Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
PLoS Genet ; 19(11): e1011026, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37948444

RESUMEN

The meiotic recombination checkpoint reinforces the order of events during meiotic prophase I, ensuring the accurate distribution of chromosomes to the gametes. The AAA+ ATPase Pch2 remodels the Hop1 axial protein enabling adequate levels of Hop1-T318 phosphorylation to support the ensuing checkpoint response. While these events are localized at chromosome axes, the checkpoint activating function of Pch2 relies on its cytoplasmic population. In contrast, forced nuclear accumulation of Pch2 leads to checkpoint inactivation. Here, we reveal the mechanism by which Pch2 travels from the cell nucleus to the cytoplasm to maintain Pch2 cellular homeostasis. Leptomycin B treatment provokes the nuclear accumulation of Pch2, indicating that its nucleocytoplasmic transport is mediated by the Crm1 exportin recognizing proteins containing Nuclear Export Signals (NESs). Consistently, leptomycin B leads to checkpoint inactivation and impaired Hop1 axial localization. Pch2 nucleocytoplasmic traffic is independent of its association with Zip1 and Orc1. We also identify a functional NES in the non-catalytic N-terminal domain of Pch2 that is required for its nucleocytoplasmic trafficking and proper checkpoint activity. In sum, we unveil another layer of control of Pch2 function during meiosis involving nuclear export via the exportin pathway that is crucial to maintain the critical balance of Pch2 distribution among different cellular compartments.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Meiosis/genética , Saccharomyces cerevisiae/genética , Transporte Activo de Núcleo Celular/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión al ADN/genética , Carioferinas/genética , Carioferinas/metabolismo , Homeostasis
2.
PLoS Genet ; 17(7): e1009560, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34260586

RESUMEN

During meiosis, defects in critical events trigger checkpoint activation and restrict cell cycle progression. The budding yeast Pch2 AAA+ ATPase orchestrates the checkpoint response launched by synapsis deficiency; deletion of PCH2 or mutation of the ATPase catalytic sites suppress the meiotic block of the zip1Δ mutant lacking the central region of the synaptonemal complex. Pch2 action enables adequate levels of phosphorylation of the Hop1 axial component at threonine 318, which in turn promotes activation of the Mek1 effector kinase and the ensuing checkpoint response. In zip1Δ chromosomes, Pch2 is exclusively associated to the rDNA region, but this nucleolar fraction is not required for checkpoint activation, implying that another yet uncharacterized Pch2 population must be responsible for this function. Here, we have artificially redirected Pch2 to different subcellular compartments by adding ectopic Nuclear Export (NES) or Nuclear Localization (NLS) sequences, or by trapping Pch2 in an immobile extranuclear domain, and we have evaluated the effect on Hop1 chromosomal distribution and checkpoint activity. We have also deciphered the spatial and functional impact of Pch2 regulators including Orc1, Dot1 and Nup2. We conclude that the cytoplasmic pool of Pch2 is sufficient to support the meiotic recombination checkpoint involving the subsequent Hop1-Mek1 activation on chromosomes, whereas the nuclear accumulation of Pch2 has pathological consequences. We propose that cytoplasmic Pch2 provokes a conformational change in Hop1 that poises it for its chromosomal incorporation and phosphorylation. Our discoveries shed light into the intricate regulatory network controlling the accurate balance of Pch2 distribution among different cellular compartments, which is essential for proper meiotic outcomes.


Asunto(s)
Citoplasma/genética , Proteínas Nucleares/genética , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Puntos de Control del Ciclo Celular , Membrana Celular/metabolismo , Emparejamiento Cromosómico , Cromosomas Fúngicos , Citoplasma/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Meiosis , Microorganismos Modificados Genéticamente , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Complejo de Reconocimiento del Origen/genética , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Cell ; 132(5): 758-70, 2008 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-18329363

RESUMEN

An essential feature of meiosis is interhomolog recombination whereby a significant fraction of the programmed meiotic double-strand breaks (DSBs) is repaired using an intact homologous non-sister chromatid rather than a sister. Involvement of Mec1 and Tel1, the budding yeast homologs of the mammalian ATR and ATM kinases, in meiotic interhomlog bias has been implicated, but the mechanism remains elusive. Here, we demonstrate that Mec1 and Tel1 promote meiotic interhomolog recombination by targeting the axial element protein Hop1. Without Mec1/Tel1 phosphorylation of Hop1, meiotic DSBs are rapidly repaired via a Dmc1-independent intersister repair pathway, resulting in diminished interhomolog crossing-over leading to spore lethality. We find that Mec1/Tel1-mediated phosphorylation of Hop1 is required for activation of Mek1, a meiotic paralogue of the DNA-damage effector kinase, Rad53p/CHK2. Thus, Hop1 is a meiosis-specific adaptor protein of the Mec1/Tel1 signaling pathway that ensures interhomolog recombination by preventing Dmc1-independent repair of meiotic DSBs.


Asunto(s)
Intercambio Genético , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Meiosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Secuencias de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Cromosomas Fúngicos/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Mutación , Fosforilación , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
4.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34575966

RESUMEN

Meiotic defects derived from incorrect DNA repair during gametogenesis can lead to mutations, aneuploidies and infertility. The coordinated resolution of meiotic recombination intermediates is required for crossover formation, ultimately necessary for the accurate completion of both rounds of chromosome segregation. Numerous master kinases orchestrate the correct assembly and activity of the repair machinery. Although much less is known, the reversal of phosphorylation events in meiosis must also be key to coordinate the timing and functionality of repair enzymes. Cdc14 is a crucial phosphatase required for the dephosphorylation of multiple CDK1 targets in many eukaryotes. Mutations that inactivate this phosphatase lead to meiotic failure, but until now it was unknown if Cdc14 plays a direct role in meiotic recombination. Here, we show that the elimination of Cdc14 leads to severe defects in the processing and resolution of recombination intermediates, causing a drastic depletion in crossovers when other repair pathways are compromised. We also show that Cdc14 is required for the correct activity and localization of the Holliday Junction resolvase Yen1/GEN1. We reveal that Cdc14 regulates Yen1 activity from meiosis I onwards, and this function is essential for crossover resolution in the absence of other repair pathways. We also demonstrate that Cdc14 and Yen1 are required to safeguard sister chromatid segregation during the second meiotic division, a late action that is independent of the earlier role in crossover formation. Thus, this work uncovers previously undescribed functions of the evolutionary conserved Cdc14 phosphatase in the regulation of meiotic recombination.


Asunto(s)
Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/genética , Resolvasas de Unión Holliday/genética , Meiosis/genética , Proteínas Tirosina Fosfatasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Segregación Cromosómica/genética , Intercambio Genético/genética , Reparación del ADN/genética , ADN Cruciforme/genética , Gametogénesis/genética , Recombinación Homóloga/genética , Mutación/genética , Fosforilación/genética , Saccharomyces cerevisiae/genética
5.
Chromosoma ; 128(3): 297-316, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30859296

RESUMEN

The meiotic recombination checkpoint blocks meiotic cell cycle progression in response to synapsis and/or recombination defects to prevent aberrant chromosome segregation. The evolutionarily conserved budding yeast Pch2TRIP13 AAA+ ATPase participates in this pathway by supporting phosphorylation of the Hop1HORMAD adaptor at T318. In the wild type, Pch2 localizes to synapsed chromosomes and to the unsynapsed rDNA region (nucleolus), excluding Hop1. In contrast, in synaptonemal complex (SC)-defective zip1Δ mutants, which undergo checkpoint activation, Pch2 is detected only on the nucleolus. Alterations in some epigenetic marks that lead to Pch2 dispersion from the nucleolus suppress zip1Δ-induced checkpoint arrest. These observations have led to the notion that Pch2 nucleolar localization could be important for the meiotic recombination checkpoint. Here we investigate how Pch2 chromosomal distribution impacts checkpoint function. We have generated and characterized several mutations that alter Pch2 localization pattern resulting in aberrant Hop1 distribution and compromised meiotic checkpoint response. Besides the AAA+ signature, we have identified a basic motif in the extended N-terminal domain critical for Pch2's checkpoint function and localization. We have also examined the functional relevance of the described Orc1-Pch2 interaction. Both proteins colocalize in the rDNA, and Orc1 depletion during meiotic prophase prevents Pch2 targeting to the rDNA allowing unwanted Hop1 accumulation on this region. However, Pch2 association with SC components remains intact in the absence of Orc1. We finally show that checkpoint activation is not affected by the lack of Orc1 demonstrating that, in contrast to previous hypotheses, nucleolar localization of Pch2 is actually dispensable for the meiotic checkpoint.


Asunto(s)
Puntos de Control del Ciclo Celular , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Meiosis , Proteínas Nucleares/metabolismo , Dominios y Motivos de Interacción de Proteínas , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnica del Anticuerpo Fluorescente , Complejos Multiproteicos/metabolismo , Mutación , Señales de Localización Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Complejo de Reconocimiento del Origen/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
6.
PLoS Genet ; 9(6): e1003545, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23825959

RESUMEN

An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks.


Asunto(s)
Roturas del ADN de Doble Cadena , Péptidos y Proteínas de Señalización Intracelular/genética , Meiosis , Proteínas Serina-Treonina Quinasas/genética , Recombinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Cromatina , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinasas/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo Sinaptonémico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Methods Mol Biol ; 2818: 23-43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39126465

RESUMEN

Meiotic recombination is a key process facilitating the formation of crossovers and the exchange of genetic material between homologous chromosomes in early meiosis. This involves controlled double-strand breaks (DSBs) formation catalyzed by Spo11. DSBs exhibit a preferential location in specific genomic regions referred to as hotspots, and their variability is tied to varying Spo11 activity levels. We have refined a ChIP-Seq technique, called SPO-Seq, to map Spo11-specific DSB formation in Saccharomyces cerevisiae. The chapter describes our streamlined approach and the developed bioinformatic tools for processing data and comparing with existing DSB hotspot maps. Through this combined experimental and computational approach, we aim to enhance our understanding of meiotic recombination and genetic exchange processes in budding yeast, with the potential to expand this methodology to other organisms by applying a few modifications.


Asunto(s)
Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas , Meiosis , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Meiosis/genética , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Biología Computacional/métodos
8.
Methods Mol Biol ; 2818: 133-145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39126471

RESUMEN

Oogenesis is the central process required to produce viable oocytes in female mammals. It is initiated during embryonic development, and it involves the specification of primordial germ cells (PGCs) and progresses through the activation of the meiotic program, reaching a crucial phase in prophase I before pausing at diplotene around the time of birth. The significance of meiosis, particularly the prophase I stage, cannot be overstated, as it plays a pivotal role in ensuring the formation of healthy gametes, a prerequisite for successful reproduction. While research has explored meiosis across various organisms, understanding how environmental factors, including radiation, drugs, endocrine disruptors, reproductive age, or diet, influence this complex developmental process remains incomplete. In this chapter, we describe an ex vivo culture method to investigate meiotic prophase I and beyond and the disruption of oogenesis by external factors. Using this methodology, it is possible to evaluate the effects of individual xenobiotics by administering chemicals at specific points during oogenesis. This culture technique was optimized to study the effects of two selected endocrine disruptors (vinclozolin and MEHP), demonstrating that vinclozolin exposure delayed meiotic differentiation and MEHP exposure reduced follicle size. This approach also opens avenues for future applications, involving the exploration of established or novel pharmaceutical substances and their influence on essential events during prophase I, such as homologous recombination and chromosome segregation. These processes collectively dictate the ultimate fitness of oocytes, with potential implications for factors relevant to the reproductive age and fertility.


Asunto(s)
Meiosis , Ovario , Animales , Femenino , Ratones , Ovario/citología , Meiosis/efectos de los fármacos , Oogénesis/efectos de los fármacos , Oocitos/citología , Oocitos/efectos de los fármacos , Profase Meiótica I/efectos de los fármacos , Disruptores Endocrinos/farmacología , Oxazoles/farmacología , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos
9.
J Cell Biol ; 173(6): 893-903, 2006 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-16769819

RESUMEN

Mitotic disjunction of the repetitive ribosomal DNA (rDNA) involves specialized segregation mechanisms dependent on the conserved phosphatase Cdc14. The reason behind this requirement is unknown. We show that rDNA segregation requires Cdc14 partly because of its physical length but most importantly because a fraction of ribosomal RNA (rRNA) genes are transcribed at very high rates. We show that cells cannot segregate rDNA without Cdc14 unless they undergo genetic rearrangements that reduce rDNA copy number. We then demonstrate that cells with normal length rDNA arrays can segregate rDNA in the absence of Cdc14 as long as rRNA genes are not transcribed. In addition, our study uncovers an unexpected role for the replication barrier protein Fob1 in rDNA segregation that is independent of Cdc14. These findings demonstrate that highly transcribed loci can cause chromosome nondisjunction.


Asunto(s)
ADN Ribosómico/genética , Genes de ARNr , No Disyunción Genética , ARN Ribosómico/biosíntesis , Transcripción Genética/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Segregación Cromosómica , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Conversión Génica/fisiología , Eliminación de Gen , Dosificación de Gen , Genes cdc , Modelos Genéticos , Mutación , ARN Polimerasa II/metabolismo , Levaduras/citología
10.
Cells ; 10(10)2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34685541

RESUMEN

During meiosis, the budding yeast polo-like kinase Cdc5 is a crucial driver of the prophase I to meiosis I (G2/M) transition. The meiotic recombination checkpoint restrains cell cycle progression in response to defective recombination to ensure proper distribution of intact chromosomes to the gametes. This checkpoint detects unrepaired DSBs and initiates a signaling cascade that ultimately inhibits Ndt80, a transcription factor required for CDC5 gene expression. Previous work revealed that overexpression of CDC5 partially alleviates the checkpoint-imposed meiotic delay in the synaptonemal complex-defective zip1Δ mutant. Here, we show that overproduction of a Cdc5 version (Cdc5-ΔN70), lacking the N-terminal region required for targeted degradation of the protein by the APC/C complex, fails to relieve the zip1Δ-induced meiotic delay, despite being more stable and reaching increased protein levels. However, precise mutation of the consensus motifs for APC/C recognition (D-boxes and KEN) has no effect on Cdc5 stability or function during meiosis. Compared to the zip1Δ single mutant, the zip1Δ cdc5-ΔN70 double mutant exhibits an exacerbated meiotic block and reduced levels of Ndt80 consistent with persistent checkpoint activity. Finally, using a CDC5-inducible system, we demonstrate that the N-terminal region of Cdc5 is essential for its checkpoint erasing function. Thus, our results unveil an additional layer of regulation of polo-like kinase function in meiotic cell cycle control.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Regulación hacia Abajo , Meiosis , Quinasa Tipo Polo 1
11.
Front Cell Dev Biol ; 8: 594092, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195270

RESUMEN

The H2A.Z histone variant is deposited into the chromatin by the SWR1 complex, affecting multiple aspects of meiosis. We describe here a SWR1-independent localization of H2A.Z at meiotic telomeres and the centrosome. We demonstrate that H2A.Z colocalizes and interacts with Mps3, the SUN component of the linker of nucleoskeleton, and cytoskeleton (LINC) complex that spans the nuclear envelope and links meiotic telomeres to the cytoskeleton, promoting meiotic chromosome movement. H2A.Z also interacts with the meiosis-specific Ndj1 protein that anchors telomeres to the nuclear periphery via Mps3. Telomeric localization of H2A.Z depends on Ndj1 and the N-terminal domain of Mps3. Although telomeric attachment to the nuclear envelope is maintained in the absence of H2A.Z, the distribution of Mps3 is altered. The velocity of chromosome movement during the meiotic prophase is reduced in the htz1Δ mutant lacking H2A.Z, but it is unaffected in swr1Δ cells. We reveal that H2A.Z is an additional LINC-associated factor that contributes to promote telomere-driven chromosome motion critical for error-free gametogenesis.

12.
PLoS One ; 10(7): e0134297, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26225562

RESUMEN

A hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a meiotic adaptor protein Hop1, a 53BP1/Rad9 functional analog, and its associated kinase Mek1, a CHK2/Rad53-paralog, to mediate multiple functions: control of the formation and repair of programmed meiotic DNA double strand breaks, enforcement of inter-homolog bias, regulation of meiotic progression, and implementation of checkpoint responses. Here, we present evidence that the multi-functionality of the Tel1/Mec1-to-Hop1/Mek1 signalling depends on stepwise activation of Mek1 that is mediated by Tel1/Mec1 phosphorylation of two specific residues within Hop1: phosphorylation at the threonine 318 (T318) ensures the transient basal level Mek1 activation required for viable spore formation during unperturbed meiosis. Phosphorylation at the serine 298 (S298) promotes stable Hop1-Mek1 interaction on chromosomes following the initial phospho-T318 mediated Mek1 recruitment. In the absence of Dmc1, the phospho-S298 also promotes Mek1 hyper-activation necessary for implementing meiotic checkpoint arrest. Taking these observations together, we propose that the Hop1 phospho-T318 and phospho-S298 constitute key components of the Tel1/Mec1- based meiotic recombination surveillance (MRS) network and facilitate effective coupling of meiotic recombination and progression during both unperturbed and challenged meiosis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Meiosis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/química , Fosforilación , Proteínas de Saccharomyces cerevisiae/química , Serina/metabolismo , Temperatura
13.
Eur J Cell Biol ; 81(1): 9-16, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11893079

RESUMEN

Treatment of Allium cepa meristematic cells in metaphase with the topoisomerase II inhibitor ICRF-193, results in bridging of the sister chromatids at anaphase. Separation of the sisters in experimentally generated acentric chromosomal fragments was also inhibited by ICRF-193, indicating that some non-centromeric catenations also persist in metaphase chromosomes. Thus, catenations must be resolved by DNA topoisomerase II at the metaphase-to-anaphase transition to allow segregation of sisters. A passive mechanism could maintain catenations holding sisters until the onset of anaphase. At this point the opposite tension exerted on sister chromatids could render the decatenation reaction physically more favorable than catenation. But this possibility was dismissed as acentric chromosome fragments were able to separate their sister chromatids at anaphase. A timing mechanism (a common trigger for two processes taking different times to be completed) could passively couple the resolution of the last remaining catenations to the moment of anaphase onset. This possibility was also discarded as cells arrested in metaphase with microtubule-destabilising drugs still displayed anaphase bridges when released in the presence of ICRF-193. It is possible that a checkpoint mechanism prevents the release of the last catenations linking sisters until the onset of anaphase. To test whether cells are competent to fully resolve catenations before anaphase onset, we generated multinucleate plant cells. In this system, the nuclei within a single multinucleate cell displayed differences in chromosome condensation at metaphase, but initiated anaphase synchronously. When multinucleates were treated with ICRF-193 at the metaphase-toanaphase transition, tangled and untangled anaphases were observed within the same cell. This can only occur if cells are competent to disentangle sister chromatids before the onset of anaphase, but are prevented from doing so by a checkpoint mechanism.


Asunto(s)
Anafase/genética , Núcleo Celular/genética , Cromátides/genética , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes cdc/fisiología , Cebollas/genética , Inhibidores de Topoisomerasa II , Anafase/efectos de los fármacos , Benzamidas/farmacología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Núcleo Celular/efectos de los fármacos , Cromátides/efectos de los fármacos , Cromosomas/efectos de los fármacos , Cromosomas/genética , Fragmentación del ADN/efectos de los fármacos , Fragmentación del ADN/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Plantas/efectos de los fármacos , Dicetopiperazinas , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes cdc/efectos de los fármacos , Células Gigantes/citología , Células Gigantes/efectos de los fármacos , Células Gigantes/metabolismo , Hidroxiurea/farmacología , Metafase/efectos de los fármacos , Metafase/genética , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Cebollas/efectos de los fármacos , Piperazinas/farmacología
14.
PLoS One ; 8(12): e83982, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24386320

RESUMEN

Cells coordinate spindle formation with DNA repair and morphological modifications to chromosomes prior to their segregation to prevent cell division with damaged chromosomes. Here we uncover a novel and unexpected role for Aurora kinase in preventing the formation of spindles by Clb5-CDK (S-CDK) during meiotic prophase I and when the DDR is active in budding yeast. This is critical since S-CDK is essential for replication during premeiotic S-phase as well as double-strand break induction that facilitates meiotic recombination and, ultimately, chromosome segregation. Furthermore, we find that depletion of Cdc5 polo kinase activity delays spindle formation in DDR-arrested cells and that ectopic expression of Cdc5 in prophase I enhances spindle formation, when Ipl1 is depleted. Our findings establish a new paradigm for Aurora kinase function in both negative and positive regulation of spindle dynamics.


Asunto(s)
Aurora Quinasas/metabolismo , Cromosomas Fúngicos/metabolismo , Ciclina B/metabolismo , Profase Meiótica I , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromosomas Fúngicos/genética , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Huso Acromático/genética , Transcripción Genética
16.
Chromosome Res ; 15(5): 539-50, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17674144

RESUMEN

Budding yeast Mec1, a homolog of mammalian ATR/ATM, is an essential chromosome-based signal transduction protein. Mec1 is a key checkpoint regulator and plays a critical role in the maintenance of genome stability. Mec1 is also required for meiosis; loss of Mec1 functions leads to a number of meiotic defects including reduction in recombination, loss of inter-homolog bias, loss of crossover control, and failure in meiotic progression. Here we review currently available data on meiotic defects associated with loss of Mec1 functions and discuss the possibility that Mec1 may participate as a fundamentally positive player in coordinating and promoting basic meiotic chromosomal processes during normal meiosis.


Asunto(s)
Meiosis/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Péptidos y Proteínas de Señalización Intracelular , Mamíferos , Meiosis/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Recombinación Genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología
17.
Biol Res ; 39(2): 331-40, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16874408

RESUMEN

Root growth, G2 length, and the frequency of aberrant mitoses and apoptotic nuclei were recorded after a single X-ray irradiation, ranging from 2.5 to 40 Gy, in Allium cepa L. root meristematic cells. After 72 h of recovery, root growth was reduced in a dose-dependent manner from 10 to 40 Gy, but not at 2.5 or 5 Gy doses. Flow cytometry plus TUNEL (TdT-mediated dUTP nick end labeling) showed that activation of apoptosis occurred only after 20 and 40 Gy of X-rays. Nevertheless, irrespective of the radiation dose, conventional flow cytometry showed that cells accumulated in G2 (4C DNA content). Simultaneously, the mitotic index fell, though a mitotic wave appeared later. Cell accumulation in G2 was transient and partially reversed by caffeine, thus it was checkpoint-dependent. Strikingly, the additional G2 time provided by this checkpoint was never long enough to complete DNA repair. Then, in all cases, some G2 cells with still-unrepaired DNA underwent checkpoint adaptation, i.e., they entered into the late mitotic wave with chromatid breaks. These cells and those produced by the breakage of chromosomal bridges in anaphase will reach the G1 of the next cell cycle unrepaired, ensuring the appearance of genome instability.


Asunto(s)
Daño del ADN , Fase G2/fisiología , Genoma de Planta/efectos de la radiación , Inestabilidad Genómica/efectos de la radiación , Cebollas/efectos de la radiación , Apoptosis/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Citometría de Flujo , Meristema/genética , Meristema/efectos de la radiación , Mitosis/efectos de la radiación , Cebollas/citología , Cebollas/genética , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Factores de Tiempo
18.
Biol. Res ; 39(2): 331-340, 2006. ilus, graf
Artículo en Inglés | LILACS | ID: lil-432435

RESUMEN

Root growth, G2 length, and the frequency of aberrant mitoses and apoptotic nuclei were recorded after a single X-ray irradiation, ranging from 2.5 to 40 Gy, in Allium cepa L. root meristematic cells. After 72 h of recovery, root growth was reduced in a dose-dependent manner from 10 to 40 Gy, but not at 2.5 or 5 Gy doses. Flow cytometry plus TUNEL (TdT-mediated dUTP nick end labeling) showed that activation of apoptosis occurred only after 20 and 40 Gy of X-rays. Nevertheless, irrespective of the radiation dose, conventional flow cytometry showed that cells accumulated in G2 (4C DNA content). Simultaneously, the mitotic index fell, though a mitotic wave appeared later. Cell accumulation in G2 was transient and partially reversed by caffeine, thus it was checkpoint-dependent. Strikingly, the additional G2 time provided by this checkpoint was never long enough to complete DNA repair. Then, in all cases, some G2 cells with still-unrepaired DNA underwent checkpoint adaptation, i.e., they entered into the late mitotic wave with chromatid breaks. These cells and those produced by the breakage of chromosomal bridges in anaphase will reach the G1 of the next cell cycle unrepaired, ensuring the appearance of genome instability.


Asunto(s)
Daño del ADN , /fisiología , Genoma de Planta/efectos de la radiación , Inestabilidad Genómica/efectos de la radiación , Cebollas/efectos de la radiación , Apoptosis/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Citometría de Flujo , Meristema/genética , Meristema/efectos de la radiación , Mitosis/efectos de la radiación , Cebollas/citología , Cebollas/genética , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA