Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Acoust Soc Am ; 156(3): 2060-2076, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39345135

RESUMEN

This study investigated whether selective apical stimulation improves temporal pitch perception in eight MED-EL cochlear implant recipients and whether any such improvement relates to auditory-nerve survival. Three stimulation conditions differing in the place and width of excitation were evaluated: single-electrode stimulation of (i) the most apical, (ii) a mid-array electrode, and (iii) multi-electrode stimulation of the four most apical electrodes. Stimulation-current-induced non-stimulating electrode voltages were recorded to identify extracochlear electrodes and gauge insertion depth. The pitches of the four most apical electrodes were compared using place-pitch ranking. Rate-pitch ranking was assessed between 80 and 981 pulses per second for the three stimulation conditions, to estimate the "upper limit" of temporal pitch. Single-electrode apical stimulation did not increase the upper limit relative to other conditions. The polarity effect (PE), defined as the difference between thresholds obtained for triphasic pulse trains with their central high-amplitude phase either anodic or cathodic, was obtained to evaluate peripheral neural health. The PE did not differ between apical and mid-array stimulation or correlate with the upper limit. In conclusion, we found no improvement of temporal pitch perception with single-electrode apical stimulation, and discuss possible explanations for this observation.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Estimulación Eléctrica , Percepción de la Altura Tonal , Humanos , Persona de Mediana Edad , Anciano , Implantación Coclear/instrumentación , Femenino , Masculino , Adulto , Estimulación Acústica/métodos , Nervio Coclear/fisiología , Nervio Coclear/fisiopatología , Umbral Auditivo , Factores de Tiempo , Personas con Deficiencia Auditiva/psicología , Personas con Deficiencia Auditiva/rehabilitación
2.
Ear Hear ; 44(3): 627-640, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36477611

RESUMEN

OBJECTIVES: Electrically evoked compound action-potentials (ECAPs) can be recorded using the electrodes in a cochlear implant (CI) and represent the synchronous responses of the electrically stimulated auditory nerve. ECAPs can be obtained using a forward-masking method that measures the neural response to a probe and masker electrode separately and in combination. The panoramic ECAP (PECAP) analyses measured ECAPs obtained using multiple combinations of masker and probe electrodes and uses a nonlinear optimization algorithm to estimate current spread from each electrode and neural health along the cochlea. However, the measurement of ECAPs from multiple combinations of electrodes is too time consuming for use in clinics. Here, we propose and evaluate SpeedCAP, a speedy method for obtaining the PECAP measurements that minimizes recording time by exploiting redundancies between multiple ECAP measures. DESIGN: In the first study, 11 users of Cochlear Ltd. CIs took part. ECAPs were recorded using the forward-masking artifact-cancelation technique at the most comfortable loudness level (MCL) for every combination of masker and probe electrodes for all active electrodes in the users' MAPs, as per the standard PECAP recording paradigm. The same current levels and recording parameters were then used to collect ECAPs in the same users with the SpeedCAP method. The ECAP amplitudes were then compared between the two conditions, as were the corresponding estimates of neural health and current spread calculated using the PECAP method previously described by Garcia et al. The second study measured SpeedCAP intraoperatively in 8 CI patients and with all maskers and probes presented at the same current level to assess feasibility. ECAPs for the subset of conditions where the masker and probe were presented on the same electrode were compared with those obtained using the slower approach leveraged by the standard clinical software. RESULTS: Data collection time was reduced from ≈45 to ≈8 minutes. There were no significant differences between normalized root mean squared error (RMSE) repeatability metrics for post-operative PECAP and SpeedCAP data, nor for the RMSEs calculated between PECAP and SpeedCAP data. The comparison achieved 80% power to detect effect sizes down to 8.2% RMSE. When between-participant differences were removed, both the neural-health (r = 0.73) and current-spread (r = 0.65) estimates were significantly correlated ( p < 0.0001, df = 218) between SpeedCAP and PECAP conditions across all electrodes, and showed RMSE errors of 12.7 ± 4.7% and 16.8 ± 8.8%, respectively (with the ± margins representing 95% confidence intervals). Valid ECAPs were obtained in all patients in the second study, demonstrating intraoperative feasibility of SpeedCAP. No significant differences in RMSEs were detectable between post- and intra-operative ECAP measurements, with the comparison achieving 80% power to detect effect sizes down to 13.3% RMSE. CONCLUSIONS: The improved efficiency of SpeedCAP provides time savings facilitating multi-electrode ECAP recordings in routine clinical practice. SpeedCAP data collection is sufficiently quick to record intraoperatively, and adds no more than 8.2% error to the ECAP amplitudes. Such measurements could thereafter be submitted to models such as PECAP to provide patient-specific patterns of neural activation to inform programming of clinical MAPs and identify causes of poor performance at the electrode-nerve interface of CI users. The speed and accuracy of these measurements also opens up a wide range of additional research questions to be addressed.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Humanos , Implantación Coclear/métodos , Cóclea/fisiología , Potenciales Evocados , Potenciales Evocados Auditivos/fisiología , Potenciales de Acción/fisiología , Nervio Coclear/fisiología , Estimulación Eléctrica
3.
J Acoust Soc Am ; 152(1): 226, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35931513

RESUMEN

This study assessed the detection of mistuning of a single harmonic in complex tones (CTs) containing either low-frequency harmonics or very high-frequency harmonics, for which phase locking to the temporal fine structure is weak or absent. CTs had F0s of either 280 or 1400 Hz and contained harmonics 6-10, the 8th of which could be mistuned. Harmonics were presented either diotically or dichotically (odd and even harmonics to different ears). In the diotic condition, mistuning-detection thresholds were very low for both F0s and consistent with detection of temporal interactions (beats) produced by peripheral interactions of components. In the dichotic condition, for which the components in each ear were more widely spaced and beats were not reported, the mistuned component was perceptually segregated from the complex for the low F0, but subjects reported no "popping out" for the high F0 and performance was close to chance. This is consistent with the idea that phase locking is required for perceptual segregation to occur. For diotic presentation, the perceived beat rate corresponded to the amount of mistuning (in Hz). It is argued that the beat percept cannot be explained solely by interactions between the mistuned component and its two closest harmonic neighbours.


Asunto(s)
Percepción , Estimulación Acústica , Humanos , Psicoacústica
4.
J Acoust Soc Am ; 150(1): 506, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34340491

RESUMEN

We simulated the effect of several automatic gain control (AGC) and AGC-like systems and head movement on the output levels, and resulting interaural level differences (ILDs) produced by bilateral cochlear-implant (CI) processors. The simulated AGC systems included unlinked AGCs with a range of parameter settings, linked AGCs, and two proprietary multi-channel systems used in contemporary CIs. The results show that over the range of values used clinically, the parameters that most strongly affect dynamic ILDs are the release time and compression ratio. Linking AGCs preserves ILDs at the expense of monaural level changes and, possibly, comfortable listening level. Multichannel AGCs can whiten output spectra, and/or distort the dynamic changes in ILD that occur during and after head movement. We propose that an unlinked compressor with a ratio of approximately 3:1 and a release time of 300-500 ms can preserve the shape of dynamic ILDs, without causing large spectral distortions or sacrificing listening comfort.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Localización de Sonidos , Percepción del Habla , Percepción Auditiva , Movimientos de la Cabeza
5.
J Acoust Soc Am ; 149(4): 2644, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33940917

RESUMEN

Listeners appear able to extract a residue pitch from high-frequency harmonics for which phase locking to the temporal fine structure is weak or absent. The present study investigated musical interval perception for high-frequency harmonic complex tones using the same stimuli as Lau, Mehta, and Oxenham [J. Neurosci. 37, 9013-9021 (2017)]. Nine young musically trained listeners with especially good high-frequency hearing adjusted various musical intervals using harmonic complex tones containing harmonics 6-10. The reference notes had fundamental frequencies (F0s) of 280 or 1400 Hz. Interval matches were possible, albeit markedly worse, even when all harmonic frequencies were above the presumed limit of phase locking. Matches showed significantly larger systematic errors and higher variability, and subjects required more trials to finish a match for the high than for the low F0. Additional absolute pitch judgments from one subject with absolute pitch, for complex tones containing harmonics 1-5 or 6-10 with a wide range of F0s, were perfect when the lowest frequency component was below about 7 kHz, but at least 50% of responses were incorrect when it was 8 kHz or higher. The results are discussed in terms of the possible effects of phase-locking information and familiarity with high-frequency stimuli on pitch.


Asunto(s)
Música , Audición , Humanos , Percepción , Discriminación de la Altura Tonal , Percepción de la Altura Tonal
6.
Ear Hear ; 41(5): 1196-1207, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31923041

RESUMEN

OBJECTIVES: Extracochlear electrodes in cochlear implants (CI), defined as individual electrodes on the electrode array located outside of the cochlea, are not a rare phenomenon. The presence of extracochlear electrodes frequently goes unnoticed and could result in them being assigned stimulation frequencies that are either not delivered to, or stimulating neurons that overlap with intracochlear electrodes, potentially reducing performance. The current gold-standard for detection of extracochlear electrodes is computed tomography (CT), which is time-intensive, costly and involves radiation. It is hypothesized that a collection of Stimulation-Current-Induced Non-Stimulating Electrode Voltage recordings (SCINSEVs), commonly referred to as "transimpedance measurements (TIMs)" or electric field imaging (EFI), could be utilized to detect extracochlear electrodes even when contact impedances are low. An automated analysis tool is introduced for detection and quantification of extracochlear electrodes. DESIGN: Eight fresh-frozen human cadaveric heads were implanted with the Advanced Bionics HiRes90K with a HiFocus 1J lateral-wall electrode. The cochlea was flushed with 1.0% saline through the lateral semicircular canal. Contact impedances and SCINSEVs were recorded for complete insertion and for 1 to 5 extracochlear electrodes. Measured conditions included: air in the middle ear (to simulate electrodes situated in the middle ear), 1.0% saline in the middle ear (to simulate intraoperative conditions with saline or blood in the middle ear), and soft tissue (temporal muscle) wrapped around the extracochlear electrodes (to simulate postoperative soft-tissue encapsulation of the electrodes). Intraoperative SCINSEVs from patients were collected, for clinical purposes during slow insertion of the electrode array, as well as from a patient postoperatively with known extracochlear electrodes. RESULTS: Full insertion of the cochlear implant in the fresh-frozen human cadaveric heads with a flushed cochlea resulted in contact impedances in the range of 6.06 ± 2.99 kΩ (mean ± 2SD). Contact impedances were high when the extracochlear electrodes were located in air, but remained similar to intracochlear contact impedances when in saline or soft tissue. SCINSEVs showed a change in shape for the extracochlear electrodes in air, saline, and soft tissue. The automated analysis tool showed a specificity and sensitivity of 100% for detection of two or more extracochlear electrodes in saline and soft tissue. The quantification of two or more extracochlear electrodes was correct for 84% and 81% of the saline and soft tissue measurements, respectively. CONCLUSIONS: Our analysis of SCINSEVs (specifically the EFIs from this manufacturer) shows good potential as a detection tool for extracochlear electrodes, even when contact impedances remain similar to intracochlear values. SCINSEVs could potentially replace CT in the initial screening for extracochlear electrodes. Detecting migration of the electrode array during the final stages of surgery could potentially prevent re-insertion surgery for some CI users. The automated detection tool could assist in detection and quantification of two or more extracochlear electrodes.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Cadáver , Cóclea/diagnóstico por imagen , Cóclea/cirugía , Oído Medio , Electrodos Implantados , Humanos
7.
J Acoust Soc Am ; 148(5): 3322, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33261392

RESUMEN

Lau et al. [J. Neurosci. 37, 9013-9021 (2017)] showed that discrimination of the fundamental frequency (F0) of complex tones with components in a high-frequency region was better than predicted from the optimal combination of information from the individual harmonics. The predictions depend on the assumption that psychometric functions for frequency discrimination have a slope of 1 at high frequencies. This was tested by measuring psychometric functions for F0 discrimination and frequency discrimination. Difference limens for F0 (F0DLs) and difference limens for frequency for each frequency component were also measured. Complex tones contained harmonics 6-10 and had F0s of 280 or 1400 Hz. Thresholds were measured using 210-ms tones presented diotically in diotic threshold-equalizing noise (TEN), and 1000-ms tones presented diotically in dichotic TEN. The slopes of the psychometric functions were close to 1 for all frequencies and F0s. The ratio of predicted to observed F0DLs was around 1 or smaller for both F0s, i.e., not super-optimal, and was significantly smaller for the low than for the high F0. The results are consistent with the idea that place information alone can convey pitch, but pitch is more salient when phase-locking information is available.


Asunto(s)
Discriminación de la Altura Tonal , Percepción de la Altura Tonal , Umbral Diferencial , Ruido , Psicometría
8.
J Neurosci ; 38(11): 2844-2853, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29440556

RESUMEN

Auditory signals arrive at the ear as a mixture that the brain must decompose into distinct sources based to a large extent on acoustic properties of the sounds. An important question concerns whether listeners have voluntary control over how many sources they perceive. This has been studied using pure high (H) and low (L) tones presented in the repeating pattern HLH-HLH-, which can form a bistable percept heard either as an integrated whole (HLH-) or as segregated into high (H-H-) and low (-L-) sequences. Although instructing listeners to try to integrate or segregate sounds affects reports of what they hear, this could reflect a response bias rather than a perceptual effect. We had human listeners (15 males, 12 females) continuously report their perception of such sequences and recorded neural activity using MEG. During neutral listening, a classifier trained on patterns of neural activity distinguished between periods of integrated and segregated perception. In other conditions, participants tried to influence their perception by allocating attention either to the whole sequence or to a subset of the sounds. They reported hearing the desired percept for a greater proportion of time than when listening neutrally. Critically, neural activity supported these reports; stimulus-locked brain responses in auditory cortex were more likely to resemble the signature of segregation when participants tried to hear segregation than when attempting to perceive integration. These results indicate that listeners can influence how many sound sources they perceive, as reflected in neural responses that track both the input and its perceptual organization.SIGNIFICANCE STATEMENT Can we consciously influence our perception of the external world? We address this question using sound sequences that can be heard either as coming from a single source or as two distinct auditory streams. Listeners reported spontaneous changes in their perception between these two interpretations while we recorded neural activity to identify signatures of such integration and segregation. They also indicated that they could, to some extent, choose between these alternatives. This claim was supported by corresponding changes in responses in auditory cortex. By linking neural and behavioral correlates of perception, we demonstrate that the number of objects that we perceive can depend not only on the physical attributes of our environment, but also on how we intend to experience it.


Asunto(s)
Percepción Auditiva/fisiología , Intención , Estimulación Acústica , Adolescente , Adulto , Atención/fisiología , Corteza Auditiva/fisiología , Electroencefalografía , Femenino , Humanos , Magnetoencefalografía , Masculino , Sonido , Adulto Joven
9.
Ear Hear ; 40(1): 135-142, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29933258

RESUMEN

OBJECTIVES: The primary aim was to identify the proportion of individuals within the adult cochlear implant population who are aware of tinnitus and those who report a negative impact from this perception, using a bespoke questionnaire designed to limit bias. A secondary aim was to use qualitative analysis of open-text responses to identify themes linked to tinnitus perception in this population. DESIGN: A cross-sectional questionnaire study of a large clinical population who received an implant from Cambridge University Hospitals, United Kingdom. RESULTS: Seventy-five percent of respondents reported tinnitus awareness. When impact scores for six areas of difficulty were ranked, 13% of individuals ranked tinnitus their primary concern and nearly a third ranked tinnitus in the top two positions. Tinnitus impact was not found to reduce with duration since implantation. The most common open-text responses were linked to a general improvement postimplantation and acute tinnitus alleviation specific to times when the device was in use. CONCLUSIONS: Tinnitus is a problem for a significant proportion of individuals with a cochlear implant. Clinicians, scientists, and cochlear implant manufacturers should be aware that management of tinnitus may be a greater priority for an implantee than difficulties linked to speech perception. Where a positive effect of implantation was reported, there was greater evidence for masking of tinnitus via the implant rather than reversal of maladaptive plasticity.


Asunto(s)
Implantación Coclear , Sordera/epidemiología , Acúfeno/epidemiología , Adulto , Anciano , Implantes Cocleares , Estudios Transversales , Sordera/rehabilitación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Encuestas y Cuestionarios , Acúfeno/fisiopatología , Reino Unido/epidemiología , Escala Visual Analógica
10.
J Acoust Soc Am ; 145(3): 1389, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-31067937

RESUMEN

This study simulated the effect of unlinked automatic gain control (AGC) and head movement on the output levels and resulting inter-aural level differences (ILDs) produced by bilateral cochlear implant (CI) processors. The angular extent and velocity of the head movements were varied in order to observe the interaction between unlinked AGC and head movement. Static, broadband input ILDs were greatly reduced by the high-ratio, slow-time-constant AGC used. The size of head-movement-induced dynamic ILDs depended more on the velocity and angular extent of the head movement than on the angular position of the source. The profiles of the dynamic, broadband output ILDs were very different from the dynamic, broadband input ILD profiles. Short-duration, high-velocity head movements resulted in dynamic output ILDs that continued to change after head movement had stopped. Analysis of narrowband, single-channel ILDs showed that static output ILDs were reduced across all frequencies, producing low-frequency ILDs of the opposite sign to the high-frequency ILDs. During head movements, low- and high-frequency ILDs also changed with opposite sign. The results showed that the ILDs presented to bilateral CI listeners during head turns were highly distorted by the interaction of the bilateral, unlinked AGC and the level changes induced by head movement.

11.
J Acoust Soc Am ; 146(1): 705, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31370586

RESUMEN

Speech-in-noise perception is a major problem for users of cochlear implants (CIs), especially with non-stationary background noise. Noise-reduction algorithms have produced benefits but relied on a priori information about the target speaker and/or background noise. A recurrent neural network (RNN) algorithm was developed for enhancing speech in non-stationary noise and its benefits were evaluated for speech perception, using both objective measures and experiments with CI simulations and CI users. The RNN was trained using speech from many talkers mixed with multi-talker or traffic noise recordings. Its performance was evaluated using speech from an unseen talker mixed with different noise recordings of the same class, either babble or traffic noise. Objective measures indicated benefits of using a recurrent over a feed-forward architecture, and predicted better speech intelligibility with than without the processing. The experimental results showed significantly improved intelligibility of speech in babble noise but not in traffic noise. CI subjects rated the processed stimuli as significantly better in terms of speech distortions, noise intrusiveness, and overall quality than unprocessed stimuli for both babble and traffic noise. These results extend previous findings for CI users to mostly unseen acoustic conditions with non-stationary noise.

12.
J Acoust Soc Am ; 144(5): 2751, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30522299

RESUMEN

The symmetric biphasic pulses used in contemporary cochlear implants (CIs) consist of both cathodic and anodic currents, which may stimulate different sites on spiral ganglion neurons and, potentially, interact with each other. The effect on the order of anodic and cathodic stimulation on loudness at short inter-pulse intervals (IPIs; 0-800 µs) is investigated. Pairs of opposite-polarity pseudomonophasic (PS) pulses were used and the amplitude of each pulse was manipulated independently. In experiment 1 the two PS pulses differed in their current level in order to elicit the same loudness when presented separately. Six users of the Advanced Bionics CI (Valencia, CA) loudness-ranked trains of the pulse pairs using a midpoint-comparison procedure. Stimuli with anodic-leading polarity were louder than those with cathodic-leading polarity for IPIs shorter than 400 µs. This effect was small-about 0.3 dB-but consistent across listeners. When the same procedure was repeated with both PS pulses having the same current level (experiment 2), anodic-leading stimuli were still louder than cathodic-leading stimuli at very short intervals. However, when using symmetric biphasic pulses (experiment 3) the effect disappeared at short intervals and reversed at long intervals. Possible peripheral sources of such polarity interactions are discussed.


Asunto(s)
Percepción Auditiva/fisiología , Implantes Cocleares/efectos adversos , Percepción Sonora/fisiología , Ganglio Espiral de la Cóclea/fisiopatología , Estimulación Acústica , Anciano , Implantación Coclear/métodos , Implantes Cocleares/estadística & datos numéricos , Estimulación Eléctrica/efectos adversos , Electrodos Implantados/normas , Humanos , Persona de Mediana Edad , Discriminación de la Altura Tonal/fisiología , Diseño de Prótesis , Ganglio Espiral de la Cóclea/cirugía
13.
J Acoust Soc Am ; 144(5): 2983, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30522311

RESUMEN

Psychophysical tests of spectro-temporal resolution may aid the evaluation of methods for improving hearing by cochlear implant (CI) listeners. Here the STRIPES (Spectro-Temporal Ripple for Investigating Processor EffectivenesS) test is described and validated. Like speech, the test requires both spectral and temporal processing to perform well. Listeners discriminate between complexes of sine sweeps which increase or decrease in frequency; difficulty is controlled by changing the stimulus spectro-temporal density. Care was taken to minimize extraneous cues, forcing listeners to perform the task only on the direction of the sweeps. Vocoder simulations with normal hearing listeners showed that the STRIPES test was sensitive to the number of channels and temporal information fidelity. An evaluation with CI listeners compared a standard processing strategy with one having very wide filters, thereby spectrally blurring the stimulus. Psychometric functions were monotonic for both strategies and five of six participants performed better with the standard strategy. An adaptive procedure revealed significant differences, all in favour of the standard strategy, at the individual listener level for six of eight CI listeners. Subsequent measures validated a faster version of the test, and showed that STRIPES could be performed by recently implanted listeners having no experience of psychophysical testing.


Asunto(s)
Implantación Coclear/instrumentación , Implantes Cocleares/efectos adversos , Percepción del Habla/fisiología , Estimulación Acústica/métodos , Adulto , Anciano , Anciano de 80 o más Años , Percepción Auditiva/fisiología , Biónica , Implantación Coclear/rehabilitación , Señales (Psicología) , Femenino , Pruebas Auditivas/métodos , Humanos , Masculino , Persona de Mediana Edad , Ruido/efectos adversos , Ruido/prevención & control , Discriminación de la Altura Tonal , Psicoacústica , Psicometría/métodos , Factores de Tiempo
14.
Adv Exp Med Biol ; 894: 419-426, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27080683

RESUMEN

It has been argued that musical pitch, i.e. pitch in its strictest sense, requires phase locking at the level of the auditory nerve. The aim of the present study was to assess whether a musical pitch can be heard in the absence of peripheral phase locking, using Zwicker tones (ZTs). A ZT is a faint, decaying tonal percept that arises after listening to a band-stop (notched) broadband noise. The pitch is within the frequency range of the notch. Several findings indicate that ZTs are unlikely to be produced mechanically at the level of the cochlea and, therefore, there is unlikely to be phase locking to ZTs in the auditory periphery. In stage I of the experiment, musically trained subjects adjusted the frequency, level, and decay time of an exponentially decaying sinusoid so that it sounded similar to the ZT they perceived following a broadband noise, for various notch positions. In stage II, subjects adjusted the frequency of a sinusoid so that its pitch was a specified musical interval below that of either a preceding ZT or a preceding sinusoid (as determined in stage I). Subjects selected appropriate frequency ratios for ZTs, although the standard deviations of the adjustments were larger for the ZTs than for the equally salient sinusoids by a factor of 1.1-2.2. The results suggest that a musical pitch may exist in the absence of peripheral phase locking.


Asunto(s)
Música , Ruido , Percepción de la Altura Tonal/fisiología , Humanos
15.
J Acoust Soc Am ; 140(4): 2257, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27794303

RESUMEN

It was assessed whether Zwicker tones (ZTs) (an auditory afterimage produced by a band-stop noise) have a musical pitch. First (stage I), musically trained subjects adjusted the frequency, level, and decay time of an exponentially decaying diotic sinusoid to sound similar to the ZT they perceived following the presentation of diotic broadband noise, for various band-stop positions. Next (stage II), subjects adjusted a sinusoid in frequency and level so that its pitch was a specified musical interval below that of either a preceding ZT or a preceding sinusoid, and so that it was equally loud. For each subject the reference sinusoid corresponded to their adjusted sinusoid from stage I. Subjects selected appropriate frequency ratios for ZTs, although the standard deviations of the adjustments were larger for the ZTs than for the equally salient sinusoids by a factor of 1.0-2.2. Experiments with monaural stimuli led to similar results, although the pitch of the ZTs could differ for monaural and diotic presentation of the ZT-exciting noise. The results suggest that a weak musical pitch may exist in the absence of phase locking in the auditory nerve to the frequency corresponding to the pitch (or harmonics thereof) at the time of the percept.

16.
J Acoust Soc Am ; 138(5): 2885-905, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26627764

RESUMEN

Four experiments measured the perceptual and neural correlates of the temporal pattern of electrical stimulation applied to one cochlear-implant (CI) electrode, for several subjects. Neural effects were estimated from the electrically evoked compound action potential (ECAP) to each pulse. Experiment 1 attenuated every second pulse of a 200-pps pulse train. Increasing attenuation caused pitch to drop and the ECAP to become amplitude modulated, thereby providing an estimate of the relationship between neural modulation and pitch. Experiment 2 showed that the pitch of a 200-pps pulse train can be reduced by delaying every second pulse, so that the inter-pulse-intervals alternate between longer and shorter intervals. This caused the ECAP to become amplitude modulated, but not by enough to account for the change in pitch. Experiment 3 replicated the finding that rate discrimination deteriorates with increases in baseline rate. This was accompanied by an increase in ECAP modulation, but by an amount that produced only a small effect on pitch in experiment 1. Experiment 4 showed that preceding a pulse train with a carefully selected "pre-pulse" could reduce ECAP modulation, but did not improve rate discrimination. Implications for theories of pitch and for limitations of pitch perception in CI users are discussed.


Asunto(s)
Vías Auditivas/fisiología , Implantes Cocleares , Percepción de la Altura Tonal/fisiología , Potenciales de Acción , Adulto , Anciano , Sordera/fisiopatología , Sordera/terapia , Estimulación Eléctrica , Electrodos Implantados , Diseño de Equipo , Potenciales Evocados Auditivos , Humanos , Persona de Mediana Edad , Neuronas/fisiología , Psicoacústica , Factores de Tiempo
17.
J Acoust Soc Am ; 137(5): 2687-97, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25994700

RESUMEN

One task intended to measure sensitivity to temporal fine structure (TFS) involves the discrimination of a harmonic complex tone from a tone in which all harmonics are shifted upwards by the same amount in hertz. Both tones are passed through a fixed bandpass filter centered on the high harmonics to reduce the availability of excitation-pattern cues and a background noise is used to mask combination tones. The role of frequency selectivity in this "TFS1" task was investigated by varying level. Experiment 1 showed that listeners performed more poorly at a high level than at a low level. Experiment 2 included intermediate levels and showed that performance deteriorated for levels above about 57 dB sound pressure level. Experiment 3 estimated the magnitude of excitation-pattern cues from the variation in forward masking of a pure tone as a function of frequency shift in the complex tones. There was negligible variation, except for the lowest level used. The results indicate that the changes in excitation level at threshold for the TFS1 task would be too small to be usable. The results are consistent with the TFS1 task being performed using TFS cues, and with frequency selectivity having an indirect effect on performance via its influence on TFS cues.


Asunto(s)
Señales (Psicología) , Discriminación en Psicología , Ruido/efectos adversos , Enmascaramiento Perceptual , Discriminación de la Altura Tonal , Estimulación Acústica/métodos , Acústica , Adulto , Audiometría de Tonos Puros , Umbral Auditivo , Humanos , Presión , Psicoacústica , Sonido , Espectrografía del Sonido , Adulto Joven
18.
J Neurophysiol ; 112(12): 3086-94, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25231610

RESUMEN

Under binaural listening conditions, the detection of target signals within background masking noise is substantially improved when the interaural phase of the target differs from that of the masker. Neural correlates of this binaural masking level difference (BMLD) have been observed in the inferior colliculus and temporal cortex, but it is not known whether degeneration of the inferior colliculus would result in a reduction of the BMLD in humans. We used magnetoencephalography to examine the BMLD in 13 healthy adults and 13 patients with progressive supranuclear palsy (PSP). PSP is associated with severe atrophy of the upper brain stem, including the inferior colliculus, confirmed by voxel-based morphometry of structural MRI. Stimuli comprised in-phase sinusoidal tones presented to both ears at three levels (high, medium, and low) masked by in-phase noise, which rendered the low-level tone inaudible. Critically, the BMLD was measured using a low-level tone presented in opposite phase across ears, making it audible against the noise. The cortical waveforms from bilateral auditory sources revealed significantly larger N1m peaks for the out-of-phase low-level tone compared with the in-phase low-level tone, for both groups, indicating preservation of early cortical correlates of the BMLD in PSP. In PSP a significant delay was observed in the onset of the N1m deflection and the amplitude of the P2m was reduced, but these differences were not restricted to the BMLD condition. The results demonstrate that although PSP causes subtle auditory deficits, binaural processing can survive the presence of significant damage to the upper brain stem.


Asunto(s)
Corteza Auditiva/fisiopatología , Percepción Auditiva/fisiología , Tronco Encefálico/patología , Enmascaramiento Perceptual/fisiología , Parálisis Supranuclear Progresiva/fisiopatología , Anciano , Anciano de 80 o más Años , Corteza Auditiva/fisiología , Potenciales Evocados Auditivos , Femenino , Humanos , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Parálisis Supranuclear Progresiva/patología
19.
J Acoust Soc Am ; 136(6): 3186, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25480066

RESUMEN

Five normally hearing listeners pitch-ranked harmonic complexes of different fundamental frequencies (F0s) filtered in three different frequency regions. Harmonics were summed either in sine, alternating sine-cosine (ALT), or pulse-spreading (PSHC) phase. The envelopes of ALT and PSHC complexes repeated at rates of 2F0 and 4F0. Pitch corresponded to those rates at low F0s, but, as F0 increased, there was a range of F0s over which pitch remained constant or dropped. Gammatone-filterbank simulations showed that, as F0 increased and the number of harmonics interacting in a filter dropped, the output of that filter switched from repeating at 2F0 or 4F0 to repeating at F0. A model incorporating this phenomenon accounted well for the data, except for complexes filtered into the highest frequency region (7800-10 800 Hz). To account for the data in that region it was necessary to assume either that auditory filters at very high frequencies are sharper than traditionally believed, and/or that the auditory system applies smaller weights to filters whose outputs repeat at high rates. The results also provide evidence on the highest pitch that can be derived from purely temporal cues, and corroborate recent reports that a complex pitch can be derived from very-high-frequency resolved harmonics.


Asunto(s)
Discriminación de la Altura Tonal/fisiología , Espectrografía del Sonido , Percepción del Tiempo/fisiología , Estimulación Acústica , Vías Auditivas/fisiología , Umbral Auditivo/fisiología , Simulación por Computador , Señales (Psicología) , Humanos , Discriminación de la Altura Tonal/clasificación , Psicoacústica
20.
Int J Audiol ; 53(12): 871-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25358027

RESUMEN

OBJECTIVE: To evaluate a speech-processing strategy in which the lowest frequency channel is conveyed using an asymmetric pulse shape and "phantom stimulation", where current is injected into one intra-cochlear electrode and where the return current is shared between an intra-cochlear and an extra-cochlear electrode. This strategy is expected to provide more selective excitation of the cochlear apex, compared to a standard strategy where the lowest-frequency channel is conveyed by symmetric pulses in monopolar mode. In both strategies all other channels were conveyed by monopolar stimulation. DESIGN: Within-subjects comparison between the two strategies. Four experiments: (1) discrimination between the strategies, controlling for loudness differences, (2) consonant identification, (3) recognition of lowpass-filtered sentences in quiet, (4) sentence recognition in the presence of a competing speaker. STUDY SAMPLE: Eight users of the Advanced Bionics CII/Hi-Res 90k cochlear implant. RESULTS: Listeners could easily discriminate between the two strategies but no consistent differences in performance were observed. CONCLUSIONS: The proposed method does not improve speech perception, at least in the short term.


Asunto(s)
Estimulación Acústica/instrumentación , Estimulación Acústica/métodos , Implantación Coclear/métodos , Adulto , Anciano , Cóclea , Implantes Cocleares , Potenciales Microfónicos de la Cóclea , Electrodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Diseño de Prótesis , Pulso Arterial/métodos , Percepción del Habla
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA