Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Bacteriol ; 206(6): e0044423, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506530

RESUMEN

Cellular life relies on enzymes that require metals, which must be acquired from extracellular sources. Bacteria utilize surface and secreted proteins to acquire such valuable nutrients from their environment. These include the cargo proteins of the type eleven secretion system (T11SS), which have been connected to host specificity, metal homeostasis, and nutritional immunity evasion. This Sec-dependent, Gram-negative secretion system is encoded by organisms throughout the phylum Proteobacteria, including human pathogens Neisseria meningitidis, Proteus mirabilis, Acinetobacter baumannii, and Haemophilus influenzae. Experimentally verified T11SS-dependent cargo include transferrin-binding protein B (TbpB), the hemophilin homologs heme receptor protein C (HrpC), hemophilin A (HphA), the immune evasion protein factor-H binding protein (fHbp), and the host symbiosis factor nematode intestinal localization protein C (NilC). Here, we examined the specificity of T11SS systems for their cognate cargo proteins using taxonomically distributed homolog pairs of T11SS and hemophilin cargo and explored the ligand binding ability of those hemophilin cargo homologs. In vivo expression in Escherichia coli of hemophilin homologs revealed that each is secreted in a specific manner by its cognate T11SS protein. Sequence analysis and structural modeling suggest that all hemophilin homologs share an N-terminal ligand-binding domain with the same topology as the ligand-binding domains of the Haemophilus haemolyticus heme binding protein (Hpl) and HphA. We term this signature feature of this group of proteins the hemophilin ligand-binding domain. Network analysis of hemophilin homologs revealed five subclusters and representatives from four of these showed variable heme-binding activities, which, combined with sequence-structure variation, suggests that hemophilins are diversifying in function.IMPORTANCEThe secreted protein hemophilin and its homologs contribute to the survival of several bacterial symbionts within their respective host environments. Here, we compared taxonomically diverse hemophilin homologs and their paired Type 11 secretion systems (T11SS) to determine if heme binding and T11SS secretion are conserved characteristics of this family. We establish the existence of divergent hemophilin sub-families and describe structural features that contribute to distinct ligand-binding behaviors. Furthermore, we demonstrate that T11SS are specific for their cognate hemophilin family cargo proteins. Our work establishes that hemophilin homolog-T11SS pairs are diverging from each other, potentially evolving into novel ligand acquisition systems that provide competitive benefits in host niches.


Asunto(s)
Proteínas Bacterianas , Hemo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Hemo/metabolismo , Proteínas de Unión al Hemo/metabolismo , Hemoproteínas/metabolismo , Hemoproteínas/genética , Hemoproteínas/química , Unión Proteica , Proteobacteria/metabolismo , Proteobacteria/genética
2.
Rapid Commun Mass Spectrom ; 38(4): e9687, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38212650

RESUMEN

RATIONALE: The sampling throughput of immediate drop-on-demand technology (I.DOT) coupled with an open port sampling interface (OPSI) is limited by software communication. To enable much-needed high-throughput mass spectrometry (MS) analysis capabilities, a novel software was developed that allows for flexible sample selection from a 96-well plate and for maximized analysis throughput using I.DOT/OPSI-MS coupling. METHODS: Wells of a 96-well I.DOT plate were filled with propranolol solution and were used to test maximum sampling throughput strategies to minimize analysis time. Demonstration of chemical reaction monitoring was done using acid-catalyzed ring closure of 2,3-diaminonaphthalene (DAN) with nitrite to form 2,3-naphthotriazole (NAT). Analytes were detected in positive electrospray ionization mode using selected reaction monitoring. RESULTS: A maximum throughput of 1.54 s/sample (7.41 min/96-well plate with three technical replicates) was achieved, and it was limited by the peak width of the MS signal resulting in an occasional slight overlap between the peaks. Relative standard deviation was 10 ± 1% with all tested sampling strategies. Chemical reaction monitoring of DAN to NAT using nitrite was successfully accomplished with 2 s/sample throughout showing almost complete transformation in 10 min with no signal overlap. CONCLUSIONS: This work illustrates the development of a noncontact, automated I.DOT/OPSI-MS system with improved throughput achieved through an optimized software interface. Its achievable analysis time and precision make it a viable approach for drug discovery and in situ reaction monitoring studies.

3.
Mol Plant Microbe Interact ; 35(8): 639-649, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35349304

RESUMEN

Plant-microbe interactions in the rhizosphere play a vital role in plant health and productivity. The composition and function of root-associated microbiomes is strongly influenced by their surrounding environment, which is often customized by their host. How microbiomes change with respect to space and time across plant roots remains poorly understood, and methodologies that facilitate spatiotemporal metaproteomic studies of root-associated microbiomes are yet to be realized. Here, we developed a method that provides spatially resolved metaproteome measurements along plant roots embedded in agar-plate culture systems, which have long been used to study plants. Spatially defined agar "plugs" of interest were excised and subsequently processed using a novel peptide extraction method prior to metaproteomics, which was used to infer both microbial community composition and function. As a proof-of-principle, a previously studied 10-member community constructed from a Populus root system was grown in an agar plate with a 3-week-old Populus trichocarpa plant. Metaproteomics was performed across two time points (24 and 48 h) for three distinct locations (root base, root tip, and a region distant from the root). The spatial resolution of these measurements provides evidence that microbiome composition and expression changes across the plant root interface. Interrogation of the individual microbial proteomes revealed functional profiles related to their behavioral associations with the plant root, in which chemotaxis and augmented metabolism likely supported predominance of the most abundant member. This study demonstrated a novel peptide extraction method for studying plant agar-plate culture systems, which was previously unsuitable for (meta)proteomic measurements.


Asunto(s)
Populus , Microbiología del Suelo , Agar/metabolismo , Bacterias/metabolismo , Raíces de Plantas , Plantas , Proteómica , Rizosfera
4.
Bioinformatics ; 37(14): 2058-2060, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-33135060

RESUMEN

SUMMARY: Antimicrobial peptides (AMPs) are promising alternative antimicrobial agents. Currently, however, portable, user-friendly and efficient methods for predicting AMP sequences from genome-scale data are not readily available. Here we present amPEPpy, an open-source, multi-threaded command-line application for predicting AMP sequences using a random forest classifier. AVAILABILITY AND IMPLEMENTATION: amPEPpy is implemented in Python 3 and is freely available through GitHub (https://github.com/tlawrence3/amPEPpy). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genoma , Programas Informáticos , Proteínas Citotóxicas Formadoras de Poros
5.
New Phytol ; 234(6): 2111-2125, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35266150

RESUMEN

Sphagnum peatmosses are fundamental members of peatland ecosystems, where they contribute to the uptake and long-term storage of atmospheric carbon. Warming threatens Sphagnum mosses and is known to alter the composition of their associated microbiome. Here, we use a microbiome transfer approach to test if microbiome thermal origin influences host plant thermotolerance. We leveraged an experimental whole-ecosystem warming study to collect field-grown Sphagnum, mechanically separate the associated microbiome and then transfer onto germ-free laboratory Sphagnum for temperature experiments. Host and microbiome dynamics were assessed with growth analysis, Chla fluorescence imaging, metagenomics, metatranscriptomics and 16S rDNA profiling. Microbiomes originating from warming field conditions imparted enhanced thermotolerance and growth recovery at elevated temperatures. Metagenome and metatranscriptome analyses revealed that warming altered microbial community structure in a manner that induced the plant heat shock response, especially the HSP70 family and jasmonic acid production. The heat shock response was induced even without warming treatment in the laboratory, suggesting that the warm-microbiome isolated from the field provided the host plant with thermal preconditioning. Our results demonstrate that microbes, which respond rapidly to temperature alterations, can play key roles in host plant growth response to rapidly changing environments.


Asunto(s)
Microbiota , Sphagnopsida , Carbono , Ecosistema , Metagenoma , Sphagnopsida/fisiología , Temperatura
6.
BMC Microbiol ; 21(1): 308, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749649

RESUMEN

BACKGROUND: Microbe-microbe interactions between members of the plant rhizosphere are important but remain poorly understood. A more comprehensive understanding of the molecular mechanisms used by microbes to cooperate, compete, and persist has been challenging because of the complexity of natural ecosystems and the limited control over environmental factors. One strategy to address this challenge relies on studying complexity in a progressive manner, by first building a detailed understanding of relatively simple subsets of the community and then achieving high predictive power through combining different building blocks (e.g., hosts, community members) for different environments. Herein, we coupled this reductionist approach with high-resolution mass spectrometry-based metaproteomics to study molecular mechanisms driving community assembly, adaptation, and functionality for a defined community of ten taxonomically diverse bacterial members of Populus deltoides rhizosphere co-cultured either in a complex or defined medium. RESULTS: Metaproteomics showed this defined community assembled into distinct microbiomes based on growth media that eventually exhibit composition and functional stability over time. The community grown in two different media showed variation in composition, yet both were dominated by only a few microbial strains. Proteome-wide interrogation provided detailed insights into the functional behavior of each dominant member as they adjust to changing community compositions and environments. The emergence and persistence of select microbes in these communities were driven by specialization in strategies including motility, antibiotic production, altered metabolism, and dormancy. Protein-level interrogation identified post-translational modifications that provided additional insights into regulatory mechanisms influencing microbial adaptation in the changing environments. CONCLUSIONS: This study provides high-resolution proteome-level insights into our understanding of microbe-microbe interactions and highlights specialized biological processes carried out by specific members of assembled microbiomes to compete and persist in changing environmental conditions. Emergent properties observed in these lower complexity communities can then be re-evaluated as more complex systems are studied and, when a particular property becomes less relevant, higher-order interactions can be identified.


Asunto(s)
Bacterias/metabolismo , Microbiología del Suelo , Bacterias/química , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Espectrometría de Masas , Microbiota , Raíces de Plantas/microbiología , Populus/crecimiento & desarrollo , Populus/microbiología , Rizosfera
7.
New Phytol ; 210(2): 657-68, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27000956

RESUMEN

Coniferous forest nitrogen (N) budgets indicate unknown sources of N. A consistent association between limber pine (Pinus flexilis) and potential N2 -fixing acetic acid bacteria (AAB) indicates that native foliar endophytes may supply subalpine forests with N. To assess whether the P. flexilis-AAB association is consistent across years, we re-sampled P. flexilis twigs at Niwot Ridge, CO and characterized needle endophyte communities via 16S rRNA Illumina sequencing. To investigate whether endophytes have access to foliar N2 , we incubated twigs with (13) N2 -enriched air and imaged radioisotope distribution in needles, the first experiment of its kind using (13) N. We used the acetylene reduction assay to test for nitrogenase activity within P. flexilis twigs four times from June to September. We found evidence for N2 fixation in P. flexilis foliage. N2 diffused readily into needles and nitrogenase activity was positive across sampling dates. We estimate that this association could provide 6.8-13.6 µg N m(-2)  d(-1) to P. flexilis stands. AAB dominated the P. flexilis needle endophyte community. We propose that foliar endophytes represent a low-cost, evolutionarily stable N2 -fixing strategy for long-lived conifers. This novel source of biological N2 fixation has fundamental implications for understanding forest N budgets.


Asunto(s)
Ecosistema , Endófitos/metabolismo , Fijación del Nitrógeno , Pinus/metabolismo , Hojas de la Planta/metabolismo , Acetileno/metabolismo , Bacterias/metabolismo , Etilenos/metabolismo , Funciones de Verosimilitud , Isótopos de Nitrógeno , Nitrogenasa/metabolismo , Filogenia , Suelo/química
8.
ISME Commun ; 4(1): ycae062, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38800125

RESUMEN

Bacteria on and inside leaves can influence forest tree health and resilience. The distribution and limits of a tree species' range can be influenced by various factors, with biological interactions among the most significant. We investigated the processes shaping the bacterial needle community across the species distribution of limber pine, a widespread Western conifer inhabiting a range of extreme habitats. We tested four hypotheses: (i) Needle community structure varies across sites, with site-specific factors more important to microbial assembly than host species selection; (ii) dispersal limitation structures foliar communities across the range of limber pine; (iii) the relative significance of dispersal and selection differs across sites in the tree species range; and (iv) needle age structures bacterial communities. We characterized needle communities from the needle surface and tissue of limber pine and co-occurring conifers across 16 sites in the limber pine distribution. Our findings confirmed that site characteristics shape the assembly of bacterial communities across the host species range and showed that these patterns are not driven by dispersal limitation. Furthermore, the strength of selection by the host varied by site, possibly due to differences in available microbes. Our study, by focusing on trees in their natural setting, reveals real needle bacterial dynamics in forests, which is key to understanding the balance between stochastic and deterministic processes in shaping forest tree-microbe interactions. Such understanding will be necessary to predict or manipulate these interactions to support forest ecosystem productivity or assist plant migration and adaptation in the face of global change.

9.
Biotechnol Biofuels Bioprod ; 17(1): 119, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227857

RESUMEN

BACKGROUND: Clostridium autoethanogenum is an acetogenic bacterium that autotrophically converts carbon monoxide (CO) and carbon dioxide (CO2) gases into bioproducts and fuels via the Wood-Ljungdahl pathway (WLP). To facilitate overall carbon capture efficiency, the reaction stoichiometry requires supplementation of hydrogen at an increased ratio of H2:CO to maximize CO2 utilization; however, the molecular details and thus the ability to understand the mechanism of this supplementation are largely unknown. RESULTS: In order to elucidate the microbial physiology and fermentation where at least 75% of the carbon in ethanol comes from CO2, we established controlled chemostats that facilitated a novel and high (11:1) H2:CO uptake ratio. We compared and contrasted proteomic and metabolomics profiles to replicate continuous stirred tank reactors (CSTRs) at the same growth rate from a lower (5:1) H2:CO condition where ~ 50% of the carbon in ethanol is derived from CO2. Our hypothesis was that major changes would be observed in the hydrogenases and/or redox-related proteins and the WLP to compensate for the elevated hydrogen feed gas. Our analyses did reveal protein abundance differences between the two conditions largely related to reduction-oxidation (redox) pathways and cofactor biosynthesis, but the changes were more minor than we would have expected. While the Wood-Ljungdahl pathway proteins remained consistent across the conditions, other post-translational regulatory processes, such as lysine-acetylation, were observed and appeared to be more important for fine-tuning this carbon metabolism pathway. Metabolomic analyses showed that the increase in H2:CO ratio drives the organism to higher carbon dioxide utilization resulting in lower carbon storages and accumulated fatty acid metabolite levels. CONCLUSIONS: This research delves into the intricate dynamics of carbon fixation in C. autoethanogenum, examining the influence of highly elevated H2:CO ratios on metabolic processes and product outcomes. The study underscores the significance of optimizing gas feed composition for enhanced industrial efficiency, shedding light on potential mechanisms, such as post-translational modifications (PTMs), to fine-tune enzymatic activities and improve desired product yields.

10.
Plant Direct ; 7(11): e3546, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38028649

RESUMEN

The Salicaceae family is of growing interest in the study of dioecy in plants because the sex determination region (SDR) has been shown to be highly dynamic, with differing locations and heterogametic systems between species. Without the ability to transform and regenerate Salix in tissue culture, previous studies investigating the mechanisms regulating sex in the genus Salix have been limited to genome resequencing and differential gene expression, which are mostly descriptive in nature, and functional validation of candidate sex determination genes has not yet been conducted. Here, we used Arabidopsis to functionally characterize a suite of previously identified candidate genes involved in sex determination and sex dimorphism in the bioenergy shrub willow Salix purpurea. Six candidate master regulator genes for sex determination were heterologously expressed in Arabidopsis, followed by floral proteome analysis. In addition, 11 transcription factors with predicted roles in mediating sex dimorphism downstream of the SDR were tested using DAP-Seq in both male and female S. purpurea DNA. The results of this study provide further evidence to support models for the roles of ARR17 and GATA15 as master regulator genes of sex determination in S. purpurea, contributing to a regulatory system that is notably different from that of its sister genus Populus. Evidence was also obtained for the roles of two transcription factors, an AP2/ERF family gene and a homeodomain-like transcription factor, in downstream regulation of sex dimorphism.

11.
Microorganisms ; 10(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36296289

RESUMEN

Microorganisms are critical drivers of biological processes that contribute significantly to plant sustainability and productivity. In recent years, emerging research on plant holobiont theory and microbial invasion ecology has radically transformed how we study plant-microbe interactions. Over the last few years, we have witnessed an accelerating pace of advancements and breadth of questions answered using omic technologies. Herein, we discuss how current state-of-the-art genomics, transcriptomics, proteomics, and metabolomics techniques reliably transcend the task of studying plant-microbe interactions while acknowledging existing limitations impeding our understanding of plant holobionts.

12.
ISME J ; 16(4): 1074-1085, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34845335

RESUMEN

Interactions between Sphagnum (peat moss) and cyanobacteria play critical roles in terrestrial carbon and nitrogen cycling processes. Knowledge of the metabolites exchanged, the physiological processes involved, and the environmental conditions allowing the formation of symbiosis is important for a better understanding of the mechanisms underlying these interactions. In this study, we used a cross-feeding approach with spatially resolved metabolite profiling and metatranscriptomics to characterize the symbiosis between Sphagnum and Nostoc cyanobacteria. A pH gradient study revealed that the Sphagnum-Nostoc symbiosis was driven by pH, with mutualism occurring only at low pH. Metabolic cross-feeding studies along with spatially resolved matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) identified trehalose as the main carbohydrate source released by Sphagnum, which were depleted by Nostoc along with sulfur-containing choline-O-sulfate, taurine and sulfoacetate. In exchange, Nostoc increased exudation of purines and amino acids. Metatranscriptome analysis indicated that Sphagnum host defense was downregulated when in direct contact with the Nostoc symbiont, but not as a result of chemical contact alone. The observations in this study elucidated environmental, metabolic, and physiological underpinnings of the widespread plant-cyanobacterial symbioses with important implications for predicting carbon and nitrogen cycling in peatland ecosystems as well as the basis of general host-microbe interactions.


Asunto(s)
Nostoc , Simbiosis , Carbono/metabolismo , Ecosistema , Nitrógeno/metabolismo , Nostoc/fisiología
13.
Microbiol Resour Announc ; 11(10): e0040022, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36069554

RESUMEN

We present 49 metagenome assemblies of the microbiome associated with Sphagnum (peat moss) collected from ambient, artificially warmed, and geothermally warmed conditions across Europe. These data will enable further research regarding the impact of climate change on plant-microbe symbiosis, ecology, and ecosystem functioning of northern peatland ecosystems.

14.
Comput Struct Biotechnol J ; 19: 1917-1927, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995895

RESUMEN

Microbial communities colonize plant tissues and contribute to host function. How these communities form and how individual members contribute to shaping the microbial community are not well understood. Synthetic microbial communities, where defined individual isolates are combined, can serve as valuable model systems for uncovering the organizational principles of communities. Using genome-defined organisms, systematic analysis by computationally-based network reconstruction can lead to mechanistic insights and the metabolic interactions between species. In this study, 10 bacterial strains isolated from the Populus deltoides rhizosphere were combined and passaged in two different media environments to form stable microbial communities. The membership and relative abundances of the strains stabilized after around 5 growth cycles and resulted in just a few dominant strains that depended on the medium. To unravel the underlying metabolic interactions, flux balance analysis was used to model microbial growth and identify potential metabolic exchanges involved in shaping the microbial communities. These analyses were complemented by growth curves of the individual isolates, pairwise interaction screens, and metaproteomics of the community. A fast growth rate is identified as one factor that can provide an advantage for maintaining presence in the community. Final community selection can also depend on selective antagonistic relationships and metabolic exchanges. Revealing the mechanisms of interaction among plant-associated microorganisms provides insights into strategies for engineering microbial communities that can potentially increase plant growth and disease resistance. Further, deciphering the membership and metabolic potentials of a bacterial community will enable the design of synthetic communities with desired biological functions.

15.
mSystems ; 6(3): e0130620, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34156297

RESUMEN

The integral role of microbial communities in plant growth and health is now widely recognized, and, increasingly, the constituents of the microbiome are being defined. While phylogenetic surveys have revealed the taxa present in a microbiome and show that this composition can depend on, and respond to, environmental perturbations, the challenge shifts to determining why particular microbes are selected and how they collectively function in concert with their host. In this study, we targeted the isolation of representative bacterial strains from environmental samples of Populus roots using a direct plating approach and compared them to amplicon-based sequencing analysis of root samples. The resulting culture collection contains 3,211 unique isolates representing 10 classes, 18 orders, 45 families, and 120 genera from 6 phyla, based on 16S rRNA gene sequence analysis. The collection accounts for ∼50% of the natural community of plant-associated bacteria as determined by phylogenetic analysis. Additionally, a representative set of 553 had their genomes sequenced to facilitate functional analyses. The top sequence variants in the amplicon data, identified as Pseudomonas, had multiple representatives within the culture collection. We then explore a simplified microbiome, comprised of 10 strains representing abundant taxa from environmental samples, and tested for their ability to reproducibly colonize Populus root tissue. The 10-member simplified community was able to reproducibly colonize on Populus roots after 21 days, with some taxa found in surface-sterilized aboveground tissue. This study presents a comprehensive collection of bacteria isolated from Populus for use in exploring microbial function and community inoculation experiments to understand basic concepts of plant and environmental selection. IMPORTANCE Microbial communities play an integral role in the health and survival of their plant hosts. Many studies have identified key members in these communities and led to the use of synthetic communities for elucidating their function; however, these studies are limited by the available cultured bacterial representatives. Here, we present a bacterial culture collection comprising 3,211 isolates that is representative of the root community of Populus. We then demonstrate the ability to examine underlying microbe-microbe interactions using a synthetic community approach. This culture collection will allow for the greater exploration of the microbial community function through targeted experimentation and manipulation.

16.
PeerJ ; 8: e8534, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32149021

RESUMEN

BACKGROUND: Microbiomes are extremely important for their host organisms, providing many vital functions and extending their hosts' phenotypes. Natural studies of host-associated microbiomes can be difficult to interpret due to the high complexity of microbial communities, which hinders our ability to track and identify individual members along with the many factors that structure or perturb those communities. For this reason, researchers have turned to synthetic or constructed communities in which the identities of all members are known. However, due to the lack of tracking methods and the difficulty of creating a more diverse and identifiable community that can be distinguished through next-generation sequencing, most such in vivo studies have used only a few strains. RESULTS: To address this issue, we developed DISCo-microbe, a program for the design of an identifiable synthetic community of microbes for use in in vivo experimentation. The program is composed of two modules; (1) create, which allows the user to generate a highly diverse community list from an input DNA sequence alignment using a custom nucleotide distance algorithm, and (2) subsample, which subsamples the community list to either represent a number of grouping variables, including taxonomic proportions, or to reach a user-specified maximum number of community members. As an example, we demonstrate the generation of a synthetic microbial community that can be distinguished through amplicon sequencing. The synthetic microbial community in this example consisted of 2,122 members from a starting DNA sequence alignment of 10,000 16S rRNA sequences from the Ribosomal Database Project. We generated simulated Illumina sequencing data from the constructed community and demonstrate that DISCo-microbe is capable of designing diverse communities with members distinguishable by amplicon sequencing. Using the simulated data we were able to recover sequences from between 97-100% of community members using two different post-processing workflows. Furthermore, 97-99% of sequences were assigned to a community member with zero sequences being misidentified. We then subsampled the community list using taxonomic proportions to mimic a natural plant host-associated microbiome, ultimately yielding a diverse community of 784 members. CONCLUSIONS: DISCo-microbe can create a highly diverse community list of microbes that can be distinguished through 16S rRNA gene sequencing, and has the ability to subsample (i.e., design) the community for the desired number of members and taxonomic proportions. Although developed for bacteria, the program allows for any alignment input from any taxonomic group, making it broadly applicable. The software and data are freely available from GitHub (https://github.com/dlcarper/DISCo-microbe) and Python Package Index (PYPI).

17.
Microbiol Resour Announc ; 9(22)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32467272

RESUMEN

A Gram-positive bacterium was isolated from the root of an eastern cottonwood tree (Populus deltoides) in Georgia and identified as a Tumebacillus species with 99% 16S rRNA nucleotide identity to Tumebacillus avium The genome is 4.6 Mbp and encodes 4,072 proteins and 251 RNAs.

18.
FEMS Microbiol Ecol ; 92(8)2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27267931

RESUMEN

Pines in the subalpine environment at Niwot Ridge, CO, have been found to host communities of acetic acid bacteria (AAB) within their needles. The significance and ubiquity of this pattern is not known, but recent evidence of nitrogen (N)-fixing activity in Pinus flexilis (limber pine) foliage calls for a better understanding of the processes that regulate endophytic communities in forest tree canopies. Here, to test if AAB dominate the foliar bacterial microbiota in other subalpine locations, we compared the 16S rRNA community in needles from P. flexilis and P. contorta (lodgepole pine) growing in the Eastern Sierra Nevada, CA, and Niwot Ridge, CO. AAB made up the majority of the bacterial community in both species at both sites. Multiple distinct AAB taxa, resolved at the single nucleotide level, were shared across host species and sites, with dominant OTUs identical or highly similar to database sequences from cold environments, including high altitude air sampled in Colorado, and the endosphere of Arctic plants. Our results suggest strong selection for community composition, potentially amplified by the long lifespan of individual Pinus needles, along with low dispersal constraints on canopy bacteria.


Asunto(s)
Acetobacteraceae/clasificación , Acetobacteraceae/aislamiento & purificación , Endófitos/clasificación , Endófitos/aislamiento & purificación , Pinus/microbiología , Árboles/microbiología , Acetobacteraceae/genética , Regiones Árticas , Secuencia de Bases , Colorado , ADN Bacteriano/genética , Endófitos/genética , Nevada , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
19.
Front Genet ; 6: 172, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26042145

RESUMEN

FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA