Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Immunol ; 22(6): 735-745, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34017124

RESUMEN

Regulatory T (Treg) cells are a barrier for tumor immunity and a target for immunotherapy. Using single-cell transcriptomics, we found that CD4+ T cells infiltrating primary and metastatic colorectal cancer and non-small-cell lung cancer are highly enriched for two subsets of comparable size and suppressor function comprising forkhead box protein P3+ Treg and eomesodermin homolog (EOMES)+ type 1 regulatory T (Tr1)-like cells also expressing granzyme K and chitinase-3-like protein 2. EOMES+ Tr1-like cells, but not Treg cells, were clonally related to effector T cells and were clonally expanded in primary and metastatic tumors, which is consistent with their proliferation and differentiation in situ. Using chitinase-3-like protein 2 as a subset signature, we found that the EOMES+ Tr1-like subset correlates with disease progression but is also associated with response to programmed cell death protein 1-targeted immunotherapy. Collectively, these findings highlight the heterogeneity of Treg cells that accumulate in primary tumors and metastases and identify a new prospective target for cancer immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/inmunología , Hematopoyesis Clonal/inmunología , Neoplasias Colorrectales/inmunología , Neoplasias Pulmonares/inmunología , Linfocitos T Reguladores/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/secundario , Carcinoma de Pulmón de Células no Pequeñas/terapia , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Proliferación Celular/genética , Quimioterapia Adyuvante/métodos , Quitinasas/metabolismo , Colectomía , Colon/patología , Colon/cirugía , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Conjuntos de Datos como Asunto , Progresión de la Enfermedad , Resistencia a Antineoplásicos/inmunología , Femenino , Citometría de Flujo , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica/inmunología , Granzimas/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Estimación de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Masculino , Persona de Mediana Edad , Cultivo Primario de Células , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , RNA-Seq , Análisis de la Célula Individual , Proteínas de Dominio T Box/metabolismo , Linfocitos T Reguladores/metabolismo
2.
Eur J Immunol ; 54(4): e2350675, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38396108

RESUMEN

Human CD4+EOMES+ T cells are heterogeneous and contain Th1-cells, Tr1-cells, and CD4+CTL. Tr1- cells and non-classical EOMES+ Th1-cells displayed, respectively, anti- and pro-inflammatory cytokine profiles, but both expressed granzyme-K, produced IFN-γ, and suppressed T-cell proliferation. Diffusion map suggested a progressive CD4+T-cell differentiation from naïve to cytotoxic cells and identified EOMES+Th1-cells as putative Tr1-cell precursors (pre-Tr1).


Asunto(s)
Interleucina-10 , Subgrupos de Linfocitos T , Humanos , Linfocitos T Reguladores , Linfocitos T CD4-Positivos , Células TH1 , Diferenciación Celular , Proteínas de Dominio T Box/genética
3.
Eur J Immunol ; 53(5): e2149775, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36653901

RESUMEN

Type 1 regulatory (Tr1) T cells are currently defined all T cells with regulatory functions that lack FOXP3 expression and produce IL-10. Tr1 cells are heterogeneous, and the different reported properties of Tr1-cell populations have caused some confusion in the field. Moreover, understanding the role of Tr1 cells in immune-mediated diseases has been hampered by the lack of a lineage-defining transcription factor. Several independent studies indicated recently that the transcription factor Eomesodermin (EOMES) could act as a lineage-defining transcription factor in a population of IL-10 and IFN-γ co-producing Tr1-like cells, since EOMES directly induces IFN-γ and cytotoxicity, enhances IL-10, and antagonizes alternative T-cell fates. Here, we review the known properties of EOMES+ Tr1-like cells. They share several key characteristics with other Tr1 cells (i.e., "Tr1-like"), namely high IL-10 production, cytotoxicity, and suppressive capabilities. Notably, they also share some features with FOXP3+ Tregs, like downregulation of IL-7R and CD40L. In addition, they possess several unique, EOMES-dependent features, that is, expression of GzmK and IFN-γ, and downregulation of type-17 cytokines. Published evidence indicates that EOMES+ Tr1-like cells play key roles in graft-versus-host disease, colitis, systemic autoimmunity and in tumors. Thus, EOMES+ Tr1-like cells are key players of the adaptive immune system that are involved in several different immune-mediated diseases.


Asunto(s)
Interleucina-10 , Linfocitos T Reguladores , Interleucina-10/metabolismo , Diferenciación Celular , Factores de Transcripción Forkhead/metabolismo , Biología
4.
Clin Immunol ; 254: 109684, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37451415

RESUMEN

BACKGROUND: SARS-CoV-2 infections have been associated with the onset of thyroid disorders like classic subacute thyroiditis (SAT) or atypical SAT upon severe COVID disease (COV-A-SAT). Little is known about thyroid anti-viral immune responses. OBJECTIVES: To define the role of T-cells in COV-A-SAT. METHODS: T-cells from COV-A-SAT patients were analyzed by multi-dimensional flow cytometry, UMAP and DiffusionMap dimensionality reduction and FlowSOM clustering. T-cells from COVID-naïve healthy donors, patients with autoimmune thyroiditis (ATD) and with SAT following COVID vaccination were analyzed as controls. T-cells were analyzed four and eight months post-infection in peripheral blood and in thyroid specimen obtained by ultrasound-guided fine needle aspiration. SARS-COV2-specific T-cells were identified by cytokine production induced by SARS-COV2-derived peptides and with COVID peptide-loaded HLA multimers after HLA haplotyping. RESULTS: COV-A-SAT was associated with HLA-DRB1*13 and HLA-B*57. COV-A-SAT patients contained activated Th1- and cytotoxic CD4+ and CD8+ effector cells four months post-infection, which acquired a quiescent memory phenotype after eight months. Anti-SARS-CoV-2-specific T-cell responses were readily detectable in peripheral blood four months post-infection, but were reduced after eight months. CD4+ and CD8+ tissue-resident memory cells (TRM) were present in the thyroid, and circulating CXCR3+T-cells identified as their putative precursors. SARS-CoV-2-specific T-cells were enriched in the thyroid, and acquired a TRM phenotype eight months post-infection. CONCLUSIONS: The association of COV-A-SAT with specific HLA haplotypes suggests a genetic predisposition and a key role for T-cells. COV-A-SAT is characterized by a prolonged systemic anti-viral effector T-cell response and the late generation of COVID-specific TRM in the thyroid target tissue.


Asunto(s)
COVID-19 , Glándula Tiroides , Humanos , SARS-CoV-2 , ARN Viral , Fenotipo , Anticuerpos
6.
Chest ; 162(2): 385-393, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35231481

RESUMEN

BACKGROUND: Lymphangioleiomyomatosis (LAM) and pulmonary Langerhans cell histiocytosis (PLCH) are cystic lung diseases in which a neoplastic cell is thought to be responsible for disease pathogenesis. The neoplastic LAM cell has mutations in the TSC genes, TSC1 or TSC2, whereas the neoplastic PLCH cell may have mutations in several genes (eg, BRAF, NRAS, MAP2K1). These mutations are not specific for PLCH and have been described in multiple cancers. TSC1 or TSC2 mutations and loss of heterozygosity (LOH) have also been described in cancers. RESEARCH QUESTION: Is TSC2 LOH specific to LAM or is it also found in PLCH? STUDY DESIGN AND METHODS: We recruited patients with LAM (n = 53) and healthy volunteers (n = 22) and compared the presence of cells with TSC2 LOH with patients with PLCH (n = 12). Blood and urine samples were collected for analysis. Fluorescence-activated cell sorting (FACS) was used to identify subpopulations of cells from blood and urine samples. We isolated CD45-CD235a-, CD45-CD235a+, and CD45+CD235a- cells from blood after density gradient separation. Cells were screened for TSC2 LOH at five microsatellites markers (ie, kg8, D16S3395, D16S3024, D16S521, D16S291). We obtained four cell subpopulations from urine (ie, CD44v6+CD9+, CD44v6+CD9-, CD44v6-CD9+, CD44v6-CD9-). RESULTS: Using FACS, cells were isolated from blood and urine from patients with PLCH that showed TSC2 LOH. Healthy volunteers did not have cells with TSC2 LOH. As a control, cells isolated from blood and urine from patients with LAM gave results similar to those reported previously. These data show that TSC2 LOH is found in patients with cystic lung diseases with potential neoplastic characteristics, and in patients with cancer. INTERPRETATION: The presence of TSC2 LOH in circulating cells is not specific for LAM. The data suggest that chromosomal abnormalities affecting the TSC2 gene are found in other diseases associated with cells having cancer-like neoplastic cells.


Asunto(s)
Histiocitosis de Células de Langerhans , Enfermedades Pulmonares , Linfangioleiomiomatosis , Histiocitosis de Células de Langerhans/genética , Humanos , Pérdida de Heterocigocidad , Enfermedades Pulmonares/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteínas Supresoras de Tumor/genética
7.
iScience ; 23(9): 101529, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33083759

RESUMEN

Nuclear factor (NF)-κB controls the transcriptional response to inflammatory signals by translocating into the nucleus, but we lack a single-cell characterization of the resulting transcription dynamics. Here we show that upon tumor necrosis factor (TNF)-α transcription of NF-κB target genes is heterogeneous in individual cells but results in an average nascent transcription profile that is prompt (i.e., occurs almost immediately) and sharp (i.e., increases and decreases rapidly) compared with NF-κB nuclear localization. Using an NF-κB-controlled MS2 reporter we show that the single-cell nascent transcription is more heterogeneous than NF-κB translocation dynamics, with a fraction of synchronized "first responders" that shape the average transcriptional profile and are more prone to respond to multiple TNF-α stimulations. A mathematical model combining NF-κB-mediated gene activation and a gene refractory state is able to reproduce these features. Our work shows how the expression of target genes induced by transcriptional activators can be heterogeneous across single cells and yet time resolved on average.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA