Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(3): 594-613, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38423010

RESUMEN

The endosomal sorting complex required for transport (ESCRT) machinery is essential for membrane remodeling and autophagy and it comprises three multi-subunit complexes (ESCRT I-III). We report nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8 (GenBank: NM_007241.4), encoding the ESCRT-II subunit SNF8. The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile). In patient-derived fibroblasts, bi-allelic SNF8 variants cause loss of ESCRT-II subunits. Snf8 loss of function in zebrafish results in global developmental delay and altered embryo morphology, impaired optic nerve development, and reduced forebrain size. In vivo experiments corroborated the pathogenicity of the tested SNF8 variants and their variable impact on embryo development, validating the observed clinical heterogeneity. Taken together, we conclude that loss of ESCRT-II due to bi-allelic SNF8 variants is associated with a spectrum of neurodevelopmental/neurodegenerative phenotypes mediated likely via impairment of the autophagic flux.


Asunto(s)
Epilepsia Generalizada , Atrofia Óptica , Animales , Humanos , Niño , Pez Cebra/genética , Atrofia Óptica/genética , Fenotipo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética
2.
J Med Genet ; 61(1): 93-101, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37734847

RESUMEN

BACKGROUND: Leber's hereditary optic neuropathy (LHON) is a mitochondrial disorder characterised by complex I defect leading to sudden degeneration of retinal ganglion cells. Although typically associated with pathogenic variants in mitochondrial DNA, LHON was recently described in patients carrying biallelic variants in nuclear genes DNAJC30, NDUFS2 and MCAT. MCAT is part of mitochondrial fatty acid synthesis (mtFAS), as also MECR, the mitochondrial trans-2-enoyl-CoA reductase. MECR mutations lead to a recessive childhood-onset syndromic disorder with dystonia, optic atrophy and basal ganglia abnormalities. METHODS: We studied through whole exome sequencing two sisters affected by sudden and painless visual loss at young age, with partial recovery and persistent central scotoma. We modelled the candidate variant in yeast and studied mitochondrial dysfunction in yeast and fibroblasts. We tested protein lipoylation and cell response to oxidative stress in yeast. RESULTS: Both sisters carried a homozygous pathogenic variant in MECR (p.Arg258Trp). In yeast, the MECR-R258W mutant showed an impaired oxidative growth, 30% reduction in oxygen consumption rate and 80% decrease in protein levels, pointing to structure destabilisation. Fibroblasts confirmed the reduced amount of MECR protein, but failed to reproduce the OXPHOS defect. Respiratory complexes assembly was normal. Finally, the yeast mutant lacked lipoylation of key metabolic enzymes and was more sensitive to H2O2 treatment. Lipoic Acid supplementation partially rescued the growth defect. CONCLUSION: We report the first family with homozygous MECR variant causing an LHON-like optic neuropathy, which pairs the recent MCAT findings, reinforcing the impairment of mtFAS as novel pathogenic mechanism in LHON.


Asunto(s)
Enfermedades Mitocondriales , Atrofia Óptica Hereditaria de Leber , Niño , Humanos , ADN Mitocondrial/genética , Peróxido de Hidrógeno/metabolismo , Mutación , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/terapia , Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 50(15): 8749-8766, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35947649

RESUMEN

The in vivo role for RNase H1 in mammalian mitochondria has been much debated. Loss of RNase H1 is embryonic lethal and to further study its role in mtDNA expression we characterized a conditional knockout of Rnaseh1 in mouse heart. We report that RNase H1 is essential for processing of RNA primers to allow site-specific initiation of mtDNA replication. Without RNase H1, the RNA:DNA hybrids at the replication origins are not processed and mtDNA replication is initiated at non-canonical sites and becomes impaired. Importantly, RNase H1 is also needed for replication completion and in its absence linear deleted mtDNA molecules extending between the two origins of mtDNA replication are formed accompanied by mtDNA depletion. The steady-state levels of mitochondrial transcripts follow the levels of mtDNA, and RNA processing is not altered in the absence of RNase H1. Finally, we report the first patient with a homozygous pathogenic mutation in the hybrid-binding domain of RNase H1 causing impaired mtDNA replication. In contrast to catalytically inactive variants of RNase H1, this mutant version has enhanced enzyme activity but shows impaired primer formation. This finding shows that the RNase H1 activity must be strictly controlled to allow proper regulation of mtDNA replication.


Asunto(s)
ADN Mitocondrial , Ribonucleasa H , Ratones , Animales , ADN Mitocondrial/química , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , ARN/química , Replicación del ADN/genética , Mitocondrias/genética , Mamíferos/genética
4.
Mol Biol Evol ; 39(6)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35617136

RESUMEN

The barn swallow (Hirundo rustica) poses a number of fascinating scientific questions, including the taxonomic status of postulated subspecies. Here, we obtained and assessed the sequence variation of 411 complete mitogenomes, mainly from the European H. r. rustica, but other subspecies as well. In almost every case, we observed subspecies-specific haplogroups, which we employed together with estimated radiation times to postulate a model for the geographical and temporal worldwide spread of the species. The female barn swallow carrying the Hirundo rustica ancestral mitogenome left Africa (or its vicinity) around 280 thousand years ago (kya), and her descendants expanded first into Eurasia and then, at least 51 kya, into the Americas, from where a relatively recent (<20 kya) back migration to Asia took place. The exception to the haplogroup subspecies specificity is represented by the sedentary Levantine H. r. transitiva that extensively shares haplogroup A with the migratory European H. r. rustica and, to a lesser extent, haplogroup B with the Egyptian H. r. savignii. Our data indicate that rustica and transitiva most likely derive from a sedentary Levantine population source that split at the end of the Younger Dryas (YD) (11.7 kya). Since then, however, transitiva received genetic inputs from and admixed with both the closely related rustica and the adjacent savignii. Demographic analyses confirm this species' strong link with climate fluctuations and human activities making it an excellent indicator for monitoring and assessing the impact of current global changes on wildlife.


Asunto(s)
Genoma Mitocondrial , Golondrinas , África , Animales , Asia , Femenino , Humanos , Filogeografía , Golondrinas/genética
5.
Hum Mol Genet ; 29(11): 1864-1881, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-31984424

RESUMEN

ADCA-DN and HSN-IE are rare neurodegenerative syndromes caused by dominant mutations in the replication foci targeting sequence (RFTS) of the DNA methyltransferase 1 (DNMT1) gene. Both phenotypes resemble mitochondrial disorders, and mitochondrial dysfunction was first observed in ADCA-DN. To explore mitochondrial involvement, we studied the effects of DNMT1 mutations in fibroblasts from four ADCA-DN and two HSN-IE patients. We documented impaired activity of purified DNMT1 mutant proteins, which in fibroblasts results in increased DNMT1 amount. We demonstrated that DNMT1 is not localized within mitochondria, but it is associated with the mitochondrial outer membrane. Concordantly, mitochondrial DNA failed to show meaningful CpG methylation. Strikingly, we found activated mitobiogenesis and OXPHOS with significant increase of H2O2, sharply contrasting with a reduced ATP content. Metabolomics profiling of mutant cells highlighted purine, arginine/urea cycle and glutamate metabolisms as the most consistently altered pathways, similar to primary mitochondrial diseases. The most severe mutations showed activation of energy shortage AMPK-dependent sensing, leading to mTORC1 inhibition. We propose that DNMT1 RFTS mutations deregulate metabolism lowering ATP levels, as a result of increased purine catabolism and urea cycle pathways. This is associated with a paradoxical mitochondrial hyper-function and increased oxidative stress, possibly resulting in neurodegeneration in non-dividing cells.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/genética , Predisposición Genética a la Enfermedad , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Degeneración Nerviosa/genética , Ataxias Espinocerebelosas/genética , Metilación de ADN/genética , Sordera/genética , Sordera/fisiopatología , Femenino , Fibroblastos/metabolismo , Neuropatías Hereditarias Sensoriales y Autónomas/fisiopatología , Humanos , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación/genética , Narcolepsia/genética , Narcolepsia/fisiopatología , Degeneración Nerviosa/fisiopatología , Fosforilación Oxidativa , Fenotipo , Procesamiento Proteico-Postraduccional/genética , Ataxias Espinocerebelosas/fisiopatología
6.
Mol Med ; 28(1): 90, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922766

RESUMEN

BACKGROUND: Myoclonus, Epilepsy and Ragged-Red-Fibers (MERRF) is a mitochondrial encephalomyopathy due to heteroplasmic mutations in mitochondrial DNA (mtDNA) most frequently affecting the tRNALys gene at position m.8344A > G. Defective tRNALys severely impairs mitochondrial protein synthesis and respiratory chain when a high percentage of mutant heteroplasmy crosses the threshold for full-blown clinical phenotype. Therapy is currently limited to symptomatic management of myoclonic epilepsy, and supportive measures to counteract muscle weakness with co-factors/supplements. METHODS: We tested two therapeutic strategies to rescue mitochondrial function in cybrids and fibroblasts carrying different loads of the m.8344A > G mutation. The first strategy was aimed at inducing mitochondrial biogenesis directly, over-expressing the master regulator PGC-1α, or indirectly, through the treatment with nicotinic acid, a NAD+ precursor. The second was aimed at stimulating the removal of damaged mitochondria through prolonged rapamycin treatment. RESULTS: The first approach slightly increased mitochondrial protein expression and respiration in the wild type and intermediate-mutation load cells, but was ineffective in high-mutation load cell lines. This suggests that induction of mitochondrial biogenesis may not be sufficient to rescue mitochondrial dysfunction in MERRF cells with high-mutation load. The second approach, when administered chronically (4 weeks), induced a slight increase of mitochondrial respiration in fibroblasts with high-mutation load, and a significant improvement in fibroblasts with intermediate-mutation load, rescuing completely the bioenergetics defect. This effect was mediated by increased mitochondrial biogenesis, possibly related to the rapamycin-induced inhibition of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and the consequent activation of the Transcription Factor EB (TFEB). CONCLUSIONS: Overall, our results point to rapamycin-based therapy as a promising therapeutic option for MERRF.


Asunto(s)
Síndrome MERRF , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Síndrome MERRF/genética , Síndrome MERRF/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , ARN de Transferencia de Lisina/genética , ARN de Transferencia de Lisina/metabolismo , Sirolimus/metabolismo , Sirolimus/farmacología
7.
Mol Genet Metab ; 135(1): 72-81, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34916127

RESUMEN

INTRODUCTION: The mitochondrial DNA (mtDNA) m.3243A > G mutation in the MT-TL1 gene results in a multi-systemic disease, that is commonly associated with neurodegenerative changes in the brain. METHODS: Seventeen patients harboring the m3243A > G mutation were enrolled (age 43.1 ± 11.4 years, 10 M/7F). A panel of plasma biomarkers including lactate acid, alanine, L-arginine, fibroblast growth factor 21 (FGF-21), growth/differentiation factor 15 (GDF-15) and circulating cell free -mtDNA (ccf-mtDNA), as well as blood, urine and muscle mtDNA heteroplasmy were evaluated. Patients also underwent a brain standardized MR protocol that included volumetric T1-weighted images and diffusion-weighted MRI. Twenty sex- and age-matched healthy controls were included. Voxel-wise analysis was performed on T1-weighted and diffusion imaging, respectively with VBM (voxel-based morphometry) and TBSS (Tract-based Spatial Statistics). Ventricular lactate was also evaluated by 1H-MR spectroscopy. RESULTS: A widespread cortical gray matter (GM) loss was observed, more severe (p < 0.001) in the bilateral calcarine, insular, frontal and parietal cortex, along with infratentorial cerebellar cortex. High urine mtDNA mutation load, high levels of plasma lactate and alanine, low levels of plasma arginine, high levels of serum FGF-21 and ventricular lactate accumulation significantly (p < 0.05) correlated with the reduced brain GM density. Widespread microstructural alterations were highlighted in the white matter, significantly (p < 0.05) correlated with plasma alanine and arginine levels, with mtDNA mutation load in urine, with high level of serum GDF-15 and with high content of plasma ccf-mtDNA. CONCLUSIONS: Our results suggest that the synergy of two pathogenic mechanisms, mtDNA-related mitochondrial respiratory deficiency and defective nitric oxide metabolism, contributes to the brain neurodegeneration in m.3243A > G patients.


Asunto(s)
Sustancia Blanca , Adulto , Biomarcadores , Encéfalo/patología , ADN Mitocondrial/genética , Sustancia Gris , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Mutación , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
8.
Mov Disord ; 37(9): 1938-1943, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35792653

RESUMEN

BACKGROUND: Parkinsonian features have been described in patients harboring variants in nuclear genes encoding for proteins involved in mitochondrial DNA maintenance, such as TWNK. OBJECTIVES: The aim was to screen for TWNK variants in an Italian cohort of Parkinson's disease (PD) patients and to assess the occurrence of parkinsonism in patients presenting with TWNK-related autosomal dominant progressive external ophthalmoplegia (TWNK-adPEO). METHODS: Genomic DNA of 263 consecutively collected PD patients who underwent diagnostic genetic testing was analyzed with a targeted custom gene panel including TWNK, as well as genes causative of monogenic PD. Genetic and clinical data of 18 TWNK-adPEO patients with parkinsonism were retrospectively analyzed. RESULTS: Six of 263 PD patients (2%), presenting either with isolated PD (n = 4) or in combination with bilateral ptosis (n = 2), carried TWNK likely pathogenic variants. Among 18 TWNK-adPEO patients, 5 (28%) had parkinsonism. CONCLUSIONS: We show candidate TWNK variants occurring in PD without PEO. This finding will require further confirmatory studies. © 2022 Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.


Asunto(s)
Enfermedades Mitocondriales , Enfermedad de Parkinson , Trastornos Parkinsonianos , ADN Mitocondrial/genética , Humanos , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/genética , Mutación/genética , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , Trastornos Parkinsonianos/patología , Estudios Retrospectivos
9.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955927

RESUMEN

mitochondrial neuro-gastrointestinal encephalomyopathy (MNGIE) is a rare genetic disorder characterized by thymidine phosphorylase (TP) enzyme defect. The absence of TP activity induces the imbalance of mitochondrial nucleotide pool, leading to impaired mitochondrial DNA (mtDNA) replication and depletion. Since mtDNA is required to ensure oxidative phosphorylation, metabolically active tissues may not achieve sufficient energy production. The only effective life-saving approach in MNGIE has been the permanent replacement of TP via allogeneic hematopoietic stem cell or liver transplantation. However, the follow-up of transplanted patients showed that gut tissue changes do not revert and fatal complications, such as massive gastrointestinal bleeding, can occur. The purpose of this study was to clarify whether the reintroduction of TP after transplant can recover mtDNA copy number in a normal range. Using laser capture microdissection and droplet-digital-PCR, we assessed the mtDNA copy number in each layer of full-thickness ileal samples of a naive MNGIE cohort vs. controls and in a patient pre- and post-TP replacement. The treatment led to a significant recovery of gut tissue mtDNA amount, thus showing its efficacy. Our results indicate that a timely TP replacement is needed to maximize therapeutic success before irreversible degenerative tissue changes occur in MNGIE.


Asunto(s)
Trasplante de Hígado , Errores Innatos del Metabolismo , Encefalomiopatías Mitocondriales , ADN Mitocondrial/genética , Humanos , Íleon , Captura por Microdisección con Láser , Rayos Láser , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/terapia
10.
J Cell Mol Med ; 25(5): 2459-2470, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33476483

RESUMEN

Autism spectrum disorder (ASD) is characterized by a complex polygenic background, but with the unique feature of a subset of cases (~15%-30%) presenting a rare large-effect variant. However, clinical interpretation in these cases is often complicated by incomplete penetrance, variable expressivity and different neurodevelopmental trajectories. NRXN1 intragenic deletions represent the prototype of such ASD-associated susceptibility variants. From chromosomal microarrays analysis of 104 ASD individuals, we identified an inherited NRXN1 deletion in a trio family. We carried out whole-exome sequencing and deep sequencing of mitochondrial DNA (mtDNA) in this family, to evaluate the burden of rare variants which may contribute to the phenotypic outcome in NRXN1 deletion carriers. We identified an increased burden of exonic rare variants in the ASD child compared to the unaffected NRXN1 deletion-transmitting mother, which remains significant if we restrict the analysis to potentially deleterious rare variants only (P = 6.07 × 10-5 ). We also detected significant interaction enrichment among genes with damaging variants in the proband, suggesting that additional rare variants in interacting genes collectively contribute to cross the liability threshold for ASD. Finally, the proband's mtDNA presented five low-level heteroplasmic mtDNA variants that were absent in the mother, and two maternally inherited variants with increased heteroplasmic load. This study underlines the importance of a comprehensive assessment of the genomic background in carriers of large-effect variants, as penetrance modulation by additional interacting rare variants to might represent a widespread mechanism in neurodevelopmental disorders.


Asunto(s)
Trastorno del Espectro Autista/etiología , Proteínas de Unión al Calcio/genética , Predisposición Genética a la Enfermedad , Heterocigoto , Moléculas de Adhesión de Célula Nerviosa/genética , Penetrancia , Eliminación de Secuencia , Adulto , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/psicología , Hibridación Genómica Comparativa , Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Exones , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Estudios de Asociación Genética , Variación Genética , Genoma Mitocondrial , Genómica/métodos , Humanos , Lactante , Masculino , Fenotipo , Secuenciación del Exoma
11.
Ann Neurol ; 88(1): 18-32, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32219868

RESUMEN

OBJECTIVE: Dominant optic atrophy (DOA) is the most common inherited optic neuropathy, with a prevalence of 1:12,000 to 1:25,000. OPA1 mutations are found in 70% of DOA patients, with a significant number remaining undiagnosed. METHODS: We screened 286 index cases presenting optic atrophy, negative for OPA1 mutations, by targeted next generation sequencing or whole exome sequencing. Pathogenicity and molecular mechanisms of the identified variants were studied in yeast and patient-derived fibroblasts. RESULTS: Twelve cases (4%) were found to carry novel variants in AFG3L2, a gene that has been associated with autosomal dominant spinocerebellar ataxia 28 (SCA28). Half of cases were familial with a dominant inheritance, whereas the others were sporadic, including de novo mutations. Biallelic mutations were found in 3 probands with severe syndromic optic neuropathy, acting as recessive or phenotype-modifier variants. All the DOA-associated AFG3L2 mutations were clustered in the ATPase domain, whereas SCA28-associated mutations mostly affect the proteolytic domain. The pathogenic role of DOA-associated AFG3L2 mutations was confirmed in yeast, unraveling a mechanism distinct from that of SCA28-associated AFG3L2 mutations. Patients' fibroblasts showed abnormal OPA1 processing, with accumulation of the fission-inducing short forms leading to mitochondrial network fragmentation, not observed in SCA28 patients' cells. INTERPRETATION: This study demonstrates that mutations in AFG3L2 are a relevant cause of optic neuropathy, broadening the spectrum of clinical manifestations and genetic mechanisms associated with AFG3L2 mutations, and underscores the pivotal role of OPA1 and its processing in the pathogenesis of DOA. ANN NEUROL 2020 ANN NEUROL 2020;88:18-32.


Asunto(s)
Proteasas ATP-Dependientes/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , GTP Fosfohidrolasas/genética , Atrofia Óptica/genética , Enfermedades del Nervio Óptico/genética , Adolescente , Adulto , Anciano , Niño , Femenino , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación , Linaje , Secuenciación del Exoma , Adulto Joven
12.
PLoS Genet ; 14(2): e1007210, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29444077

RESUMEN

We here report on the existence of Leber's hereditary optic neuropathy (LHON) associated with peculiar combinations of individually non-pathogenic missense mitochondrial DNA (mtDNA) variants, affecting the MT-ND4, MT-ND4L and MT-ND6 subunit genes of Complex I. The pathogenic potential of these mtDNA haplotypes is supported by multiple evidences: first, the LHON phenotype is strictly inherited along the maternal line in one very large family; second, the combinations of mtDNA variants are unique to the two maternal lineages that are characterized by recurrence of LHON; third, the Complex I-dependent respiratory and oxidative phosphorylation defect is co-transferred from the proband's fibroblasts into the cybrid cell model. Finally, all but one of these missense mtDNA variants cluster along the same predicted fourth E-channel deputed to proton translocation within the transmembrane domain of Complex I, involving the ND1, ND4L and ND6 subunits. Hence, the definition of the pathogenic role of a specific mtDNA mutation becomes blurrier than ever and only an accurate evaluation of mitogenome sequence variation data from the general population, combined with functional analyses using the cybrid cell model, may lead to final validation. Our study conclusively shows that even in the absence of a clearly established LHON primary mutation, unprecedented combinations of missense mtDNA variants, individually known as polymorphisms, may lead to reduced OXPHOS efficiency sufficient to trigger LHON. In this context, we introduce a new diagnostic perspective that implies the complete sequence analysis of mitogenomes in LHON as mandatory gold standard diagnostic approach.


Asunto(s)
ADN Mitocondrial/genética , Herencia Multifactorial , Mutación Missense , Atrofia Óptica Hereditaria de Leber/genética , Penetrancia , Adulto , Secuencia de Aminoácidos , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/genética , Epistasis Genética , Familia , Femenino , Genes Mitocondriales , Humanos , Masculino , Modelos Moleculares , NADH Deshidrogenasa/química , NADH Deshidrogenasa/genética , Linaje , Adulto Joven
15.
Biochim Biophys Acta Bioenerg ; 1859(3): 182-190, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29269267

RESUMEN

A marked stimulation of complex II enzymatic activity was detected in cybrids bearing a homoplasmic MTCYB microdeletion causing disruption of both the activity and the assembly of complex III, but not in cybrids harbouring another MTCYB mutation affecting only the complex III activity. Moreover, complex II stimulation was associated with SDHA subunit tyrosine phosphorylation. Despite the lack of detectable hydrogen peroxide production, up-regulation of the levels of mitochondrial antioxidant defenses revealed a significant redox unbalance. This effect was also supported by the finding that treatment with N-acetylcysteine dampened the complex II stimulation, SDHA subunit tyrosine phosphorylation, and levels of antioxidant enzymes. In the absence of complex III, the cellular amount of succinate, but not fumarate, was markedly increased, indicating that enhanced activity of complex II is hampered due to the blockage of respiratory electron flow. Thus, we propose that complex II phosphorylation and stimulation of its activity represent a molecular mechanism triggered by perturbation of mitochondrial redox homeostasis due to severe dysfunction of respiratory complexes. Depending on the site and nature of the damage, complex II stimulation can either bypass the energetic deficit as an efficient compensatory mechanism, or be ineffectual, leaving cells to rely on glycolysis for survival.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Homeostasis , Mitocondrias/metabolismo , Acetilcisteína/farmacología , Citocromos b/genética , Citocromos b/metabolismo , Transporte de Electrón/efectos de los fármacos , Complejo II de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/genética , Depuradores de Radicales Libres/farmacología , Humanos , Células Híbridas/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/genética , Mutación , Oxidación-Reducción , Fosforilación/efectos de los fármacos , Succinatos/metabolismo
16.
Neurobiol Dis ; 114: 129-139, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29486301

RESUMEN

There is growing evidence that the sequence variation of mitochondrial DNA (mtDNA), which clusters in population- and/or geographic-specific haplogroups, may result in functional effects that, in turn, become relevant in disease predisposition or protection, interaction with environmental factors and ultimately in modulating longevity. To unravel functional differences between mtDNA haplogroups we here employed transmitochondrial cytoplasmic hybrid cells (cybrids) grown in galactose medium, a culture condition that forces oxidative phosphorylation, and in the presence of rotenone, the classic inhibitor of respiratory Complex I. Under this experimental paradigm we assessed functional parameters such as cell viability and respiration, ATP synthesis, reactive oxygen species production and mtDNA copy number. Our analyses show that haplogroup J1, which is common in western Eurasian populations, is the most sensitive to rotenone, whereas K1 mitogenomes orchestrate the best compensation, possibly because of the haplogroup-specific missense variants impinging on Complex I function. Remarkably, haplogroups J1 and K1 fit the genetic associations previously established with Leber's hereditary optic neuropathy (LHON) for J1, as a penetrance enhancer, and with Parkinson's disease (PD) for K1, as a protective background. Our findings provide functional evidences supporting previous well-established genetic associations of specific haplogroups with two neurodegenerative pathologies, LHON and PD. Our experimental paradigm is instrumental to highlighting the subtle functional differences characterizing mtDNA haplogroups, which will be increasingly needed to dissect the role of mtDNA genetic variation in health, disease and longevity.


Asunto(s)
ADN Mitocondrial/genética , Genoma Mitocondrial/genética , Haplotipos/genética , Enfermedad de Parkinson Secundaria/genética , Plaguicidas/toxicidad , Rotenona/toxicidad , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , ADN Mitocondrial/química , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Genoma Mitocondrial/efectos de los fármacos , Haplotipos/efectos de los fármacos , Humanos , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/fisiología , Enfermedad de Parkinson Secundaria/inducido químicamente , Filogenia , Estructura Secundaria de Proteína
18.
Ann Neurol ; 80(3): 448-55, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27421916

RESUMEN

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a fatal, recessive disease caused by mutations in the gene encoding thymidine phosphorylase, leading to reduced enzymatic activity, toxic nucleoside accumulation, and secondary mitochondrial DNA damage. Thymidine phosphorylase replacement has been achieved by allogeneic hematopoietic stem cell transplantation, a procedure hampered by high mortality. Based on high thymidine phosphorylase expression in the liver, a 25-year-old severely affected patient underwent liver transplantation. Serum levels of toxic nucleosides rapidly normalized. At 400 days of follow-up, the patient's clinical conditions are stable. We propose liver transplantation as a new therapy for MNGIE. Ann Neurol 2016;80:448-455.


Asunto(s)
Seudoobstrucción Intestinal/cirugía , Trasplante de Hígado/métodos , Encefalomiopatías Mitocondriales/cirugía , Adulto , Humanos , Masculino , Distrofia Muscular Oculofaríngea , Oftalmoplejía/congénito
20.
Ann Neurol ; 78(1): 21-38, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25820230

RESUMEN

OBJECTIVE: Mounting evidence links neurodegenerative disorders such as Parkinson disease and Alzheimer disease with mitochondrial dysfunction, and recent emphasis has focused on mitochondrial dynamics and quality control. Mitochondrial dynamics and mtDNA maintenance is another link recently emerged, implicating mutations in the mitochondrial fusion genes OPA1 and MFN2 in the pathogenesis of multisystem syndromes characterized by neurodegeneration and accumulation of mtDNA multiple deletions in postmitotic tissues. Here, we report 2 Italian families affected by dominant chronic progressive external ophthalmoplegia (CPEO) complicated by parkinsonism and dementia. METHODS: Patients were extensively studied by optical coherence tomography (OCT) to assess retinal nerve fibers, and underwent muscle and brain magnetic resonance spectroscopy (MRS), and muscle biopsy and fibroblasts were analyzed. Candidate genes were sequenced, and mtDNA was analyzed for rearrangements. RESULTS: Affected individuals displayed a slowly progressive syndrome characterized by CPEO, mitochondrial myopathy, sensorineural deafness, peripheral neuropathy, parkinsonism, and/or cognitive impairment, in most cases without visual complains, but with subclinical loss of retinal nerve fibers at OCT. Muscle biopsies showed cytochrome c oxidase-negative fibers and mtDNA multiple deletions, and MRS displayed defective oxidative metabolism in muscle and brain. We found 2 heterozygous OPA1 missense mutations affecting highly conserved amino acid positions (p.G488R, p.A495V) in the guanosine triphosphatase domain, each segregating with affected individuals. Fibroblast studies showed a reduced amount of OPA1 protein with normal mRNA expression, fragmented mitochondria, impaired bioenergetics, increased autophagy and mitophagy. INTERPRETATION: The association of CPEO and parkinsonism/dementia with subclinical optic neuropathy widens the phenotypic spectrum of OPA1 mutations, highlighting the association of defective mitochondrial dynamics, mtDNA multiple deletions, and altered mitophagy with parkinsonism.


Asunto(s)
Demencia/genética , GTP Fosfohidrolasas/genética , Mutación Missense , Oftalmoplejía Externa Progresiva Crónica/genética , Trastornos Parkinsonianos/genética , Anciano , Demencia/complicaciones , Femenino , Predisposición Genética a la Enfermedad , Humanos , Italia , Masculino , Oftalmoplejía Externa Progresiva Crónica/complicaciones , Trastornos Parkinsonianos/complicaciones , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA