Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Viruses ; 16(5)2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38793690

RESUMEN

The Mayaro virus (MAYV) is an arbovirus with emerging potential, though with a limited understanding of its epidemiology and evolution due to the lack of studies and surveillance. Here, we investigated 71 MAYV genome sequences from the Americas available at GenBank and characterized the phylogenetic relationship among virus strains. A phylogenetic analysis showed that sequences were grouped according to the genotypes L, D, and N. Genotype D sequences were closely related to sequences collected in adjacent years and from their respective countries, suggesting that isolates may have originated from circulating lineages. The coalescent analysis demonstrated similar results, indicating the continuous circulation of the virus between countries as well. An unidentified sequence from the USA was grouped with genotype D, suggesting the insertion of this genotype in the country. Furthermore, the recombination analysis detected homologous and three heterologous hybrids which presented an insertion into the nsP3 protein. Amino acid substitutions among sequences indicated selective pressure sites, suggesting viral adaptability. This also impacted the binding affinity between the E1-E2 protein complex and the Mxra8 receptor, associated with MAYV entry into human cells. These results provide information for a better understanding of genotypes circulating in the Americas.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma Viral , Genotipo , Filogenia , Américas/epidemiología , Humanos , Alphavirus/genética , Alphavirus/clasificación , Alphavirus/aislamiento & purificación , Animales , Recombinación Genética , Infecciones por Alphavirus/virología , Infecciones por Alphavirus/epidemiología
2.
NAR Genom Bioinform ; 6(2): lqae056, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38800829

RESUMEN

ViralFlow v1.0 is a computational workflow developed for viral genomic surveillance. Several key changes turned ViralFlow into a general-purpose reference-based genome assembler for all viruses with an available reference genome. New virus-agnostic modules were implemented to further study nucleotide and amino acid mutations. ViralFlow v1.0 runs on a broad range of computational infrastructures, from laptop computers to high-performance computing (HPC) environments, and generates standard and well-formatted outputs suited for both public health reporting and scientific problem-solving. ViralFlow v1.0 is available at: https://viralflow.github.io/index-en.html.

3.
Microbiol Spectr ; 12(6): e0421823, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38651879

RESUMEN

SARS-CoV-2 virus emerged as a new threat to humans and spread around the world, leaving a large death toll. As of January 2023, Brazil is among the countries with the highest number of registered deaths. Nonpharmacological and pharmacological interventions have been heterogeneously implemented in the country, which, associated with large socioeconomic differences between the country regions, has led to distinct virus spread dynamics. Here, we investigate the spatiotemporal dispersion of SARS-CoV-2 lineages in the Pernambuco state (Northeast Brazil) throughout the distinct epidemiological scenarios that unfolded in the first 2 years of the pandemic. We generated a total of 1,389 new SARS-CoV-2 genomes from June 2020 to August 2021. This sampling captured the arrival, communitary transmission, and the circulation of the B1.1, B.1.1.28, and B.1.1.33 lineages; the emergence of the former variant of interest P.2; and the emergence and fast replacement of all previous variants by the more transmissible variant of concern P.1 (Gamma). Based on the incidence and lineage spread pattern, we observed an East-to-West to inner state pattern of transmission, which is in agreement with the transmission of more populous metropolitan areas to medium- and small-size country-side cities in the state. Such transmission patterns may be partially explained by the main routes of traffic across municipalities in the state. Our results highlight that the fine-grained intrastate analysis of lineages and incidence spread can provide actionable insights for planning future nonpharmacological intervention for air-borne transmissible human pathogens.IMPORTANCEDuring the COVID-19 pandemic, Brazil was one of the most affected countries, mainly due its continental-size, socioeconomic differences among regions, and heterogeneous implementation of intervention methods. In order to investigate SARS-CoV-2 dynamics in the state of Pernambuco, we conducted a spatiotemporal dispersion study, covering the period from June 2020 to August 2021, to comprehend the dynamics of viral transmission during the first 2 years of the pandemic. Throughout this study, we were able to track three significant epidemiological waves of transmission caused by B1.1, B.1.1.28, B.1.1.33, P.2, and P.1 lineages. These analyses provided valuable insights into the evolution of the epidemiological landscape, contributing to a deeper understanding of the dynamics of virus transmission during the early years of the pandemic in the state of Pernambuco.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/transmisión , COVID-19/epidemiología , COVID-19/virología , Humanos , Brasil/epidemiología , SARS-CoV-2/genética , SARS-CoV-2/clasificación , Análisis Espacio-Temporal , Genoma Viral , Filogenia , Pandemias
4.
Virus Evol ; 9(2): vead059, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38288387

RESUMEN

Dengue virus serotype 2, genotype Cosmopolitan (DENV-2-GII), is one of the most widespread DENV strains globally. In the USA, DENV-2 epidemics have been dominated by DENV-2 genotype Asian-American (DENV-2-GIII), and the first cases of DENV-2-GII were only described in 2019, in Peru, and in 2021 in Brazil. To gain new information about the circulation of DENV-2-GII in Brazil, we sequenced 237 DENV-2 confirmed cases sampled between March 2021 and March 2023 and revealed that DENV-2-GII is already present in all geographic regions of Brazil. The phylogeographic analysis inferred that DENV-2-GII was introduced at least four times in Brazil, between May 2020 and August 2022, generating multiple clades that spread throughout the country with different success. Despite multiple introductions of DENV-2-GII, analysis of the country-wide laboratory surveillance data showed that the Brazilian dengue epidemic in 2022 was dominated by DENV-1 in most states. We hypothesize that massive circulation of DENV-2-GIII in previous years in Brazil might have created a population immune barrier against symptomatic homotypic reinfections by DENV-2-GII, leading to sustained cryptic circulation in asymptomatic cases and localized outbreaks of this new genotype. In summary, our study stresses the importance of arboviral genomic surveillance to close monitoring and better understanding the potential impact of DENV-2-GII in the coming years.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA