Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Evol Appl ; 14(5): 1365-1389, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34025773

RESUMEN

Wild Pacific salmon, including Chinook salmon Oncorhynchus tshawytscha, have been supplemented with hatchery propagation for over 50 years in support of increased ocean harvest, mitigation for hydroelectric development, and conservation of threatened populations. In Canada, the Wild Salmon Policy for Pacific salmon was established with the goal of maintaining and restoring healthy and diverse Pacific salmon populations, making conservation of wild salmon and their habitats the highest priority for resource management decision-making. For policy implementation, a new approach to the assessment and management of Chinook salmon and the associated hatchery production and fisheries management are needed. Implementation of genetic stock identification (GSI) and parentage-based tagging (PBT) for marine fisheries assessment may overcome problems associated with coded-wire tag-based (CWT) assessment and management of Chinook salmon fisheries, providing at a minimum information equivalent to that derived from the CWT program. GSI and PBT were used to identify Chinook salmon sampled in 2018 and 2019 marine fisheries (18,819 individuals genotyped) in British Columbia to specific conservation units (CU), populations, and broodyears. Individuals were genotyped at 391 single nucleotide polymorphisms via direct sequencing of amplicons. Very high accuracy of assignment to population and age (>99.5%) via PBT was observed for 1994 Chinook salmon of ages 2-4 years, with a 105,722-individual, 380-population baseline available for assignment. Application of a GSI-PBT system of identification to individuals in 2019 fisheries provided high-resolution estimates of stock composition, catch, and exploitation rate by CU or population, with fishery exploitation rates directly comparable to those provided by CWTs for 13 populations. GSI and PBT provide an alternate, cheaper, and more effective method in the assessment and management of Canadian-origin Chinook salmon relative to CWTs, and an opportunity for a genetics-based system to replace the current CWT system for salmon assessment.

2.
Ecol Evol ; 10(13): 6461-6476, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32724526

RESUMEN

For Pacific salmon, the key fisheries management goal in British Columbia (BC) is to maintain and restore healthy and diverse Pacific salmon populations, making conservation of salmon biodiversity the highest priority for resource management decision-making. Salmon status assessments are often conducted on coded-wire-tagged subsets of indicator populations based on assumptions of little differentiation within or among proximal populations. In the current study of southern BC coho salmon (Oncorhynchus kisutch) populations, parentage-based tagging (PBT) analysis provided novel information on migration and life-history patterns to test the assumptions of biological homogeneity over limited (generally < 100 km) geographic distances and, potentially, to inform management of fisheries and hatchery broodstocks. Heterogeneity for location and timing of fishery captures, family productivity, and exploitation rate was observed over small geographic scales, within regions that are, or might be expected to be, within the area encompassed by a single-tagged indicator population. These results provide little support for the suggestion that information gained from tagged indicator populations is representative of marine distribution, productivity, and exploitation patterns of proximal populations.

3.
Ecol Evol ; 9(17): 9891-9906, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31534702

RESUMEN

In salmonid parentage-based tagging (PBT) applications, entire hatchery broodstocks are genotyped, and subsequently, progeny can be nonlethally sampled and assigned back to their parents using parentage analysis, thus identifying their hatchery of origin and brood year (i.e., age). Inter- and intrapopulation variability in migration patterns, life history traits, and fishery contributions can be determined from PBT analysis of samples derived from both fisheries and escapements (portion of a salmon population that does not get caught in fisheries and returns to its natal river to spawn). In the current study of southern British Columbia coho salmon (Oncorhynchus kisutch) populations, PBT analysis provided novel information on intrapopulation heterogeneity among males in the total number of progeny identified in fisheries and escapements, the proportion of progeny sampled from fisheries versus escapement, the proportion of two-year-old progeny (jacks) produced, and the within-season return time of progeny. Fishery recoveries of coho salmon revealed heterogeneity in migration patterns among and within populations, with recoveries from north and central coast fisheries distinguishing "northern migrating" from "resident" populations. In northern migrating populations, the mean distance between fishery captures of sibs (brothers and sisters) was significantly less than the mean distance between nonsibs, indicating the possible presence of intrapopulation genetic heterogeneity for migration pattern. Variation among populations in productivity and within populations in fish catchability indicated that population selection and broodstock management can be implemented to optimize harvest benefits from hatcheries. Application of PBT provided valuable information for assessment and management of hatchery-origin coho salmon in British Columbia.

4.
Evol Appl ; 12(2): 230-254, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30697336

RESUMEN

Wild Pacific salmon, including Coho salmon Onchorynchus kisutch, have been supplemented with hatchery propagation for over 50 years in support of increased ocean harvest and conservation of threatened populations. In Canada, the Wild Salmon Policy for Pacific salmon was established with the goal of maintaining and restoring healthy and diverse Pacific salmon populations, making conservation of wild salmon and their habitats the highest priority for resource management decision-making. A new approach to the assessment and management of wild coho salmon, and the associated hatchery production and fishery management is needed. Implementation of parentage-based tagging (PBT) may overcome problems associated with coded-wire tag-based (CWT) assessment and management of coho salmon fisheries, providing at a minimum information equivalent to that derived from the CWT program. PBT and genetic stock identification (GSI) were used to identify coho salmon sampled in fisheries (8,006 individuals) and escapements (1,692 individuals) in British Columbia to specific conservation units (CU), populations, and broodyears. Individuals were genotyped at 304 single nucleotide polymorphisms (SNPs) via direct sequencing of amplicons. Very high accuracy of assignment to population (100%) via PBT for 543 jack (age 2) assigned to correct age and collection location and 265 coded-wire tag (CWT, age 3) coho salmon assigned to correct age and release location was observed, with a 40,774-individual, 267-population baseline available for assignment. Coho salmon from un-CWTed enhanced populations contributed 65% of the catch in southern recreational fisheries in 2017. Application of a PBT-GSI system of identification to individuals in 2017 fisheries and escapements provided high-resolution estimates of stock composition, catch, and exploitation rate by CU or population, providing an alternate and more effective method in the assessment and management of Canadian-origin coho salmon relative to CWTs, and an opportunity for a genetic-based system to replace the current CWT system for coho salmon assessment.

5.
Mol Ecol Resour ; 15(6): 1421-34, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25737187

RESUMEN

Twelve eulachon (Thaleichthys pacificus, Osmeridae) populations ranging from Cook Inlet, Alaska and along the west coast of North America to the Columbia River were examined by restriction-site-associated DNA (RAD) sequencing to elucidate patterns of neutral and adaptive variation in this high geneflow species. A total of 4104 single-nucleotide polymorphisms (SNPs) were discovered across the genome, with 193 putatively adaptive SNPs as determined by F(ST) outlier tests. Estimates of population structure in eulachon with the putatively adaptive SNPs were similar, but provided greater resolution of stocks compared with a putatively neutral panel of 3911 SNPs or previous estimates with 14 microsatellites. A cline of increasing measures of genetic diversity from south to north was found in the adaptive panel, but not in the neutral markers (SNPs or microsatellites). This may indicate divergent selective pressures in differing freshwater and marine environments between regional eulachon populations and that these adaptive diversity patterns not seen with neutral markers could be a consideration when determining genetic boundaries for conservation purposes. Estimates of effective population size (N(e)) were similar with the neutral SNP panel and microsatellites and may be utilized to monitor population status for eulachon where census sizes are difficult to obtain. Greater differentiation with the panel of putatively adaptive SNPs provided higher individual assignment accuracy compared to the neutral panel or microsatellites for stock identification purposes. This study presents the first SNPs that have been developed for eulachon, and analyses with these markers highlighted the importance of integrating genome-wide neutral and adaptive genetic variation for the applications of conservation and management.


Asunto(s)
Marcadores Genéticos , Variación Genética , Osmeriformes/clasificación , Osmeriformes/genética , Animales , Repeticiones de Microsatélite , América del Norte , Polimorfismo de Nucleótido Simple , Selección Genética
6.
Mol Ecol Resour ; 11(1): 116-25, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21429108

RESUMEN

We describe a distance-based clustering method using a proximity matrix of genetic distances to partition populations into genetically similar groupings. The optimization heuristic mean-field annealing (MFA) was used to find locally optimal solutions where exhaustive search was not possible. To illustrate this method, we analysed both simulated and real data sets. Simulated data indicated that MFA successfully differentiated population groups, even with small F(ST) values, as long as there was separation of within and between group distances. Reanalysis of microsatellite data from various human populations using mean-fields found similar ethnic groups corresponding to major geographic regions reported by Rosenberg et al. (2002) who used the model-based computer program Structure. However, with MFA, the Kalash population was found to group with other Central/South Asian populations instead of being the only member of its own genetic cluster. Europe/Middle East populations formed a separate group from Central/South Asian populations instead of being a single group in the Structure analysis. The MFA analysis determined the greatest genetic distances (largest mean intracluster distance) occurred in native American populations, identifying three groups instead of only one found with Structure. For conservation purposes, it is not only important to identify genetically similar groupings but also to determine the relative level of genetic differentiation captured within these groups. To illustrate this, we compare two separate MFA analyses of Chinook salmon (Oncorhynchus tshawytscha) populations from British Columbia, Canada. The software called PORGS-MFA used in this article can be downloaded from http://www.pac.dfo-mpo.gc.ca/science/facilities-installations/pbs-sbp/mgl-lgm/apps/porgs/index-eng.htm.


Asunto(s)
Genética de Población/instrumentación , Programas Informáticos , Algoritmos , Animales , Simulación por Computador , Genética Médica , Humanos , Repeticiones de Microsatélite , Salmón/genética
7.
Science ; 322(5909): 1790; author reply 1790, 2008 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-19095926

RESUMEN

Krkosek et al. (Reports, 14 December 2007, p. 1772) claimed that sea lice spread from salmon farms placed wild pink salmon populations "on a trajectory toward rapid local extinction." Their prediction is inconsistent with observed pink salmon returns and overstates the risks from sea lice and salmon farming.


Asunto(s)
Copépodos , Infestaciones Ectoparasitarias/veterinaria , Enfermedades de los Peces/epidemiología , Explotaciones Pesqueras , Salmón , Animales , Animales Salvajes , Colombia Británica/epidemiología , Infestaciones Ectoparasitarias/epidemiología , Infestaciones Ectoparasitarias/mortalidad , Extinción Biológica , Enfermedades de los Peces/mortalidad , Dinámica Poblacional , Riesgo , Salmón/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA