Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Crit Care Med ; 48(5): 745-756, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32167492

RESUMEN

OBJECTIVES: Recent evidence from the fields of microbiology and immunology, as well as a small number of human sepsis studies, suggest that epigenetic regulation may play a central role in the pathogenesis of sepsis. The term "epigenetics" refers to regulatory mechanisms that control gene expression but are not related to changes in DNA sequence. These include DNA methylation, histone modifications, and regulation of transcription via non-coding RNAs. Epigenetic modifications, occurring in response to external stressors, lead to changes in gene expression, and thus lie at the intersection between genetics and the environment. In this review, we examine data from in vitro studies, animal studies, and the existing human sepsis studies in epigenetics to demonstrate that epigenetic mechanisms are likely central to the pathogenesis of sepsis and that epigenetic therapies may have potential in the treatment of sepsis and its associated organ failures. DATA SOURCES: Online search of published scientific literature via Pubmed using the term "epigenetics" in combination with the terms "sepsis", "infection", "bacterial infection", "viral infection", "critical illness", "acute respiratory distress syndrome", and "acute lung injury". STUDY SELECTION: Articles were chosen for inclusion based on their relevance to sepsis, acute inflammation, sepsis-related immune suppression, and sepsis-related organ failure. Reference lists were reviewed to identify additional relevant articles. DATA EXTRACTION: Relevant data was extracted and synthesized for narrative review. DATA SYNTHESIS: Epigenetic regulation is a key determinant of gene expression in sepsis. At the onset of infection, host-pathogen interactions often result in epigenetic alterations to host cells that favor pathogen survival. In parallel, the host inflammatory response is characterized by epigenetic modifications in key regulatory genes, including tumor necrosis factor and interleukin-1ß. In human sepsis patients, multiple epigenetic modifying enzymes show differential expression in early sepsis, suggesting a role for epigenetics in coordinating the response to infection. In the later stages of sepsis, epigenetic modifications accompany endotoxin tolerance and the immune-suppressed state. In animal models, treatment with epigenetic modifiers can mitigate the effects of sepsis and improve survival as well as reverse sepsis-associated organ injury. CONCLUSIONS: Epigenetic modifications are associated with key phases of sepsis, from the host-pathogen interaction, to acute inflammation, to immune suppression. Epigenetic markers show promise in the diagnosis and prognosis of sepsis and epigenetic modifying agents show promise as therapeutic tools in animal models of sepsis. Human studies in the area of epigenetics are sorely lacking and should be a priority for sepsis researchers.


Asunto(s)
Enfermedad Crítica , Epigénesis Genética/fisiología , Sepsis/genética , Sepsis/fisiopatología , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/fisiopatología , Animales , Biomarcadores , Metilación de ADN/fisiología , Modelos Animales de Enfermedad , Expresión Génica/fisiología , Histonas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Insuficiencia Multiorgánica/genética , Insuficiencia Multiorgánica/fisiopatología , ARN no Traducido/metabolismo , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/fisiopatología
2.
Crit Care Med ; 48(2): 142-150, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31939781

RESUMEN

OBJECTIVES: Epigenetic alterations are an important regulator of gene expression in health and disease; however, epigenetic data in sepsis are lacking. To demonstrate proof of concept and estimate effect size, we performed the first epigenome-wide methylation analysis of whole blood DNA samples from a cohort of septic and nonseptic critically ill patients. DESIGN: A nested case-control study using genomic DNA isolated from whole blood from septic (n = 66) and nonseptic (n = 68) critically ill patients on "Day 1" of ICU admission. Methylation patterns were identified using Illumina 450K arrays with percent methylation expressed as ß values. After quality control, 134 participants and 414,818 autosomal cytosine-phosphate-guanine sites were used for epigenome-wide methylation analyses. SETTING: Tertiary care hospitals. SUBJECTS: Critically ill septic and nonseptic patients. INTERVENTIONS: Observational study. MEASUREMENTS AND MAIN RESULTS: A total of 668 differentially methylated regions corresponding to 443 genes were identified. Known sepsis-associated genes included complement component 3; angiopoietin 2; myeloperoxidase; lactoperoxidase; major histocompatibility complex, class I, A; major histocompatibility complex, class II, isotype DR ß I; major histocompatibility complex, class I, C; and major histocompatibility complex, class II, isotype DQ ß I. When compared with whole blood gene expression data from seven external datasets containing septic and nonseptic patients, 81% of the differentially methylated region-associated genes were differentially expressed in one or more datasets and 31% in three or more datasets. Functional analysis showed enrichment for antigen processing and presentation, methyltransferase activity, cell adhesion, and cell junctions. Analysis by weighted gene coexpression network analysis revealed DNA comethylation modules that were associated with clinical traits including severity of illness, need for vasopressors, and length of stay. CONCLUSIONS: DNA methylation marks may provide important causal and potentially biomarker information in critically ill patients with sepsis.


Asunto(s)
Enfermedad Crítica , Metilación de ADN/genética , Epigénesis Genética/genética , Sepsis/genética , Biomarcadores , Estudios de Casos y Controles , Cromosomas Humanos Par 6/genética , Femenino , Humanos , Unidades de Cuidados Intensivos , Interferones/metabolismo , Masculino , Puntuaciones en la Disfunción de Órganos , Proyectos Piloto , Centros de Atención Terciaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA