RESUMEN
STUDY QUESTION: Do the genetic determinants of idiopathic severe spermatogenic failure (SPGF) differ between generations? SUMMARY ANSWER: Our data support that the genetic component of idiopathic SPGF is impacted by dynamic changes in environmental exposures over decades. WHAT IS KNOWN ALREADY: The idiopathic form of SPGF has a multifactorial etiology wherein an interaction between genetic, epigenetic, and environmental factors leads to the disease onset and progression. At the genetic level, genome-wide association studies (GWASs) allow the analysis of millions of genetic variants across the genome in a hypothesis-free manner, as a valuable tool for identifying susceptibility risk loci. However, little is known about the specific role of non-genetic factors and their influence on the genetic determinants in this type of conditions. STUDY DESIGN, SIZE, DURATION: Case-control genetic association analyses were performed including a total of 912 SPGF cases and 1360 unaffected controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: All participants had European ancestry (Iberian and German). SPGF cases were diagnosed during the last decade either with idiopathic non-obstructive azoospermia (n = 547) or with idiopathic non-obstructive oligozoospermia (n = 365). Case-control genetic association analyses were performed by logistic regression models considering the generation as a covariate and by in silico functional characterization of the susceptibility genomic regions. MAIN RESULTS AND THE ROLE OF CHANCE: This analysis revealed 13 novel genetic association signals with SPGF, with eight of them being independent. The observed associations were mostly explained by the interaction between each lead variant and the age-group. Additionally, we established links between these loci and diverse non-genetic factors, such as toxic or dietary habits, respiratory disorders, and autoimmune diseases, which might potentially influence the genetic architecture of idiopathic SPGF. LARGE SCALE DATA: GWAS data are available from the authors upon reasonable request. LIMITATIONS, REASONS FOR CAUTION: Additional independent studies involving large cohorts in ethnically diverse populations are warranted to confirm our findings. WIDER IMPLICATIONS OF THE FINDINGS: Overall, this study proposes an innovative strategy to achieve a more precise understanding of conditions such as SPGF by considering the interactions between a variable exposome through different generations and genetic predisposition to complex diseases. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the "Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020)" (ref. PY20_00212, P20_00583), the Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation (ref. PID2020-120157RB-I00 funded by MCIN/ AEI/10.13039/501100011033), and the 'Proyectos I+D+i del Programa Operativo FEDER 2020' (ref. B-CTS-584-UGR20). ToxOmics-Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, is also partially supported by the Portuguese Foundation for Science and Technology (Projects: UIDB/00009/2020; UIDP/00009/2020). The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.
Asunto(s)
Azoospermia , Oligospermia , Masculino , Humanos , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Azoospermia/genética , Oligospermia/genética , Exposición a Riesgos AmbientalesRESUMEN
RESEARCH QUESTION: Would the use of genome-wide genotyping be an advantageous strategy to identify the molecular aetiology of two brothers from a non-consanguineous family, clinically diagnosed with total globozoospermia? DESIGN: Two related Spanish globozoospermic patients were studied. Eight first- and second-degree family members were also included in the study. The clinical procedure included anamnesis, physical examination and semen analyses. Acrosome visualization was performed by fluorescein isothiocyanate-Pisum sativum agglutinin labelling and ultrastructural electron microscope sperm analysis. Sperm DNA fragmentation was determined by TUNEL and SCD. Molecular analysis included: the detection of deletion of the DPY19L2 gene by a BPa (break point "a") gap-polymerase chain reaction, and genotyping by using a high-throughput genome-wide genotyping platform and a genotype imputation strategy. RESULTS: The biological characteristics of the two globozoospermic siblings included round-headed spermatozoa without an acrosome; ultrastructural defects in spermatozoa; increased sperm fragmentation and aneuploidies, inability of spermatozoa to activate oocytes (correctable with artificial activation) and good developmental potential of embryos generated by IVF/intracytoplasmic sperm injection. This genetic study focused on a genome-wide compound heterozygote analysis that identified two deleterious rare coding variants in the DPY19L2 gene [rs771726551 (c.431T>A exon 3) and rs147579680 (c.869G>A exon 8)]. CONCLUSION: A genome-wide compound heterozygote analysis strategy should be considered for molecular screening in globozoospermia and other rare congenital diseases, particularly in cases from non-consanguineous families.
Asunto(s)
Infertilidad Masculina , Teratozoospermia , Alelos , Heterocigoto , Humanos , Infertilidad Masculina/genética , Masculino , Proteínas de la Membrana/genética , Semen , Espermatozoides/fisiología , Teratozoospermia/genéticaRESUMEN
Giant cell arteritis (GCA) is the most common form of vasculitis in individuals older than 50 years in Western countries. To shed light onto the genetic background influencing susceptibility for GCA, we performed a genome-wide association screening in a well-powered study cohort. After imputation, 1,844,133 genetic variants were analyzed in 2,134 case subjects and 9,125 unaffected individuals from ten independent populations of European ancestry. Our data confirmed HLA class II as the strongest associated region (independent signals: rs9268905, p = 1.94 × 10-54, per-allele OR = 1.79; and rs9275592, p = 1.14 × 10-40, OR = 2.08). Additionally, PLG and P4HA2 were identified as GCA risk genes at the genome-wide level of significance (rs4252134, p = 1.23 × 10-10, OR = 1.28; and rs128738, p = 4.60 × 10-9, OR = 1.32, respectively). Interestingly, we observed that the association peaks overlapped with different regulatory elements related to cell types and tissues involved in the pathophysiology of GCA. PLG and P4HA2 are involved in vascular remodelling and angiogenesis, suggesting a high relevance of these processes for the pathogenic mechanisms underlying this type of vasculitis.
Asunto(s)
Alelos , Predisposición Genética a la Enfermedad/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Arteritis de Células Gigantes/genética , Plasminógeno/genética , Prolil Hidroxilasas/genética , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Europa (Continente)/etnología , Femenino , Humanos , Masculino , Neovascularización Fisiológica , Polimorfismo de Nucleótido Simple/genética , RiesgoRESUMEN
The identification of new genes involved in sexual development and gonadal function as potential candidates causing male infertility is important for both diagnostic and therapeutic purposes. Deficiency of the onco-miRNA cluster miR-17â¼92 has been shown to disrupt spermatogenesis, whereas mutations in its paralog cluster, miR-106bâ¼25, that is expressed in the same cells, were reported to have no effect on testis development and function. The aim of this work is to determine the role of these two miRNA clusters in spermatogenesis and male fertility. For this, we analyzed miR-106bâ¼25 and miR-17â¼92 single and double mouse mutants and compared them to control mice. We found that miR-106bâ¼25 knock out testes show reduced size, oligozoospermia and altered spermatogenesis. Transcriptomic analysis showed that multiple molecular pathways are deregulated in these mutant testes. Nevertheless, mutant males conserved normal fertility even when early spermatogenesis and other functions were disrupted. In contrast, miR-17â¼92+/-; miR-106bâ¼25-/- double mutants showed severely disrupted testicular histology and significantly reduced fertility. Our results indicate that miR-106bâ¼25 and miR-17â¼92 ensure accurate gene expression levels in the adult testis, keeping them within the required thresholds. They play a crucial role in testis homeostasis and are required to maintain male fertility. Hence, we have identified new candidate genetic factors to be screened in the molecular diagnosis of human males with reproductive disorders. Finally, considering the well-known oncogenic nature of these two clusters and the fact that patients with reduced fertility are more prone to testicular cancer, our results might also help to elucidate the molecular mechanisms linking both pathologies.
Asunto(s)
MicroARNs/metabolismo , Oligospermia/metabolismo , Animales , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Masculino , Ratones , MicroARNs/genética , Oligospermia/genética , Espermatogénesis/genética , Espermatogénesis/fisiología , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismoRESUMEN
Inflammation plays a central role in the pathophysiology of acute pancreatitis (AP). We hypothesized that changes in the function of key components of the inflammatory cascade, caused by genetic polymorphisms, could determine the development and/or severity of AP. We studied the following polymorphisms in 269 patients: IL23R rs11209026, TNF rs1800629, RIPK2 rs42490, NOD2 rs9302752, MCP1 rs1024611 and NFKB1 rs28362491. The rs11209026 A allele was related to the presence of AP (p = 0.007261; OR = 1 .523). Epistasis analysis revealed that AP susceptibility was increased by interaction between IL23R rs11209026 and TNF rs1800629 (p = 1.205 × 10-5; ORinteraction = 4.031). The rs42490-G allele was associated with an increased risk of severe pancreatitis (p = 0.01583; OR = 2.736), severe or moderately severe pancreatitis (p = 0.04206; OR = 1.609), and death (p = 0.03226; OR = 3.010). In conclusion, these results point to a plausible role for genetic polymorphisms in IL23R and RIPK2 in the development and severity of AP.
Asunto(s)
Genotipo , Pancreatitis/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Receptores de Interleucina/genética , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Progresión de la Enfermedad , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Pancreatitis/mortalidad , Polimorfismo de Nucleótido Simple , Riesgo , Índice de Severidad de la EnfermedadRESUMEN
We conducted a large-scale genetic analysis on giant cell arteritis (GCA), a polygenic immune-mediated vasculitis. A case-control cohort, comprising 1,651 case subjects with GCA and 15,306 unrelated control subjects from six different countries of European ancestry, was genotyped by the Immunochip array. We also imputed HLA data with a previously validated imputation method to perform a more comprehensive analysis of this genomic region. The strongest association signals were observed in the HLA region, with rs477515 representing the highest peak (p = 4.05 × 10(-40), OR = 1.73). A multivariate model including class II amino acids of HLA-DRß1 and HLA-DQα1 and one class I amino acid of HLA-B explained most of the HLA association with GCA, consistent with previously reported associations of classical HLA alleles like HLA-DRB1(∗)04. An omnibus test on polymorphic amino acid positions highlighted DRß1 13 (p = 4.08 × 10(-43)) and HLA-DQα1 47 (p = 4.02 × 10(-46)), 56, and 76 (both p = 1.84 × 10(-45)) as relevant positions for disease susceptibility. Outside the HLA region, the most significant loci included PTPN22 (rs2476601, p = 1.73 × 10(-6), OR = 1.38), LRRC32 (rs10160518, p = 4.39 × 10(-6), OR = 1.20), and REL (rs115674477, p = 1.10 × 10(-5), OR = 1.63). Our study provides evidence of a strong contribution of HLA class I and II molecules to susceptibility to GCA. In the non-HLA region, we confirmed a key role for the functional PTPN22 rs2476601 variant and proposed other putative risk loci for GCA involved in Th1, Th17, and Treg cell function.
Asunto(s)
Genes MHC Clase II/genética , Arteritis de Células Gigantes/genética , Herencia Multifactorial/genética , Estudios de Cohortes , Estudios de Asociación Genética , Genotipo , Humanos , Análisis Multivariante , Oportunidad Relativa , Población Blanca/genéticaRESUMEN
BACKGROUND: Immediate reactions to ß-lactams are the most common causes of anaphylactic reactions and can be life-threatening. The few known genetic factors influencing these reactions suggest a link with atopy and inflammation. OBJECTIVE: We performed a fine-mapping genome-wide association study of the genetic predictors of ß-lactam allergy to better understand the underlying mechanisms. METHODS: We studied 387 patients with immediate allergic reactions to ß-lactams and 1124 paired control subjects from Spain. We replicated the results in 299 patients and 362 paired control subjects from Italy. RESULTS: We found significant associations with the single nucleotide polymorphisms rs4958427 of ZNF300 (c.64-471G>A, P = 9.9 × 10(-9)), rs17612 of C5 (c.4311A>C [p.Glu1437Asp], P = 7.5 × 10(-7)), rs7754768 and rs9268832 of the HLA-DRA | HLA-DRB5 interregion (P = 1.6 × 10(-6) and 4.9 × 10(-6)), and rs7192 of HLA-DRA (c.724T>G [p.Leu242Val], P = 7.4 × 10(-6)) in an allelic model, with similar results in an additive model. Single nucleotide polymorphisms of HLA-DRA and ZNF300 predicted skin test positivity to amoxicillin and other penicillins but not to cephalosporins. A haplotype block in HLA-DRA and the HLA-DRA | HLA-DRB5 interregion encompassed a motif involved in balanced expression of the α- and ß-chains of MHC class II, whereas rs7192 was predicted to influence α-chain conformation. HLA-DRA rs7192 and rs8084 were significantly associated with allergy to penicillins and amoxicillin (P = 6.0 × 10(-4) and P = 4.0 × 10(-4), respectively) but not to cephalosporins in the replication study. CONCLUSIONS: Gene variants of HLA-DRA and the HLA-DRA | HLA-DRB5 interregion were significant predictors of allergy to penicillins but not to cephalosporins. These data suggest complex gene-environment interactions in which genetic susceptibility of HLA type 2 antigen presentation plays a central role.
Asunto(s)
Hipersensibilidad a las Drogas/genética , Cadenas alfa de HLA-DR/genética , Penicilinas/efectos adversos , Hipersensibilidad a las Drogas/epidemiología , Hipersensibilidad a las Drogas/etiología , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Italia/epidemiología , Masculino , Polimorfismo de Nucleótido Simple , España/epidemiologíaRESUMEN
Systemic sclerosis (SSc) is complex autoimmune disease affecting the connective tissue; influenced by genetic and environmental components. Recently, we performed the first successful genome-wide association study (GWAS) of SSc. Here, we perform a large replication study to better dissect the genetic component of SSc. We selected 768 polymorphisms from the previous GWAS and genotyped them in seven replication cohorts from Europe. Overall significance was calculated for replicated significant SNPs by meta-analysis of the replication cohorts and replication-GWAS cohorts (3237 cases and 6097 controls). Six SNPs in regions not previously associated with SSc were selected for validation in another five independent cohorts, up to a total of 5270 SSc patients and 8326 controls. We found evidence for replication and overall genome-wide significance for one novel SSc genetic risk locus: CSK [P-value = 5.04 × 10(-12), odds ratio (OR) = 1.20]. Additionally, we found suggestive association in the loci PSD3 (P-value = 3.18 × 10(-7), OR = 1.36) and NFKB1 (P-value = 1.03 × 10(-6), OR = 1.14). Additionally, we strengthened the evidence for previously confirmed associations. This study significantly increases the number of known putative genetic risk factors for SSc, including the genes CSK, PSD3 and NFKB1, and further confirms six previously described ones.
Asunto(s)
Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Proteínas Tirosina Quinasas/genética , Esclerodermia Sistémica/genética , Proteína Tirosina Quinasa CSK , Estudios de Cohortes , Europa (Continente) , Estudios de Seguimiento , Genotipo , Humanos , Factores Reguladores del Interferón/genética , Metaanálisis como Asunto , Subunidad p50 de NF-kappa B/genética , Oportunidad Relativa , Factores de Riesgo , beta Carioferinas/genética , Familia-src QuinasasRESUMEN
Important steps forwards have been taken during recent years towards the understanding of the genetic basis of autoimmunity. The increasing number of study cohorts is allowing better characterization of the genetic component of most autoimmune diseases. However, the molecular mechanisms leading to some less common diseases remain poorly understood. GCA, an antigen-driven systemic vasculitis affecting medium and large blood vessels of elderly people, represents one of these cases. However, although underpowered to detect low to moderate effect sizes and without replication steps, many genetic studies on this disease have been published in the past decade. These reports clearly point to genes located in the MHC region, in particular HLA-DRB1*04 alleles, and other key members of the immune and inflammatory response (including cytokines, adhesion molecules and regulators of innate immunity), as crucial players in the development and progression of GCA. Considering that no literature review has been published so far about the genetic component of this vasculitis, we aimed to summarize here the current knowledge on the genetics underlying GCA predisposition and severity.
Asunto(s)
Predisposición Genética a la Enfermedad , Arteritis de Células Gigantes/genética , Inmunidad Innata/genética , Alelos , Genotipo , Arteritis de Células Gigantes/inmunología , Antígenos HLA-DR/genética , Antígenos HLA-DR/inmunología , HumanosRESUMEN
Purpose: Keratoconus (KC) is a corneal disorder with complex etiology, apparently involving both genetic and environmental factors, characterized by progressive thinning and protrusion of the cornea. We aimed to identify novel genetic regions associated with KC susceptibility, elucidate relevant genes for disease development, and explore the translational implications for therapeutic intervention and risk assessment. Methods: We conducted a genome-wide association study (GWAS) that integrated previously published data with newly generated genotyping data from an independent European cohort. To evaluate the clinical translation of our results, we performed functional annotation, gene prioritization, polygenic risk score (PRS), and drug repositioning analyses. Results: We identified two novel genetic loci associated with KC, with rs2806689 and rs807037 emerging as lead variants (P = 1.71E-08, odds ratio [OR] = 0.88; P = 1.93E-08, OR = 1.16, respectively). Most importantly, we identified 315 candidate genes influenced by confirmed KC-associated variants. Among these, MINK1 was found to play a pivotal role in KC pathogenesis through the WNT signaling pathway. Moreover, we developed a PRS model that successfully differentiated KC patients from controls (P = 7.61E-16; area under the curve = 0.713). This model has the potential to identify individuals at high risk for developing KC, which could be instrumental in early diagnosis and management. Additionally, our drug repositioning analysis identified acetylcysteine as a potential treatment option for KC, opening up new avenues for therapeutic intervention. Conclusions: Our study provides valuable insights into the genetic and molecular basis of KC, offering new targets for therapy and highlighting the clinical utility of PRS models in predicting disease risk.
Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Queratocono , Polimorfismo de Nucleótido Simple , Queratocono/genética , Queratocono/diagnóstico , Queratocono/tratamiento farmacológico , Humanos , Femenino , Masculino , Adulto , Genotipo , Investigación Biomédica TraslacionalRESUMEN
OBJECTIVE: To evaluate whether the systemic sclerosis (SSc)-associated IRAK1 non-synonymous single-nucleotide polymorphism rs1059702 is responsible for the Xq28 association with SSc or whether there are other independent signals in the nearby methyl-CpG-binding protein 2 gene (MECP2). METHODS: We analysed a total of 3065 women with SSc and 2630 unaffected controls from five independent Caucasian cohorts. Four tag single-nucleotide polymorphisms of MECP2 (rs3027935, rs17435, rs5987201 and rs5945175) and the IRAK1 variant rs1059702 were genotyped using TaqMan predesigned assays. A meta-analysis including all cohorts was performed to test the overall effect of these Xq28 polymorphisms on SSc. RESULTS: IRAK1 rs1059702 and MECP2 rs17435 were associated specifically with diffuse cutaneous SSc (PFDR=4.12×10(-3), OR=1.27, 95% CI 1.09 to 1.47, and PFDR=5.26×10(-4), OR=1.30, 95% CI 1.14 to 1.48, respectively), but conditional logistic regression analysis showed that the association of IRAK1 rs1059702 with this subtype was explained by that of MECP2 rs17435. On the other hand, IRAK1 rs1059702 was consistently associated with presence of pulmonary fibrosis (PF), because statistical significance was observed when comparing SSc patients PF+ versus controls (PFDR=0.039, OR=1.30, 95% CI 1.07 to 1.58) and SSc patients PF+ versus SSc patients PF- (p=0.025, OR=1.26, 95% CI 1.03 to 1.55). CONCLUSIONS: Our data clearly suggest the existence of two independent signals within the Xq28 region, one located in IRAK1 related to PF and another in MECP2 related to diffuse cutaneous SSc, indicating that both genes may have an impact on the clinical outcome of the disease.
Asunto(s)
Cromosomas Humanos X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Esclerodermia Sistémica/genética , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/genética , Desequilibrio de Ligamiento , Proteína 2 de Unión a Metil-CpG/genética , Polimorfismo de Nucleótido Simple , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/genética , Esclerodermia Difusa/genética , Esclerodermia Sistémica/complicacionesRESUMEN
OBJECTIVE: Systemic sclerosis (SSc) and systemic lupus erythematosus (SLE) are related chronic autoimmune diseases of complex aetiology in which the interferon (IFN) pathway plays a key role. Recent studies have reported an association between IRF7 and SLE which confers a risk to autoantibody production. A study was undertaken to investigate whether the IRF7 genomic region is also involved in susceptibility to SSc and the main clinical features. METHODS: Two case-control sets of Caucasian origin from the USA and Spain, comprising a total of 2316 cases of SSc and 2347 healthy controls, were included in the study. Five single nucleotide polymorphisms (SNPs) in the PHRF1-IRF7-CDHR5 locus were genotyped using TaqMan allelic discrimination technology. A meta-analysis was performed to test the overall effect of these genetic variants on SSc. RESULTS: Four out of five analysed SNPs were significantly associated with the presence of anticentromere autoantibodies (ACA) in the patients with SSc in the combined analysis (rs1131665: p(FDR)=6.14 × 10(-4), OR=0.78; rs4963128: p(FDR)=6.14 × 10(-4), OR=0.79; rs702966: p(FDR)=3.83 × 10(-3), OR=0.82; and rs2246614: p(FDR)=3.83 × 10(-3), OR=0.83). Significant p values were also obtained when the disease was tested globally; however, the statistical significance was lost when the ACA-positive patients were excluded from the study, suggesting that these associations rely on ACA positivity. Conditional logistic regression and allelic combination analyses suggested that the functional IRF7 SNP rs1131665 is the most likely causal variant. CONCLUSIONS: The results show that variation in the IRF7 genomic region is associated with the presence of ACA in patients with SSc, supporting other evidence that this locus represents a common risk factor for autoantibody production in autoimmune diseases.
Asunto(s)
Anticuerpos Antinucleares/sangre , Enfermedades Autoinmunes/genética , Factor 7 Regulador del Interferón/genética , Esclerodermia Sistémica/genética , Anticuerpos Antinucleares/biosíntesis , Enfermedades Autoinmunes/inmunología , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Esclerodermia Sistémica/inmunologíaRESUMEN
OBJECTIVES: CD226 genetic variants have been associated with a number of autoimmune diseases. The aim of this study was to investigate the potential implication of the CD226 loci in the susceptibility to and main clinical manifestations of giant cell arteritis (GCA). METHODS: A Spanish Caucasian cohort of 455 patients diagnosed with biopsy-proven GCA and 1414 healthy controls were included in the study. Three CD226 polymorphisms, rs727088, rs34794968 and rs763361, were genotyped using the TaqMan® allelic discrimination technology. PLINK software was used for the statistical analyses. RESULTS: No significant association between the CD226 polymorphisms and susceptibility to GCA was found (rs727088: p=0.92, OR=1.01, CI 95% 0.86-1.18; rs34794968: p=0.61, OR=1.04, CI 95% 0.89-1.22; rs763361: p=0.88, OR=0.99, CI 95% 0.84-1.16). Similarly, when patients were stratified according to the specific clinical features of GCA such as polymyalgia rheumatica, visual ischaemic manifestations or irreversible occlusive disease, no association was observed either between the case subgroups and the control set or between GCA patients with and without the specific features of the disease. Furthermore, the haplotype analysis revealed no significant association with the clinical manifestations of the disease. CONCLUSIONS: Our results show that the three CD226 polymorphisms analysed do not play a relevant role in the susceptibility to GCA and clinical manifestations of this vasculitis.
Asunto(s)
Antígenos de Diferenciación de Linfocitos T/genética , Autoinmunidad/genética , Arteritis de Células Gigantes/genética , Polimorfismo de Nucleótido Simple , Anciano , Biopsia , Estudios de Casos y Controles , Distribución de Chi-Cuadrado , Femenino , Frecuencia de los Genes , Pruebas Genéticas , Arteritis de Células Gigantes/epidemiología , Arteritis de Células Gigantes/inmunología , Arteritis de Células Gigantes/patología , Haplotipos , Humanos , Masculino , Oportunidad Relativa , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Medición de Riesgo , Factores de Riesgo , España/epidemiologíaRESUMEN
CONTEXT: Approximately 70% of infertile men are diagnosed with idiopathic (abnormal semen parameters) or unexplained (normozoospermia) infertility, with the common feature of lacking etiologic factors. Follicle-stimulating hormone (FSH) is essential for initiation and maintenance of spermatogenesis. Certain single-nucleotide variations (SNVs; formerly single-nucleotide polymorphisms [SNPs]) (ie, FSHB c.-211Gâ >â T, FSHR c.2039Aâ >â G) are associated with FSH, testicular volume, and spermatogenesis. It is unknown to what extent other variants are associated with FSH levels and therewith resemble causative factors for infertility. OBJECTIVE: We aimed to identify further genetic determinants modulating FSH levels in a cohort of men presenting with idiopathic or unexplained infertility. METHODS: We retrospectively (2010-2018) selected 1900 men with idiopathic/unexplained infertility. In the discovery study (nâ =â 760), a genome-wide association study (GWAS) was performed (Infinium PsychArrays) in association with FSH values (Illumina GenomeStudio, v2.0). Minor allele frequencies (MAFs) were analyzed for the discovery and an independent normozoospermic cohort. In the validation study (nâ =â 1140), TaqMan SNV polymerase chain reaction was conducted for rs11031005 and rs10835638 in association with andrological parameters. RESULTS: Imputation revealed 9 SNVs in high linkage disequilibrium, with genome-wide significance (Pâ <â 4.28e-07) at the FSHB locus 11p.14.1 being associated with FSH. The 9 SNVs accounted for up to a 4.65% variance in FSH level. In the oligozoospermic subgroup, this was increased up to 6.95% and the MAF was enhanced compared to an independent cohort of normozoospermic men. By validation, a significant association for rs11031005/rs10835638 with FSH (Pâ =â 4.71e-06/5.55e-07) and FSH/luteinizing hormone ratio (Pâ =â 2.08e-12/6.4e-12) was evident. CONCLUSIONS: This GWAS delineates the polymorphic FSHB genomic region as the main determinant of FSH levels in men with unexplained or idiopathic infertility. Given the essential role of FSH, molecular detection of one of the identified SNVs that causes lowered FSH and therewith decreases spermatogenesis could resolve the idiopathic/unexplained origin by this etiologic factor.
Asunto(s)
Hormona Folículo Estimulante , Estudio de Asociación del Genoma Completo , Infertilidad Masculina , Humanos , Masculino , Hormona Folículo Estimulante/sangre , Genómica , Infertilidad Masculina/genética , Polimorfismo de Nucleótido Simple , Estudios RetrospectivosRESUMEN
Background: Severe spermatogenic failure (SPGF) represents one of the most relevant causes of male infertility. This pathological condition can lead to extreme abnormalities in the seminal sperm count, such as severe oligozoospermia (SO) or non-obstructive azoospermia (NOA). Most cases of SPGF have an unknown aetiology, and it is known that this idiopathic form of male infertility represents a complex condition. In this study, we aimed to evaluate whether common genetic variation in TEX15, which encodes a key player in spermatogenesis, is involved in the susceptibility to idiopathic SPGF. Materials and Methods: We designed a genetic association study comprising a total of 727 SPGF cases (including 527 NOA and 200 SO) and 1,058 unaffected men from the Iberian Peninsula. Following a tagging strategy, three tag single-nucleotide polymorphisms (SNPs) of TEX15 (rs1362912, rs323342, and rs323346) were selected for genotyping using TaqMan probes. Case-control association tests were then performed by logistic regression models. In silico analyses were also carried out to shed light into the putative functional implications of the studied variants. Results: A significant increase in TEX15-rs1362912 minor allele frequency (MAF) was observed in the group of SO patients (MAF = 0.0842) compared to either the control cohort (MAF = 0.0468, OR = 1.90, p = 7.47E-03) or the NOA group (MAF = 0.0472, OR = 1.83, p = 1.23E-02). The genotype distribution of the SO population was also different from those of both control (p = 1.14E-02) and NOA groups (p = 4.33-02). The analysis of functional annotations of the human genome suggested that the effect of the SO-associated TEX15 variants is likely exerted by alteration of the binding affinity of crucial transcription factors for spermatogenesis. Conclusion: Our results suggest that common variation in TEX15 is involved in the genetic predisposition to SO, thus supporting the notion of idiopathic SPGF as a complex trait.
RESUMEN
We aimed to analyze the role of the common genetic variants located in the PIN1 locus, a relevant prolyl isomerase required to control the proliferation of spermatogonial stem cells and the integrity of the blood-testis barrier, in the genetic risk of developing male infertility due to a severe spermatogenic failure (SPGF). Genotyping was performed using TaqMan genotyping assays for three PIN1 taggers (rs2287839, rs2233678 and rs62105751). The study cohort included 715 males diagnosed with SPGF and classified as suffering from non-obstructive azoospermia (NOA, n = 505) or severe oligospermia (SO, n = 210), and 1058 controls from the Iberian Peninsula. The allelic frequency differences between cases and controls were analyzed by the means of logistic regression models. A subtype specific genetic association with the subset of NOA patients classified as suffering from the Sertoli cell-only (SCO) syndrome was observed with the minor alleles showing strong risk effects for this subset (ORaddrs2287839 = 1.85 (1.17-2.93), ORaddrs2233678 = 1.62 (1.11-2.36), ORaddrs62105751 = 1.43 (1.06-1.93)). The causal variants were predicted to affect the binding of key transcription factors and to produce an altered PIN1 gene expression and isoform balance. In conclusion, common non-coding single-nucleotide polymorphisms located in PIN1 increase the genetic risk to develop SCO.
RESUMEN
We conducted a genome-wide association study in a large population of infertile men due to unexplained spermatogenic failure (SPGF). More than seven million genetic variants were analysed in 1,274 SPGF cases and 1,951 unaffected controls from two independent European cohorts. Two genomic regions were associated with the most severe histological pattern of SPGF, defined by Sertoli cell-only (SCO) phenotype, namely the MHC class II gene HLA-DRB1 (rs1136759, P = 1.32E-08, OR = 1.80) and an upstream locus of VRK1 (rs115054029, P = 4.24E-08, OR = 3.14), which encodes a protein kinase involved in the regulation of spermatogenesis. The SCO-associated rs1136759 allele (G) determines a serine in the position 13 of the HLA-DRß1 molecule located in the antigen-binding pocket. Overall, our data support the notion of unexplained SPGF as a complex trait influenced by common variation in the genome, with the SCO phenotype likely representing an immune-mediated condition.
Asunto(s)
Estudio de Asociación del Genoma Completo , Infertilidad Masculina , Humanos , Masculino , Infertilidad Masculina/genética , Espermatogénesis/genética , Células de Sertoli/metabolismo , Alelos , Proteínas Serina-Treonina Quinasas , Péptidos y Proteínas de Señalización Intracelular/metabolismoRESUMEN
Identification of causal factors that influence fetal growth and anthropometry at birth is of great importance as they provide information about increased risk of disease throughout life. The association between maternal genetic polymorphism MTHFR(677)C>T and anthropometry at birth has been widely studied because of its key role in the one-carbon cycle. MTHFR(677) CT and TT genotypes have been associated with a greater risk of low birth weight, especially in case of deficient intake of folic acid during pregnancy. This study aimed to analyze the association between the maternal MTHFR(677)C>T genetic polymorphism and anthropometry at birth in a population with adequate folate consumption. We included 694 mother-newborn pairs from a prospective population-based birth cohort in Spain, in the Genetics, Early life enviroNmental Exposures and Infant Development in Andalusia (GENEIDA) project. Women were genotyped for MTHFR(677)C>T SNP by Q-PCR using TaqMan© probes. Relevant maternal and newborn information was obtained from structured questionnaires and medical records. Results showed that maternal MTHFR(677)C>T genotype was associated with newborn anthropometry. Genotypes CT or CT/TT showed statistically significant associations with increased or decreased risk of large-for-gestational-age (LGA) or small-for-gestational-age (SGA) based on weight and height, depending on the newborn's sex, as well as with SGA in premature neonates. The relationships between this maternal genotype and anthropometry at birth remained despite an adequate maternal folate intake.
Asunto(s)
Peso al Nacer/genética , Ingestión de Alimentos/genética , Fenómenos Fisiologicos Nutricionales Maternos/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Polimorfismo Genético , Adulto , Antropometría , Femenino , Desarrollo Fetal/genética , Ácido Fólico/sangre , Genotipo , Humanos , Recién Nacido , Recién Nacido Pequeño para la Edad Gestacional , Masculino , Estudios Prospectivos , EspañaRESUMEN
OBJECTIVE: Behçet's disease is a complex systemic inflammatory vasculitis of incompletely understood etiology. This study was undertaken to investigate genetic associations with Behçet's disease in a diverse multiethnic population. METHODS: A total of 9,444 patients and controls from 7 different populations were included in this study. Genotyping was performed using an Infinium ImmunoArray-24 v.1.0 or v.2.0 BeadChip. Analysis of expression data from stimulated monocytes, and epigenetic and chromatin interaction analyses were performed. RESULTS: We identified 2 novel genetic susceptibility loci for Behçet's disease, including a risk locus in IFNGR1 (rs4896243) (odds ratio [OR] 1.25; P = 2.42 × 10-9 ) and within the intergenic region LNCAROD/DKK1 (rs1660760) (OR 0.78; P = 2.75 × 10-8 ). The risk variants in IFNGR1 significantly increased IFNGR1 messenger RNA expression in lipopolysaccharide-stimulated monocytes. In addition, our results replicated the association (P < 5 × 10-8 ) of 6 previously identified susceptibility loci in Behçet's disease: IL10, IL23R, IL12A-AS1, CCR3, ADO, and LACC1, reinforcing the notion that these loci are strong genetic factors in Behçet's disease shared across ancestries. We also identified >30 genetic susceptibility loci with a suggestive level of association (P < 5 × 10-5 ), which will require replication. Finally, functional annotation of genetic susceptibility loci in Behçet's disease revealed their possible regulatory roles and suggested potential causal genes and molecular mechanisms that could be further investigated. CONCLUSION: We performed the largest genetic association study in Behçet's disease to date. Our findings reveal novel putative functional variants associated with the disease and replicate and extend the genetic associations in other loci across multiple ancestries.