Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Cell ; 83(7): 1075-1092.e9, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36868228

RESUMEN

A multitude of histone chaperones are required to support histones from their biosynthesis until DNA deposition. They cooperate through the formation of histone co-chaperone complexes, but the crosstalk between nucleosome assembly pathways remains enigmatic. Using exploratory interactomics, we define the interplay between human histone H3-H4 chaperones in the histone chaperone network. We identify previously uncharacterized histone-dependent complexes and predict the structure of the ASF1 and SPT2 co-chaperone complex, expanding the role of ASF1 in histone dynamics. We show that DAXX provides a unique functionality to the histone chaperone network, recruiting histone methyltransferases to promote H3K9me3 catalysis on new histone H3.3-H4 prior to deposition onto DNA. Hereby, DAXX provides a molecular mechanism for de novo H3K9me3 deposition and heterochromatin assembly. Collectively, our findings provide a framework for understanding how cells orchestrate histone supply and employ targeted deposition of modified histones to underpin specialized chromatin states.


Asunto(s)
Chaperonas de Histonas , Histonas , Humanos , Histonas/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Nucleosomas/genética , Proteínas de Ciclo Celular/metabolismo , ADN , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo
2.
Mol Cell ; 81(12): 2533-2548.e9, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33857403

RESUMEN

From biosynthesis to assembly into nucleosomes, histones are handed through a cascade of histone chaperones, which shield histones from non-specific interactions. Whether mechanisms exist to safeguard the histone fold during histone chaperone handover events or to release trapped intermediates is unclear. Using structure-guided and functional proteomics, we identify and characterize a histone chaperone function of DNAJC9, a heat shock co-chaperone that promotes HSP70-mediated catalysis. We elucidate the structure of DNAJC9, in a histone H3-H4 co-chaperone complex with MCM2, revealing how this dual histone and heat shock co-chaperone binds histone substrates. We show that DNAJC9 recruits HSP70-type enzymes via its J domain to fold histone H3-H4 substrates: upstream in the histone supply chain, during replication- and transcription-coupled nucleosome assembly, and to clean up spurious interactions. With its dual functionality, DNAJC9 integrates ATP-resourced protein folding into the histone supply pathway to resolve aberrant intermediates throughout the dynamic lives of histones.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Chaperonas de Histonas/metabolismo , Línea Celular Tumoral , Cromatina , Ensamble y Desensamble de Cromatina , Replicación del ADN , Proteínas del Choque Térmico HSP40/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Chaperonas de Histonas/fisiología , Histonas/metabolismo , Humanos , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Nucleosomas , Unión Proteica , Proteómica/métodos
3.
Chemistry ; : e202402600, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291646

RESUMEN

G-quadruplexes (G4s), as non-canonical DNA structures, attract a great deal of research interest in the molecular biology as well as in the material science fields. The use of small molecules as ligands for G-quadruplexes has emerged as a tool to regulate gene expression and telomeres maintenance. Meso-tetrakis-(N-methyl-4-pyridyl)porphyrin (TMPyP4) was shown as one of the first ligands for G-quadruplexes and it is still widely used. We report an investigation comprising molecular docking and dynamics, synthesis and multiple spectroscopic and spectrometric determinations on simple cationic porphyrins and their interaction with different DNA sequences. The study allowed to synthesize a few compounds that have shown to interact with DNA; the detailed characterization has shown that the presence of amide groups at the periphery improves selectivity for parallel G4s binding over other structures. Taking into account the ease of synthesis, 5,10,15,20-tetrakis-(1-acetamido-4-pyridyl)porphyrin bromide could be considered a better alternative to TMPyP4 in studies involving G4 binding.

4.
Nucleic Acids Res ; 50(9): 5349-5368, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35489058

RESUMEN

Histone chaperones regulate all aspects of histone metabolism. NASP is a major histone chaperone for H3-H4 dimers critical for preventing histone degradation. Here, we identify two distinct histone binding modes of NASP and reveal how they cooperate to ensure histone H3-H4 supply. We determine the structures of a sNASP dimer, a complex of a sNASP dimer with two H3 α3 peptides, and the sNASP-H3-H4-ASF1b co-chaperone complex. This captures distinct functionalities of NASP and identifies two distinct binding modes involving the H3 α3 helix and the H3 αN region, respectively. Functional studies demonstrate the H3 αN-interaction represents the major binding mode of NASP in cells and shielding of the H3 αN region by NASP is essential in maintaining the H3-H4 histone soluble pool. In conclusion, our studies uncover the molecular basis of NASP as a major H3-H4 chaperone in guarding histone homeostasis.


Asunto(s)
Chaperonas de Histonas , Histonas , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Homeostasis , Chaperonas Moleculares/metabolismo , Unión Proteica
5.
Molecules ; 29(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338315

RESUMEN

Ester is one of the most significant functional groups in organic chemistry and is enclosed in several valued molecules. Usually, esters are prepared through the acid-catalyzed esterification reaction of carboxylic acids with alcohols, transesterification of esters with alcohols, or via activation of carboxylic acids followed by the addition of alcohols. However, these procedures typically imply the excess use of reactants and harsh reaction conditions. Visible light-mediated photoreactions have been disclosed to display a safe, sustainable, and accessible alternative to traditional methods, and to lead new reactivity modes in organic procedures. In this context, we propose a transition metal-based and organic-based photocatalyst-free synthesis of esters from alcohols induced by visible light. The methodology can be carried out using sunlight or artificial visible light as a solar simulator or a blue LED source.

6.
Molecules ; 29(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675533

RESUMEN

Aryl and heteroaryl iodides have been efficiently converted into the corresponding thioacetates in cyclopentyl methyl ether (CPME), a green solvent, under Cu catalysis. The chemoselectivity of the reaction is mainly controlled by electronic factors, enabling the conversion of both electron-rich and electron-deficient substrates into the corresponding thioacetates in good to excellent yields. The products can be easily deprotected to the corresponding thiolates to carry out additional synthetic transformations in situ. Surprisingly, despite CPME's relatively low dielectric constant, the reaction rate significantly increased when conducted under microwave irradiation conditions. This synthetic methodology exhibits a remarkable tolerance to functional groups, mild reaction conditions, and a wide substrate scope, utilizing a safe and inexpensive CuI pre-catalyst in the green solvent CPME. A non-aqueous workup allowing for the complete recovery of both catalyst and solvent makes this approach an environmentally sustainable protocol for C(sp2) sulfur functionalization. Additionally, the reaction shows selective cross-coupling with iodides in competition with chlorides and bromides, allowing its use in multistep syntheses. To demonstrate the potential of this methodology, it was applied to the high-yield synthesis of a photochromic dithienylethene, where a selective synthesis had not been reported before.

7.
EMBO Rep ; 19(2): 351-367, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29301856

RESUMEN

Nucleolytic processing by nucleases can be a relevant mechanism to allow repair/restart of stalled replication forks. However, nuclease action needs to be controlled to prevent overprocessing of damaged replication forks that can be detrimental to genome stability. The checkpoint protein Rad9/53BP1 is known to limit nucleolytic degradation (resection) of DNA double-strand breaks (DSBs) in both yeast and mammals. Here, we show that loss of the inhibition that Rad9 exerts on resection exacerbates the sensitivity to replication stress of Mec1/ATR-defective yeast cells by exposing stalled replication forks to Dna2-dependent degradation. This Rad9 protective function is independent of checkpoint activation and relies mainly on Rad9-Dpb11 interaction. We propose that Rad9/53BP1 supports cell viability by protecting stalled replication forks from extensive resection when the intra-S checkpoint is not fully functional.


Asunto(s)
Replicación del ADN , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Proteínas Serina-Treonina Quinasas/deficiencia , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteínas de Ciclo Celular/metabolismo , Viabilidad Microbiana , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico
8.
J Org Chem ; 85(18): 11679-11687, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32662268

RESUMEN

A new photocatalyzed route to amides from alcohols and amines mediated by visible light is presented. The reaction is carried out in ethyl acetate as a solvent. Ethyl acetate can be defined a green and bio-based solvent. The starting materials such as the energy source are easily available, stable, and inexpensive. The reaction has shown to be general and high yielding.

9.
Chemistry ; 25(51): 11963-11974, 2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31254368

RESUMEN

Thermal decomposition of citric acid is one of the most common synthesis methods for fluorescent carbon dots; the reaction pathway is, however, quite complex and the details are still far from being understood. For instance, several intermediates form during the process and they also give rise to fluorescent species. In the present work, the formation of fluorescent C-dots from citric acid has been studied as a function of reaction time by coupling infrared analysis, X-ray photoelectron spectroscopy, liquid chromatography/mass spectroscopy (LC/MS) with the change of the optical properties, absorption and emission. The reaction intermediates, which have been identified at different stages, produce two main emissive species, in the green and blue, as also indicated by the decay time analysis. C-dots formed from the intermediates have also been synthesised by thermal decomposition, which gave an emission maximum around 450 nm. The citric acid C-dots in water show short temporal stability, but their functionalisation with 3-aminopropyltriethoxysilane reduces the quenching. The understanding of the citric acid thermal decomposition reaction is expected to improve the control and reproducibility of C-dots synthesis.

10.
Beilstein J Org Chem ; 14: 1655-1659, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013691

RESUMEN

The application of heterogeneous catalysis and green solvents to the set up of widely employed reactions is a challenge in contemporary organic chemistry. We applied such an approach to the synthesis and further conversion of tetrahydropyranyl ethers, an important class of compounds widely employed in multistep syntheses. Several alcohols and phenols were almost quantitatively converted into the corresponding tetrahydropyranyl ethers in cyclopentyl methyl ether or 2-methyltetrahydrofuran employing NH4HSO4 supported on SiO2 as a recyclable acidic catalyst. Easy work up of the reaction mixtures and the versatility of the solvents allowed further conversion of the reaction products under one-pot reaction conditions.

11.
Molecules ; 19(10): 15900-17, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25275336

RESUMEN

Low bioavailability severely hinders exploitation of the biomedical potential of resveratrol. Extensive phase-II metabolism and poor water solubility contribute to lowering the concentrations of resveratrol in the bloodstream after oral administration. Prodrugs may provide a solution-protection of the phenolic functions hinders conjugative metabolism and can be exploited to modulate the physicochemical properties of the compound. We report here the synthesis and characterization of carbamate ester derivatives of resveratrol bearing on each nitrogen atom a methyl group and either a methoxy-poly(ethylene glycol)-350 (mPEG-350) or a butyl-glucosyl promoiety conferring high water solubility. Ex vivo absorption studies revealed that the butyl-glucosyl conjugate, unlike the mPEG-350 one, is able to permeate the intestinal wall. In vivo pharmacokinetics confirmed absorption after oral administration and showed that no hydrolysis of the carbamate groups takes place. Thus, sugar groups can be attached to resveratrol to obtain soluble derivatives maintaining to some degree the ability to permeate biomembranes, perhaps by facilitated or active transport.


Asunto(s)
Carbamatos/química , Estilbenos/química , Estilbenos/farmacocinética , Animales , Ésteres , Mucosa Intestinal/metabolismo , Masculino , Estructura Molecular , Permeabilidad , Profármacos , Ratas , Resveratrol , Solubilidad , Estilbenos/síntesis química , Agua
12.
3 Biotech ; 14(3): 92, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38425411

RESUMEN

Polysaccharide-rich materials were extracted from the alcohol-insoluble solids of Olea europaea l. **leaves. Structural characteristics were determined by colorimetric techniques, FT-IR, GC-MS, SEC/MALS/VD/DRI, and NMR (1H,13C). The extract and its main macromolecular components were characterized to assess their ability toward antioxidant, α-amylase inhibition, and antiproliferative activities. Results revealed that the ultrasound olive leave extract comprises polysaccharides with uronic acid, galactose, arabinose, and glucose in molar percentages of 11.7%, 11.3%, 7.5%, and 4.9% respectively, constituting 41% of the total mass. In addition, polyphenols (21%) and proteins (9%) are associated with these polysaccharides. Further, the extract showed noticeable ORAC and free radical scavenging abilities, in addition to high in vitro antiproliferative activity against Caco-2 colon carcinoma cell lines. Similarly, the extract exhibited a strong, uncompetitive inhibition of α-amylase by 75% in the presence of the extract with 0.75 µg/mL of concentration. This research concludes that ultrasound extraction method can be used for the extraction of polysaccharide-polyphenol-protein complexes. These conjugates exhibit the potential for combined biological activities resulting from a synergistic effect of its compounds, making them promising ingredients for the development of functional food.

13.
Biochim Biophys Acta ; 1817(7): 1095-106, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22433608

RESUMEN

The mitochondriotropic compound 7-O-(4-triphenylphosphoniumbutyl)quercetin iodide (Q-7BTPI) in the µM concentration range caused necrotic death of cultured cells by acting as a prooxidant, with generation of superoxide anion in the mitochondria. Externally added membrane-permeating superoxide dismutase or catalase largely prevented death. Rescue by permeant catalase indicates that the toxicant is H(2)O(2), or reactive species derived from it. Rescue by permeant dismutase suggests the possibility of a chain mechanism of H(2)O(2) production, in which dismutation of superoxide constitutes a termination step. Oxidative stress was due to the presence of free phenolic hydroxyls and to accumulation in mitochondria, since the analogous mitochondriotropic per-O-methylated compound -3,3',4',5-tetra-O-methyl,7-O-(4-triphenylphosphoniumbutyl) quercetin iodide (QTM-7BTPI)-or Quercetin itself induced no or little superoxide production and cell death. Q-7BTPI did not cause a significant perturbation of the mitochondrial transmembrane potential or of respiration in cells. On the other hand its presence led to inhibition of glutathione peroxidase, an effect expected to accentuate oxidative stress by interfering with the elimination of H(2)O(2). An exogenous permeable glutathione precursor determined a strong increase of cellular glutathione levels but did not rescue the cells. Death induction was selective for fast-growing C-26 tumoral cells and mouse embryonic fibroblasts (MEFs) while sparing slow-growing MEFs. This suggests a possible use of Q-7BTPI as a chemotherapeutic agent.


Asunto(s)
Mitocondrias/metabolismo , Quercetina/análogos & derivados , Quercetina/toxicidad , Animales , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Muerte Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Glutatión/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Células Jurkat , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Microscopía Fluorescente , Mitocondrias/efectos de los fármacos , Modelos Biológicos , Quercetina/química , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo
14.
Mol Pharm ; 10(7): 2781-92, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23772980

RESUMEN

The pharmacological exploitation of resveratrol is hindered by rapid phase-II conjugative metabolism in enterocytes and hepatocytes. One approach to the solution of this problem relies on prodrugs. We report the synthesis and characterization as well as the assessment of in vivo absorption and metabolism of a set of prodrugs of resveratrol in which the OH groups are engaged in the formal (-OCH2OR) or the more labile acetal (-OCH(CH3)OR) linkages. As carrier group (R) of the prodrug, we have used short ethyleneglycol oligomers (OEG) capped by a terminal methoxy group: -O-(CH2CH2O)n-CH3 (n = 0, 1, 2, 3, 4, 6). These moieties are expected to exhibit, to a degree, the favorable properties of longer polyethyleneglycol (PEG) chains, while their relatively small size makes for a more favorable drug loading capacity. After administration of formal-based prodrugs to rats by oral gavage, significant concentrations of derivatives were measured in blood samples over several hours, in all cases except for n = 0. Absorption was maximal for n = 4. Complete deprotection to give resveratrol and its metabolites was however too slow to be of practical use. Administration of the acetal prodrug carrying tetrameric OEG chains resulted instead in the protracted presence of resveratrol metabolites in blood, consistent with a progressive regeneration of the parent molecule from the prodrug after its absorption. The results suggest that prodrugs of polyphenols based on the acetal bond and short ethyleneglycol oligomers of homogeneous size may be a convenient tool for the systemic delivery of the unconjugated parent compound.


Asunto(s)
Profármacos/química , Estilbenos/química , Estructura Molecular , Resveratrol
15.
R Soc Open Sci ; 9(4): 211554, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35601448

RESUMEN

The acid-promoted epoxidation of vegetable oils was studied using a variety of acidic ion exchange resins as heterogeneous acid catalysts. Quantitative and selective epoxidation of a series of vegetable oils with different composition of saturated, mono-, di- and tri-unsaturated fatty acids was obtained upon identification of the more efficient catalyst and experimental conditions. Furthermore, optimized reaction conditions were successfully applied to the epoxidation of a waste cooking oil, thus extending our procedure to the valorization of a biowaste, an area of increasing importance within a more sustainable society. The use of quantitative 1HNMR besides making accurate evaluation of the amounts of reagents to be employed and of the selectivity, allowed facile and rapid quantification of mono-, di- and tri-epoxides, thus providing an indirect indication on the fatty acid composition of the vegetable oils, even in the presence of very low quantities of linolenic acid.

16.
ChemSusChem ; 12(1): 40-70, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30246930

RESUMEN

Solvents represent one of the major contributions to the environmental impact of fine-chemical synthesis. As a result, the use of environmentally friendly solvents in widely employed reactions is a challenge of vast real interest in contemporary organic chemistry. Within this Review, a great variety of examples showing how cyclopentyl methyl ether has been established as particularly useful for this purpose are reported. Indeed, its low toxicity, high boiling point, low melting point, hydrophobicity, chemical stability towards a wide range of conditions, exceptional stability towards the abstraction of hydrogen atoms, relatively low latent heat of vaporization, and the ease with which it can be recovered and recycled enable its successful employment as a solvent in a wide range of synthetic applications, including organometallic chemistry, catalysis, biphasic reactions, oxidations, and radical reactions.

17.
Phys Chem Chem Phys ; 10(15): 2026-32, 2008 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-18688355

RESUMEN

Fluorinated organo-silica gels doped with tetra-n-propylammonium perruthenate (TPAP) are excellent catalysts for the aerobic oxidative dehydrogenation of alcohols in supercritical CO2 (scCO2). Their activity and stability are subtly dictated by structure, depending on the degree of fluorination and on the length of the fluoroalkyl chain linked to the silica network. Such dependence reflects the hydrophilic-hydrophobic balance (HHB) of the matrix, as evaluated by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The remarkable correlation between the materials' HHB and reactivity provides a finding of general validity for reaction-controlled mechanisms, which opens the route to the synthesis of second generation sol-gel entrapped catalysts for the production of fine chemicals in scCO2.


Asunto(s)
Dióxido de Carbono/química , Compuestos de Flúor/química , Compuestos Organometálicos/química , Compuestos de Amonio Cuaternario/química , Dióxido de Silicio/química , Catálisis , Modelos Moleculares , Conformación Molecular , Oxidación-Reducción
18.
Chemistry ; 12(20): 5220-4, 2006 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-16622885

RESUMEN

The replacement of toxic Cr(VI) for O2 and of chlorinated solvents for supercritical carbon dioxide (or ionic liquids) in the oxidation of alcohols remains hindered by the low selectivity and activity of the current heterogeneous catalysts. Using an integrated approach that combines sol-gel entrapped perruthenate as aerobic catalyst, an encapsulated ionic liquid as solubility promoter, and scCO2 as the reaction solvent, we have developed a system capable of rapidly converting different alcohols into carbonyl compounds with complete selectivity, including substrates which are otherwise difficult to oxidise. The methodology is generally applicable and may easily be extended to other waste-free, catalytic syntheses of fine chemicals.


Asunto(s)
Alcoholes/química , Dióxido de Carbono/química , Renio/química , Dióxido de Silicio/química , Aerobiosis , Catálisis , Indicadores y Reactivos , Oxidación-Reducción , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA