Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glia ; 68(7): 1396-1409, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32003513

RESUMEN

Astrogliosis comprises a variety of changes in astrocytes that occur in a context-specific manner, triggered by temporally diverse signaling events that vary with the nature and severity of brain insults. However, most mechanisms underlying astrogliosis were described using animals, which fail to reproduce some aspects of human astroglial signaling. Here, we report an in vitro model to study astrogliosis using human-induced pluripotent stem cells (iPSC)-derived astrocytes which replicate temporally intertwined aspects of reactive astrocytes in vivo. We analyzed the time course of astrogliosis by measuring nuclear translocation of NF-kB, production of cytokines, changes in morphology and function of iPSC-derived astrocytes exposed to TNF-α. We observed NF-kB p65 subunit nuclear translocation and increased gene expression of IL-1ß, IL-6, and TNF-α in the first hours following TNF-α stimulation. After 24 hr, conditioned media from iPSC-derived astrocytes exposed to TNF-α exhibited increased secretion of inflammation-related cytokines. After 5 days, TNF-α-stimulated cells presented a typical phenotype of astrogliosis such as increased immunolabeling of Vimentin and GFAP and nuclei with elongated shape and shrinkage. Moreover, ~50% decrease in aspartate uptake was observed during the time course of astrogliosis with no evident cell damage, suggesting astroglial dysfunction. Together, our results indicate that human iPSC-derived astrocytes reproduce canonical events associated with astrogliosis in a time dependent fashion. The approach described here may contribute to a better understanding of mechanisms governing human astrogliosis with potential applicability as a platform to uncover novel biomarkers and drug targets to prevent or mitigate astrogliosis associated with human brain disorders.


Asunto(s)
Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encefalopatías/metabolismo , Citocinas/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Filamentos Intermedios/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Vimentina/metabolismo
2.
Eur J Pharmacol ; 971: 176489, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492875

RESUMEN

Substance abuse disorder is a chronic condition for which pharmacological treatment options remain limited. L-type calcium channels (LTCC) have been implicated in drug-related plasticity and behavior. Specifically, dopaminergic neurons in the mesocorticolimbic pathway express Cav1.2 and Cav1.3 channels, which may regulate dopaminergic activity associated with reward behavior. Therefore, this study aimed to investigate the hypothesis that pre-administration of the LTCC blocker, isradipine can mitigate the effects of cocaine by modulating central glutamatergic transmission. For that, we administered isradipine at varying concentrations (1, 7.5, and 15 µg/µL) via intracerebroventricular injection in male Swiss mice. This pretreatment was carried out prior to subjecting animals to behavioral assessments to evaluate cocaine-induced locomotor sensitization and conditioned place preference (CPP). The results revealed that isradipine administered at a concentration of 1 µg/µL effectively attenuated both the sensitization and CPP induced by cocaine (15 mg/kg, via i. p.). Moreover, mice treated with 1 µg/µL of isradipine showed decreased presynaptic levels of glutamate and calcium in the cortex and hippocampus as compared to control mice following cocaine exposure. Notably, the gene expression of ionotropic glutamate receptors, AMPA, and NMDA, remained unchanged, as did the expression of Cav1.2 and Cav1.3 channels. Importantly, these findings suggest that LTCC blockage may inhibit behavioral responses to cocaine, most likely by decreasing glutamatergic input in areas related to addiction.


Asunto(s)
Bloqueadores de los Canales de Calcio , Cocaína , Ratones , Masculino , Animales , Bloqueadores de los Canales de Calcio/farmacología , Isradipino/farmacología , Ácido Glutámico , Cocaína/farmacología , Dopamina/metabolismo
3.
Mol Neurobiol ; 60(7): 3650-3663, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36917419

RESUMEN

Schizophrenia is a mental disorder with sex bias in disease onset and symptom severity. Recently, it was observed that females present more severe symptoms in the perimenstrual phase of the menstrual cycle. The administration of estrogen also alleviates schizophrenia symptoms. Despite this, little is known about symptom fluctuation over the menstrual cycle and the underlying mechanisms. To address this issue, we worked with the two-hit schizophrenia animal model induced by neonatal exposure to a virus-like particle, Poly I:C, associated with peripubertal unpredictable stress exposure. Prepulse inhibition of the startle reflex (PPI) in male and female mice was considered analogous to human schizophrenia-like behavior. Female mice were studied in the proestrus (high-estrogen estrous cycle phase) and diestrus (low-estrogen phase). Additionally, we evaluated the hippocampal mRNA expression of estrogen synthesis proteins; TSPO and aromatase; and estrogen receptors ERα, ERß, and GPER. We also collected peripheral blood mononuclear cells (PBMCs) from male and female patients with schizophrenia and converted them to induced microglia-like cells (iMGs) to evaluate the expression of GPER. We observed raised hippocampal expression of GPER in two-hit female mice at the proestrus phase without PPI deficits and higher levels of proteins related to estrogen synthesis, TSPO, and aromatase. In contrast, two-hit adult males with PPI deficits presented lower hippocampal mRNA expression of TSPO, aromatase, and GPER. iMGs from male and female patients with schizophrenia showed lower mRNA expression of GPER than controls. Therefore, our results suggest that GPER alterations constitute an underlying mechanism for sex influence in schizophrenia.


Asunto(s)
Receptores de Estrógenos , Esquizofrenia , Adulto , Humanos , Masculino , Femenino , Animales , Ratones , Receptores de Estrógenos/metabolismo , Receptor alfa de Estrógeno/metabolismo , Aromatasa/metabolismo , Leucocitos Mononucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Estrógenos/farmacología , ARN Mensajero , Proteínas de Unión al GTP/metabolismo , Receptores de GABA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA