Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(29): e2404551121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38990945

RESUMEN

Confined cell migration hampers genome integrity and activates the ATR and ATM mechano-transduction pathways. We investigated whether the mechanical stress generated by metastatic interstitial migration contributes to the enhanced chromosomal instability observed in metastatic tumor cells. We employed live cell imaging, micro-fluidic approaches, and scRNA-seq to follow the fate of tumor cells experiencing confined migration. We found that, despite functional ATR, ATM, and spindle assembly checkpoint (SAC) pathways, tumor cells dividing across constriction frequently exhibited altered spindle pole organization, chromosome mis-segregations, micronuclei formation, chromosome fragility, high gene copy number variation, and transcriptional de-regulation and up-regulation of c-MYC oncogenic transcriptional signature via c-MYC locus amplifications. In vivo tumor settings showed that malignant cells populating metastatic foci or infiltrating the interstitial stroma gave rise to cells expressing high levels of c-MYC. Altogether, our data suggest that mechanical stress during metastatic migration contributes to override the checkpoint controls and boosts genotoxic and oncogenic events. Our findings may explain why cancer aneuploidy often does not correlate with mutations in SAC genes and why c-MYC amplification is strongly linked to metastatic tumors.


Asunto(s)
Movimiento Celular , Amplificación de Genes , Proteínas Proto-Oncogénicas c-myc , Estrés Mecánico , Humanos , Movimiento Celular/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Línea Celular Tumoral , Ratones , Mitosis/genética , Inestabilidad Cromosómica , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo
2.
Epigenomics ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530086

RESUMEN

Aim: Castration-resistant prostate cancer (CRPC) eventually becomes resistant to androgen receptor pathway inhibitors like enzalutamide. Immunotherapy also fails in CRPC. We propose a new approach to simultaneously revert enzalutamide resistance and rewire anti-tumor immunity. Methods: We investigated in vitro and in subcutaneous and spontaneous mouse models the effects of combining enzalutamide and GSK-126, a drug inhibiting the epigenetic modulator EZH2. Results: Enzalutamide and GSK-126 synergized to reduce CRPC growth, also restraining tumor neuroendocrine differentiation. The anti-tumor activity was lost in immunodeficient mice. Indeed, the combination treatment awoke cytotoxic activity and IFN-γ production of tumor-specific CD8+ T lymphocytes. Conclusion: These results promote the combination of enzalutamide and GSK-126 in CRPC, also offering new avenues for immunotherapy in prostate cancer.


Prostate cancer depends on hormones called androgens for its growth. Therefore, hormonal therapies are commonly used. However, the tumor often does not respond to these treatments and new therapeutic approaches are needed. Here, using cell and mouse models, we have tested a new combination between hormone therapy and a drug that restrains an enzyme regulating gene expression. Our results have shown that this combination therapy not only reduces the growth of the tumor but also stops it from becoming more aggressive. This is really important because aggressive prostate cancer is much harder to treat. We have also found that this approach helps the immune system recognizing and attacking cancer cells. More research is needed to identify the mechanism of action of this treatment. However, our findings suggest that this approach could pave the way for new therapeutic strategies, including using immunotherapy, typically unsuccessful in treating prostate cancer.

3.
Cancer Immunol Res ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869181

RESUMEN

Neuroendocrine prostate cancer (NEPC) is an aggressive form of prostate cancer that emerges as tumors become resistant to hormone therapies or, rarely, arises de novo in treatment-naïve patients. The urgent need for effective therapies against NEPC is hampered by the limited knowledge of the biology governing this lethal disease. Based on our prior observations in the TRAMP spontaneous prostate cancer model, in which the genetic depletion of either mast cells (MCs) or the matricellular protein osteopontin (OPN) increases NEPC frequency, we tested the hypothesis that MCs can restrain NEPC through OPN production, using in vitro co-cultures between murine or human tumor cell lines and MCs, and in vivo experiments. We unveiled a role for the intracellular isoform of OPN (iOPN), so far neglected compared to the secreted isoform. Mechanistically, we unraveled that iOPN promotes TNF production in MCs via the TLR2/TLR4-MyD88 axis, specifically triggered by the encounter with NEPC cells. We found that MC-derived TNFin turn, hampered the growth of NEPC. We then identified the protein syndecan-1 (SDC1) as the NEPC-specific TLR2/TLR4 ligand that triggered this pathway. Interrogating published single-cell RNA-sequencing data we validated this mechanism in a different mouse model. Translational relevance of the results was provdied by in silco analyses of available human NEPC datasets, and by immunofluorescence on patient-derived adenocarcinoma and NEPC lesions. Overall, our results show that MCs actively inhibit NEPC, paving the way for innovative MC-based therapies for this fatal tumor. We also highlight SDC1 as a potential biomarker for incipient NEPC.

4.
Cell Rep ; 43(2): 113794, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38363677

RESUMEN

Acute myeloid leukemia (AML) progression is influenced by immune suppression induced by leukemia cells. ZEB1, a critical transcription factor in epithelial-to-mesenchymal transition, demonstrates immune regulatory functions in AML. Silencing ZEB1 in leukemic cells reduces engraftment and extramedullary disease in immune-competent mice, activating CD8 T lymphocytes and limiting Th17 cell expansion. ZEB1 in AML cells directly promotes Th17 cell development that, in turn, creates a self-sustaining loop and a pro-invasive phenotype, favoring transforming growth factor ß (TGF-ß), interleukin-23 (IL-23), and SOCS2 gene transcription. In bone marrow biopsies from AML patients, immunohistochemistry shows a direct correlation between ZEB1 and Th17. Also, the analysis of ZEB1 expression in larger datasets identifies two distinct AML groups, ZEB1high and ZEB1low, each with specific immunological and molecular traits. ZEB1high patients exhibit increased IL-17, SOCS2, and TGF-ß pathways and a negative association with overall survival. This unveils ZEB1's dual role in AML, entwining pro-tumoral and immune regulatory capacities in AML blasts.


Asunto(s)
Leucemia Mieloide Aguda , Células Th17 , Animales , Humanos , Ratones , Linfocitos T CD8-positivos , Proliferación Celular , Factor de Crecimiento Transformador beta , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
5.
JCI Insight ; 9(15)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954474

RESUMEN

Besides suppressing immune responses, regulatory T cells (Tregs) maintain tissue homeostasis and control systemic metabolism. Whether iron is involved in Treg-mediated tolerance is completely unknown. Here, we showed that the transferrin receptor CD71 was upregulated on activated Tregs infiltrating human liver cancer. Mice with a Treg-restricted CD71 deficiency spontaneously developed a scurfy-like disease, caused by impaired perinatal Treg expansion. CD71-null Tregs displayed decreased proliferation and tissue-Treg signature loss. In perinatal life, CD71 deficiency in Tregs triggered hepatic iron overload response, characterized by increased hepcidin transcription and iron accumulation in macrophages. Lower bacterial diversity, and reduction of beneficial species, were detected in the fecal microbiota of CD71 conditional knockout neonates. Our findings indicate that CD71-mediated iron absorption is required for Treg perinatal expansion and is related to systemic iron homeostasis and bacterial gut colonization. Therefore, we hypothesize that Tregs establish nutritional tolerance through competition for iron during bacterial colonization after birth.


Asunto(s)
Antígenos CD , Hierro , Receptores de Transferrina , Linfocitos T Reguladores , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Receptores de Transferrina/metabolismo , Animales , Hierro/metabolismo , Ratones , Humanos , Antígenos CD/metabolismo , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones Noqueados , Femenino , Microbioma Gastrointestinal/inmunología , Masculino , Hígado/metabolismo , Hígado/inmunología , Homeostasis
6.
Res Sq ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38562878

RESUMEN

The germinal center (GC) dark zone (DZ) and light zone (LZ) regions spatially separate expansion and diversification from selection of antigen-specific B-cells to ensure antibody affinity maturation and B cell memory. The DZ and LZ differ significantly in their immune composition despite the lack of a physical barrier, yet the determinants of this polarization are poorly understood. This study provides novel insights into signals controlling asymmetric T-cell distribution between DZ and LZ regions. We identify spatially-resolved DNA damage response and chromatin compaction molecular features that underlie DZ T-cell exclusion. The DZ spatial transcriptional signature linked to T-cell immune evasion clustered aggressive Diffuse Large B-cell Lymphomas (DLBCL) for differential T cell infiltration. We reveal the dependence of the DZ transcriptional core signature on the ATR kinase and dissect its role in restraining inflammatory responses contributing to establishing an immune-repulsive imprint in DLBCL. These insights may guide ATR-focused treatment strategies bolstering immunotherapy in tumors marked by DZ transcriptional and chromatin-associated features.

7.
Front Immunol ; 14: 1227648, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239354

RESUMEN

Introduction: Plasmacytoid dendritic cells (pDCs) infiltrate a large set of human cancers. Interferon alpha (IFN-α) produced by pDCs induces growth arrest and apoptosis in tumor cells and modulates innate and adaptive immune cells involved in anti-cancer immunity. Moreover, effector molecules exert tumor cell killing. However, the activation state and clinical relevance of pDCs infiltration in cancer is still largely controversial. In Primary Cutaneous Melanoma (PCM), pDCs density decreases over disease progression and collapses in metastatic melanoma (MM). Moreover, the residual circulating pDC compartment is defective in IFN-α production. Methods: The activation of tumor-associated pDCs was evaluated by in silico and microscopic analysis. The expression of human myxovirus resistant protein 1 (MxA), as surrogate of IFN-α production, and proximity ligation assay (PLA) to test dsDNA-cGAS activation were performed on human melanoma biopsies. Moreover, IFN-α and CXCL10 production by in vitro stimulated (i.e. with R848, CpG-A, ADU-S100) pDCs exposed to melanoma cell lines supernatants (SN-mel) was tested by intracellular flow cytometry and ELISA. We also performed a bulk RNA-sequencing on SN-mel-exposed pDCs, resting or stimulated with R848. Glycolytic rate assay was performed on SN-mel-exposed pDCs using the Seahorse XFe24 Extracellular Flux Analyzer. Results: Based on a set of microscopic, functional and in silico analyses, we demonstrated that the melanoma milieu directly impairs IFN-α and CXCL10 production by pDCs via TLR-7/9 and cGAS-STING signaling pathways. Melanoma-derived immunosuppressive cytokines and a metabolic drift represent relevant mechanisms enforcing pDC-mediated melanoma escape. Discussion: These findings propose a new window of intervention for novel immunotherapy approaches to amplify the antitumor innate immune response in cutaneous melanoma (CM).


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Citocinas/metabolismo , Melanoma/metabolismo , Receptor Toll-Like 7/metabolismo , Neoplasias Cutáneas/metabolismo , Receptor Toll-Like 9/metabolismo , Interferón-alfa , Inmunosupresores/metabolismo , Células Dendríticas , Nucleotidiltransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA