RESUMEN
Alzheimer's disease (AD) constitutes a multifactorial neurodegenerative pathology characterized by cognitive deterioration, personality alterations, and behavioral shifts. The ongoing brain impairment process poses significant challenges for therapeutic interventions due to activating multiple neurotoxic pathways. Current pharmacological interventions have shown limited efficacy and are associated with significant side effects. Approaches focusing on the early interference with disease pathways, before activation of broad neurotoxic processes, could be promising to slow down symptomatic progression of the disease. Curcumin-an integral component of traditional medicine in numerous cultures worldwide-has garnered interest as a promising AD treatment. Current research indicates that curcumin may exhibit therapeutic potential in neurodegenerative pathologies, attributed to its potent anti-inflammatory and antioxidant properties. Additionally, curcumin and its derivatives have demonstrated an ability to modulate cellular pathways via epigenetic mechanisms. This article aims to raise awareness of the neuroprotective properties of curcuminoids that could provide therapeutic benefits in AD. The paper provides a comprehensive overview of the neuroprotective efficacy of curcumin against signaling pathways that could be involved in AD and summarizes recent evidence of the biological efficiency of curcumins in vivo.
Asunto(s)
Enfermedad de Alzheimer , Antiinflamatorios , Antioxidantes , Curcumina , Epigénesis Genética , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Curcumina/farmacología , Curcumina/uso terapéutico , Humanos , Epigénesis Genética/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Animales , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Transducción de Señal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacosRESUMEN
As medicine advances to employ sophisticated anticancer agents to treat a vast array of oncological conditions, it is worth considering side effects associated with several chemotherapeutics. One adverse effect observed with several classes of chemotherapy agents is cardiotoxicity which leads to reduced ejection fraction (EF), cardiac arrhythmias, hypertension and Ischemia/myocardial infarction that can significantly impact the quality of life and patient outcomes. Research into possible mechanisms has elucidated several mechanisms, such as ROS generation, calcium overload and apoptosis. However, there is a relative scarcity of literature detailing the relationship between the exact mechanism of cardiotoxicity for each anticancer agent and observed clinical effects. This review comprehensively describes cardiotoxicity associated with various classes of anticancer agents and possible mechanisms. Further research exploring possible mechanisms for cardiotoxicity observed with anticancer agents could provide valuable insight into susceptibility for developing symptoms and management guidelines. Chemotherapeutics are associated with several side effects. Several classes of chemotherapy agents cause cardiotoxicity leading to a reduced ejection fraction (EF), cardiac arrhythmias, hypertension, and Ischemia/myocardial infarction. Research into possible mechanisms has elucidated several mechanisms, such as ROS generation, calcium overload, and apoptosis. However, there is a relative scarcity of literature detailing the relationship between the exact mechanism of cardiotoxicity for each anticancer agent and observed clinical effects. This review describes cardiotoxicity associated with various classes of anticancer agents and possible mechanisms. Further research exploring mechanisms for cardiotoxicity observed with anticancer agents could provide insight that will guide management.
Asunto(s)
Antineoplásicos , Hipertensión , Infarto del Miocardio , Humanos , Cardiotoxicidad/diagnóstico , Calcio/efectos adversos , Calidad de Vida , Especies Reactivas de Oxígeno/efectos adversos , Antineoplásicos/efectos adversos , Arritmias Cardíacas/inducido químicamenteRESUMEN
Calcific aortic valve stenosis (CAS), the most prevalent valvular disease worldwide, has been demonstrated to frequently occur in conjunction with coronary artery disease (CAD), the third leading cause of death worldwide. Atherosclerosis has been proven to be the main mechanism involved in CAS and CAD. Evidence also exists that obesity, diabetes, and metabolic syndrome (among others), along with specific genes involved in lipid metabolism, are important risk factors for CAS and CAD, leading to common pathological processes of atherosclerosis in both diseases. Therefore, it has been suggested that CAS could also be used as a marker of CAD. An understanding of the commonalities between the two conditions may improve therapeutic strategies for treating both CAD and CAS. This review explores the common pathogenesis and disparities between CAS and CAD, alongside their etiology. It also discusses clinical implications and provides evidence-based recommendations for the clinical management of both diseases.