic energy of 10 eV in a branched radio-frequency ion trap. We established a comprehensive set of diagnostics to characterize the structures of glycerophospholipids, sphingolipids, and acylglycerols, including glycosylated, plasmalogen, and ester forms. This EIEIO mass spectrometer was combined with DMS as a separation tool to analyze complex lipid extracts. Deuterated quantitative standards, which were added during extraction, allowed for the quantitative analysis of the lipid molecular species in various lipid classes. We applied this technique to the total lipids extracted from porcine brain, and we structurally characterized over 300 lipids (with the exception of cis/trans double-bond isomerism in the acyl chains). The structural dataset of the lipidomes, whose regioisomers were distinguished, exhibit a uniquely defined distribution of acyl chains within each lipid class; that is, sn-1 and sn-2 in the cases of glycerophospholipids or sn-2 and (sn-1, sn-3) in the cases of triacylglycerols.


Asunto(s)
Electrones , Lípidos/análisis , Espectrometría de Masas/métodos , Iones/química , Estructura Molecular
11.
Anal Chem ; 90(8): 5352-5357, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29570980

RESUMEN

A transformation product of trimethoprim, a contaminant of emerging concern in the environment, is generated using an electro-assisted Fenton reaction and analyzed using differential mobility spectrometry (DMS) in combination with MS/MS techniques and quantum chemical calculations to develop a rapid method for identification. DMS is used as a prefilter to separate positional isomers prior to subsequent identification by mass spectrometric analyses. Collision induced dissociation of each DMS separated species is used to reveal fragmentation patterns that can be correlated to specific isomer structures. Analysis of the experimental data and supporting quantum chemical calculations show that methylene-hydroxylated and methoxy-containing phenyl ring hydroxylated transformation products are observed. The proposed methodology outlines a high-throughput technique to determine transformation products of small molecules accurately, in a short time and requiring minimal sample concentrations (<25 ng/mL).


Asunto(s)
Espectrometría de Movilidad Iónica , Trimetoprim/análisis , Teoría Funcional de la Densidad , Espectrometría de Masas en Tándem
12.
Chemistry ; 24(9): 2144-2150, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29131927

RESUMEN

Gold-catalyzed alkyne hydration was studied by using in situ reacting mass spectrometry (MS) technology. By monitoring the reaction process in solution under different conditions (regular and very diluted catalyst concentrations, different pH values) and examining the reaction occurrence in the early reaction stage (1-2 ms after mixing) with MS, we collected a series of experimental evidence to support that the bis-gold complex is a potential key reaction intermediate. Furthermore, both experimental and computational studies confirmed that the σ,π-bis-gold complexes are not active intermediates toward nucleophilic addition. Instead, formation of geminally diaurated complex C is crucial for this catalytic process.

13.
J Phys Chem A ; 122(15): 3858-3865, 2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29219313

RESUMEN

The site of protonation for gas-phase aniline has been debated for many years, with many research groups contributing experimental and computational evidence for either the amino-protonated or the para-carbon-protonated tautomer as the gas-phase global minimum structure. Here, we employ differential mobility spectrometry (DMS) and mass spectrometry (MS) to separate and characterize the amino-protonated (N-protonated) and para-carbon-protonated ( p-protonated) tautomers of aniline. We demonstrate that upon electrospray ionization (ESI), aniline is protonated predominantly at the amino position. Similar analyses are conducted on another three isotopically labeled forms of aniline to confirm our structural assignments. We observe a significant reduction of the relative population of the p-protonated tautomer when a protic ESI solvent is employed (methanol/water) compared to when an aprotic solvent (acetonitrile) is employed. We also observe conversion of the p-protonated species into the N-protonated species upon clustering with protic solvent vapor post-DMS selection-a finding supported by previous experimental data acquired using DMS-MS.

14.
Anal Chem ; 89(14): 7307-7315, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28613874

RESUMEN

We present a mass spectrometry-based method for the identification of cis and trans double-bond isomers within intact complex lipid mixtures using electron impact excitation of ions from organics (EIEIO) mass spectrometry. EIEIO involves irradiating singly charged lipid ions with electrons having kinetic energies of 5-16 eV. The resulting EIEIO spectra can be used to discern cis and trans double-bond isomers by virtue of the differences in the fragmentation patterns at the carbon-carbon single bonds neighboring the double bonds. For trans double bonds, these characteristic fragments include unique closed-shell and open-shell (radical) products. To explain this fragmentation pattern in trans double bonds, we have proposed a reaction mechanism involving excitation of the double bond's π electrons followed by hydrogen atom rearrangement. Several lipid standards were analyzed using the EIEIO method, including mixtures of these standards. Prior to EIEIO, some of the lipid species in these mixtures were separated from their isomeric forms by using differential mobility spectrometry (DMS). For example, mixed cis and trans forms of triacylglycerols and phosphatidylcholines were identified by this DMS-EIEIO workflow. With this combined gas-phase separation and subsequent fragmentation, we could eliminate the need for authentic standards for identification. When DMS could not separate cis and trans isomers completely, as was the case with sphingomyelins, we relied upon the aforementioned diagnostic EIEIO fragment peaks to determine the relative contribution of the trans double-bond isomer in the mixed samples. We also applied the DMS-EIEIO methodology to natural samples extracted from a ruminant (bovine), which serve as common origins of trans fatty acids in a typical Western diet that includes dairy products.

15.
J Lipid Res ; 57(11): 2015-2027, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27457033

RESUMEN

Electron-induced dissociation or electron impact excitation of ions from organics (EIEIO) was applied to triacylglycerols (TAGs) for in-depth molecular structure analysis using MS. In EIEIO, energetic electrons (∼10 eV) fragmented TAG ions to allow for regioisomeric assignment of identified acyl groups at the sn-2 or sn-1/3 positions of the glycerol backbone. In addition, carbon-carbon double bond locations within the acyl chains could also be assigned by EIEIO. Beyond the analysis of lipid standards, this technique was applied to edible oils and natural lipid extracts to demonstrate the power of this method to provide in-depth structural elucidation of TAG molecular species.


Asunto(s)
Glicerol/química , Iones/química , Lípidos/química , Triglicéridos/química , Electrones , Isomerismo , Espectrometría de Masas , Aceites de Plantas/química
16.
J Lipid Res ; 57(5): 858-67, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27005317

RESUMEN

Electron impact excitation of ions from organics (EIEIO), also referred to as electron-induced dissociation, was applied to singly charged SM molecular species in the gas phase. Using ESI and a quadrupole TOF mass spectrometer equipped with an electron-ion reaction device, we found that SMs fragmented sufficiently to identify their lipid class, acyl group structure, and the location of double bond(s). Using this technique, nearly 200 SM molecular species were found in four natural lipid extracts: bovine milk, porcine brain, chicken egg yolk, and bovine heart. In addition to the most common backbone, d18:1, sphingosines with a range of carbon chain lengths, sphingadienes, and some sphinganine backbones were also detected. Modifications in natural SMs were also identified, including addition of iodine/methanol across a carbon-carbon double bond. This unparalleled new approach to SM analysis using EIEIO-MS shows promise as a unique and powerful tool for structural characterization.


Asunto(s)
Esfingomielinas/química , Animales , Química Encefálica , Bovinos , Pollos , Yema de Huevo/química , Iones , Leche , Miocardio/química , Oxidación-Reducción , Espectrometría de Masa por Ionización de Electrospray , Sus scrofa
17.
Rapid Commun Mass Spectrom ; 30(2): 256-64, 2016 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-27071217

RESUMEN

RATIONALE: Triacylglycerols (TG) contain three fatty acyls attached to the glycerol backbone in stereochemically numbered positions sn-1, 2 and 3. Isobaric TG with exchanged fatty acyl chains in positions sn-1/3 vs. sn-2 are referred to as regioisomers and the determination of their regioisomeric ratios is important for nutrition purposes. METHODS: Differential mobility spectrometry (DMS) coupled to electrospray ionization mass spectrometry (ESI-MS) is applied for the separation of simple unsaturated TG regioisomers extracted from porcine adipose tissue using their silver-ion molecular adducts. RESULTS: Four pairs of TG regioisomers containing combinations of unsaturated and saturated fatty acyl chains are successfully separated using DMS with 1-butanol or 1-propanol as the chemical modifier. Various experimental parameters are carefully optimized, such as the separation and compensation voltages applied to DMS electrodes, the type and flow rate of chemical modifier and the dwell time of analyte ions in the DMS cell. The optimized DMS approach is used for the characterization of TG regioisomers in less than one minute, compared to tens of minutes typical for silver-ion or reversed-phase high-performance liquid chromatography/mass spectrometry approaches. CONCLUSIONS: The application of this method for the characterization of TG regioisomers in porcine adipose tissue shows the method suitability for analyses of other animal fats.


Asunto(s)
Espectrometría de Masas/métodos , Triglicéridos/análisis , Tejido Adiposo/química , Animales , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Estereoisomerismo , Porcinos
18.
Anal Chem ; 87(11): 5837-45, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-25955306

RESUMEN

Although lipids are critical components of many cellular assemblies and biological pathways, accurate descriptions of their molecular structures remain difficult to obtain. Many benchtop characterization methods require arduous and time-consuming procedures, and multiple assays are required whenever a new structural feature is probed. Here, we describe a new mass-spectrometry-based workflow for enhanced structural lipidomics that, in a single experiment, can yield almost complete structural information for a given glycerophospholipid (GPL) species. This includes the lipid's sum (Brutto) composition from the accurate mass measured for the intact lipid ion and the characteristic headgroup fragment, the regioisomer composition from fragment ions unique to the sn-1 and sn-2 positions, and the positions of carbon-carbon double bonds in the lipid acyl chains. Here, lipid ions are fragmented using electron impact excitation of ions from organics (EIEIO)--a technique where the singly charged lipid ions are irradiated by an electron beam, producing diagnostic product ions. We have evaluated this methodology on various lipid standards, as well as on a biological extract, to demonstrate this new method's utility.


Asunto(s)
Modelos Moleculares , Fosfatidilcolinas/química , Acetonitrilos/química , Iones/química , Espectrometría de Masas
19.
Anal Chem ; 87(1): 785-92, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25423608

RESUMEN

We have developed a high-throughput electron capture dissociation (ECD) device coupled to a quadrupole time-of-flight mass spectrometer using novel branched radio frequency ion trap architecture. With this device, a low-energy electron beam can be injected orthogonally into the analytical ion beam with independent control of both the ion and electron beams. While ions and electrons can interact in a "flow-through" mode, we observed a large enhancement in ECD efficiency by introducing a short ion trapping period at the region of ion and electron beam intersection. This simultaneous trapping mode still provides up to five ECD spectra per second while operating in an information-dependent acquisition workflow. Coupled to liquid chromatography (LC), this LC-ECD workflow provides good sequence coverage for both trypsin and Lys C digests of bovine serum albumin, providing ECD spectra for doubly charged precursor ions with very good efficiency.


Asunto(s)
Cromatografía Liquida/métodos , Electrones , Albúmina Sérica Bovina/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Bovinos , Iones , Lisina/química , Ondas de Radio , Espectroscopía Infrarroja por Transformada de Fourier , Tripsina/química
20.
Anal Chem ; 87(24): 11967-72, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26595766

RESUMEN

We introduce an automated method to facilitate in-line coupling of digital microfluidics (DMF) with HPLC-MS, using a custom, 3D-printed manifold and a custom plugin to the popular open-source control system, DropBot. The method was designed to interface directly with commercial autosamplers (with no prior modification), suggesting that it will be widely accessible for end-users. The system was demonstrated to be compatible with samples dissolved in aqueous buffers and neat methanol and was validated by application to a common steroid-labeling derivatization reaction. We propose that the methods described here will be useful for a wide range of applications, combining the automated sample processing power of DMF with the resolving and analytical capacity of HPLC-MS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA