Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 630(8016): 401-411, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811727

RESUMEN

Apes possess two sex chromosomes-the male-specific Y chromosome and the X chromosome, which is present in both males and females. The Y chromosome is crucial for male reproduction, with deletions being linked to infertility1. The X chromosome is vital for reproduction and cognition2. Variation in mating patterns and brain function among apes suggests corresponding differences in their sex chromosomes. However, owing to their repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the methodology developed for the telomere-to-telomere (T2T) human genome, we produced gapless assemblies of the X and Y chromosomes for five great apes (bonobo (Pan paniscus), chimpanzee (Pan troglodytes), western lowland gorilla (Gorilla gorilla gorilla), Bornean orangutan (Pongo pygmaeus) and Sumatran orangutan (Pongo abelii)) and a lesser ape (the siamang gibbon (Symphalangus syndactylus)), and untangled the intricacies of their evolution. Compared with the X chromosomes, the ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements-owing to the accumulation of lineage-specific ampliconic regions, palindromes, transposable elements and satellites. Many Y chromosome genes expand in multi-copy families and some evolve under purifying selection. Thus, the Y chromosome exhibits dynamic evolution, whereas the X chromosome is more stable. Mapping short-read sequencing data to these assemblies revealed diversity and selection patterns on sex chromosomes of more than 100 individual great apes. These reference assemblies are expected to inform human evolution and conservation genetics of non-human apes, all of which are endangered species.


Asunto(s)
Hominidae , Cromosoma X , Cromosoma Y , Animales , Femenino , Masculino , Gorilla gorilla/genética , Hominidae/genética , Hominidae/clasificación , Hylobatidae/genética , Pan paniscus/genética , Pan troglodytes/genética , Filogenia , Pongo abelii/genética , Pongo pygmaeus/genética , Telómero/genética , Cromosoma X/genética , Cromosoma Y/genética , Evolución Molecular , Variaciones en el Número de Copia de ADN/genética , Humanos , Especies en Peligro de Extinción , Estándares de Referencia
2.
Nature ; 617(7960): 312-324, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37165242

RESUMEN

Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals1. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample.


Asunto(s)
Genoma Humano , Genómica , Humanos , Diploidia , Genoma Humano/genética , Haplotipos/genética , Análisis de Secuencia de ADN , Genómica/normas , Estándares de Referencia , Estudios de Cohortes , Alelos , Variación Genética
3.
Genome Res ; 32(5): 893-903, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35483961

RESUMEN

Methods that use a linear genome reference for genome sequencing data analysis are reference-biased. In the field of clinical genetics for rare diseases, a resulting reduction in genotyping accuracy in some regions has likely prevented the resolution of some cases. Pangenome graphs embed population variation into a reference structure. Although pangenome graphs have helped to reduce reference mapping bias, further performance improvements are possible. We introduce VG-Pedigree, a pedigree-aware workflow based on the pangenome-mapping tool of Giraffe and the variant calling tool DeepTrio using a specially trained model for Giraffe-based alignments. We demonstrate mapping and variant calling improvements in both single-nucleotide variants (SNVs) and insertion and deletion (indel) variants over those produced by alignments created using BWA-MEM to a linear-reference and Giraffe mapping to a pangenome graph containing data from the 1000 Genomes Project. We have also adapted and upgraded deleterious-variant (DV) detecting methods and programs into a streamlined workflow. We used these workflows in combination to detect small lists of candidate DVs among 15 family quartets and quintets of the Undiagnosed Diseases Program (UDP). All candidate DVs that were previously diagnosed using the Mendelian models covered by the previously published methods were recapitulated by these workflows. The results of these experiments indicate that a slightly greater absolute count of DVs are detected in the proband population than in their matched unaffected siblings.


Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación INDEL , Linaje , Programas Informáticos , Flujo de Trabajo
4.
Blood ; 141(15): 1802-1811, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36603187

RESUMEN

To determine the prognostic significance of central nervous system (CNS) leukemic involvement in newly diagnosed T-cell acute lymphoblastic leukemia (T-ALL), outcomes on consecutive, phase 3 Children's Oncology Group clinical trials were examined. AALL0434 and AALL1231 tested efficacy of novel agents within augmented-Berlin-Frankfurt-Münster (aBFM) therapy. In addition to testing study-specific chemotherapy through randomization, the AALL0434 regimen delivered cranial radiation therapy (CRT) to most participants (90.8%), whereas AALL1231 intensified chemotherapy to eliminate CRT in 88.2% of participants. In an analysis of 2164 patients with T-ALL (AALL0434, 1550; AALL1231, 614), 1564 had CNS-1 (72.3%), 441 CNS-2 (20.4%), and 159 CNS-3 (7.3%). The 4-year event-free-survival (EFS) was similar for CNS-1 (85.1% ± 1.0%) and CNS-2 (83.2% ± 2.0%), but lower for CNS-3 (71.8% ± 4.0%; P = .0004). Patients with CNS-1 and CNS-2 had similar 4-year overall survival (OS) (90.1% ± 0.8% and 90.5% ± 1.5%, respectively), with OS for CNS-3 being 82.7% ± 3.4% (P = .005). Despite therapeutic differences, outcomes for CNS-1 and CNS-2 were similar regardless of CRT, intensified corticosteroids, or novel agents. Except for significantly superior outcomes with nelarabine on AALL0434 (4-year disease-free survival, 93.1% ± 5.2%), EFS/OS was inferior with CNS-3 status, all of whom received CRT. Combined analyses of >2000 patients with T-ALL identified that CNS-1 and CNS-2 status at diagnosis had similar outcomes. Unlike B-ALL, CNS-2 status in T-ALL does not impact outcome with aBFM therapy, without additional intrathecal therapy, with or without CRT. Although nelarabine improved outcomes for those with CNS-3 status, novel approaches are needed. These trials were registered at www.clinicaltrials.gov as #NCT00408005 (AALL0434) and #NCT02112916 (AALL1231).


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Niño , Humanos , Lactante , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Sistema Nervioso Central , Supervivencia sin Enfermedad , Metotrexato , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Pronóstico , Linfocitos T , Resultado del Tratamiento
5.
Blood ; 142(2): 172-184, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37001051

RESUMEN

Trisomy 21, the genetic cause of Down syndrome (DS), is the most common congenital chromosomal anomaly. It is associated with a 20-fold increased risk of acute lymphoblastic leukemia (ALL) during childhood and results in distinctive leukemia biology. To comprehensively define the genomic landscape of DS-ALL, we performed whole-genome sequencing and whole-transcriptome sequencing (RNA-Seq) on 295 cases. Our integrated genomic analyses identified 15 molecular subtypes of DS-ALL, with marked enrichment of CRLF2-r, IGH::IGF2BP1, and C/EBP altered (C/EBPalt) subtypes compared with 2257 non-DS-ALL cases. We observed abnormal activation of the CEBPD, CEBPA, and CEBPE genes in 10.5% of DS-ALL cases via a variety of genomic mechanisms, including chromosomal rearrangements and noncoding mutations leading to enhancer hijacking. A total of 42.3% of C/EBP-activated DS-ALL also have concomitant FLT3 point mutations or insertions/deletions, compared with 4.1% in other subtypes. CEBPD overexpression enhanced the differentiation of mouse hematopoietic progenitor cells into pro-B cells in vitro, particularly in a DS genetic background. Notably, recombination-activating gene-mediated somatic genomic abnormalities were common in DS-ALL, accounting for a median of 27.5% of structural alterations, compared with 7.7% in non-DS-ALL. Unsupervised hierarchical clustering analyses of CRLF2-rearranged DS-ALL identified substantial heterogeneity within this group, with the BCR::ABL1-like subset linked to an inferior event-free survival, even after adjusting for known clinical risk factors. These results provide important insights into the biology of DS-ALL and point to opportunities for targeted therapy and treatment individualization.


Asunto(s)
Síndrome de Down , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Ratones , Síndrome de Down/complicaciones , Síndrome de Down/genética , Mutación , Factores de Riesgo , Genómica , Aberraciones Cromosómicas , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicaciones , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
6.
Blood ; 142(8): 711-723, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37216686

RESUMEN

Intrachromosomal amplification of chromosome 21 defines a subtype of high-risk childhood acute lymphoblastic leukemia (iAMP21-ALL) characterized by copy number changes and complex rearrangements of chromosome 21. The genomic basis of iAMP21-ALL and the pathogenic role of the region of amplification of chromosome 21 to leukemogenesis remains incompletely understood. In this study, using integrated whole genome and transcriptome sequencing of 124 patients with iAMP21-ALL, including rare cases arising in the context of constitutional chromosomal aberrations, we identified subgroups of iAMP21-ALL based on the patterns of copy number alteration and structural variation. This large data set enabled formal delineation of a 7.8 Mb common region of amplification harboring 71 genes, 43 of which were differentially expressed compared with non-iAMP21-ALL ones, including multiple genes implicated in the pathogenesis of acute leukemia (CHAF1B, DYRK1A, ERG, HMGN1, and RUNX1). Using multimodal single-cell genomic profiling, including single-cell whole genome sequencing of 2 cases, we documented clonal heterogeneity and genomic evolution, demonstrating that the acquisition of the iAMP21 chromosome is an early event that may undergo progressive amplification during disease ontogeny. We show that UV-mutational signatures and high mutation load are characteristic secondary genetic features. Although the genomic alterations of chromosome 21 are variable, these integrated genomic analyses and demonstration of an extended common minimal region of amplification broaden the definition of iAMP21-ALL for more precise diagnosis using cytogenetic or genomic methods to inform clinical management.


Asunto(s)
Cromosomas Humanos Par 21 , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Niño , Cromosomas Humanos Par 21/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Aberraciones Cromosómicas , Citogenética , Genómica , Factor 1 de Ensamblaje de la Cromatina/genética
7.
Genes Chromosomes Cancer ; 63(1): e23195, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37548271

RESUMEN

Rhabdoid Tumor Predisposition Syndrome 1 (RTPS1) confers an increased risk of developing rhabdoid tumors and is caused by germline mutations in SMARCB1. RTPS1 should be evaluated in all individuals with rhabdoid tumor and is more likely in those with a young age at presentation (occasionally congenital presentation), multiple primary tumors, or a family history of rhabdoid tumor or RTPS1. Proband genetic testing is the standard method for diagnosing RTPS1. Most known RTPS1-related SMARCB1 gene mutations are copy number variants (CNVs) or single nucleotide variants/indels, but structural variant analysis (SVA) is not usually included in the molecular evaluation. Here, we report two children with RTPS1 presenting with atypical teratoid/rhabdoid tumor (ATRT) who had constitutional testing showing balanced chromosome translocations involving SMARCB1. Patient 1 is a 23-year-old female diagnosed with pineal region ATRT at 7 months who was found to have a de novo, constitutional t(16;22)(p13.3;q11.2). Patient 2 is a 24-month-old male diagnosed with a posterior fossa ATRT at 14 months, with subsequent testing showing a constitutional t(5;22)(q14.1;q11.23). These structural rearrangements have not been previously reported in RTPS1. While rare, these cases suggest that structural variants should be considered in the evaluation of children with rhabdoid tumors to provide more accurate genetic counseling on the risks of developing tumors, the need for surveillance, and the risks of passing the disorder on to future children. Further research is needed to understand the prevalence, clinical features, and tumor risks associated with RTPS1-related constitutional balanced translocations.


Asunto(s)
Neoplasias Encefálicas , Trastornos de los Cromosomas , Tumor Rabdoide , Teratoma , Niño , Femenino , Masculino , Humanos , Adulto Joven , Adulto , Lactante , Tumor Rabdoide/genética , Tumor Rabdoide/patología , Proteína SMARCB1/genética , Neoplasias Encefálicas/genética , Mutación de Línea Germinal , Translocación Genética , Teratoma/genética , Teratoma/patología
8.
Am J Hum Genet ; 108(7): 1217-1230, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34077760

RESUMEN

Genome-wide association studies (GWASs) require accurate cohort phenotyping, but expert labeling can be costly, time intensive, and variable. Here, we develop a machine learning (ML) model to predict glaucomatous optic nerve head features from color fundus photographs. We used the model to predict vertical cup-to-disc ratio (VCDR), a diagnostic parameter and cardinal endophenotype for glaucoma, in 65,680 Europeans in the UK Biobank (UKB). A GWAS of ML-based VCDR identified 299 independent genome-wide significant (GWS; p ≤ 5 × 10-8) hits in 156 loci. The ML-based GWAS replicated 62 of 65 GWS loci from a recent VCDR GWAS in the UKB for which two ophthalmologists manually labeled images for 67,040 Europeans. The ML-based GWAS also identified 93 novel loci, significantly expanding our understanding of the genetic etiologies of glaucoma and VCDR. Pathway analyses support the biological significance of the novel hits to VCDR: select loci near genes involved in neuronal and synaptic biology or harboring variants are known to cause severe Mendelian ophthalmic disease. Finally, the ML-based GWAS results significantly improve polygenic prediction of VCDR and primary open-angle glaucoma in the independent EPIC-Norfolk cohort.


Asunto(s)
Aprendizaje Automático , Disco Óptico/anatomía & histología , Conjuntos de Datos como Asunto , Angiografía con Fluoresceína , Estudio de Asociación del Genoma Completo , Glaucoma de Ángulo Abierto/diagnóstico por imagen , Humanos , Modelos Anatómicos , Disco Óptico/diagnóstico por imagen , Fenotipo , Medición de Riesgo
9.
Nat Methods ; 18(11): 1322-1332, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34725481

RESUMEN

Long-read sequencing has the potential to transform variant detection by reaching currently difficult-to-map regions and routinely linking together adjacent variations to enable read-based phasing. Third-generation nanopore sequence data have demonstrated a long read length, but current interpretation methods for their novel pore-based signal have unique error profiles, making accurate analysis challenging. Here, we introduce a haplotype-aware variant calling pipeline, PEPPER-Margin-DeepVariant, that produces state-of-the-art variant calling results with nanopore data. We show that our nanopore-based method outperforms the short-read-based single-nucleotide-variant identification method at the whole-genome scale and produces high-quality single-nucleotide variants in segmental duplications and low-mappability regions where short-read-based genotyping fails. We show that our pipeline can provide highly contiguous phase blocks across the genome with nanopore reads, contiguously spanning between 85% and 92% of annotated genes across six samples. We also extend PEPPER-Margin-DeepVariant to PacBio HiFi data, providing an efficient solution with superior performance over the current WhatsHap-DeepVariant standard. Finally, we demonstrate de novo assembly polishing methods that use nanopore and PacBio HiFi reads to produce diploid assemblies with high accuracy (Q35+ nanopore-polished and Q40+ PacBio HiFi-polished).


Asunto(s)
Genes , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nanoporos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Genoma Humano , Humanos , Anotación de Secuencia Molecular
10.
Genet Med ; 26(1): 101010, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37860969

RESUMEN

PURPOSE: Multiple studies suggest an association between DLG2 and neurodevelopmental disorders and indicate the haploinsufficiency of this gene; however, few cases have been thoroughly described. We performed additional studies to confirm this clinical association and DLG2 haploinsufficiency. METHODS: Chromosomal microarray analysis was performed on 11,107 patients at the Cytogenetics Laboratory at the University of Alabama at Birmingham. The Database of Genomic Variants-Gold Standard Variants and the Genome Aggregation Database were selected for the association analysis. Fifty-nine patients from the literature and DECIPHER, all having DLG2 intragenic deletions, were included for comprehensive analysis of the distribution of these deletions. RESULTS: A total of 13 patients with DLG2 intragenic deletions, from 10 families in our cohort, were identified. Nine of 10 probands presented with clinical features of neurodevelopmental disorders. Congenital anomalies and dysmorphism were common in our cohort of patients. Association analysis showed that the frequency of DLG2 deletions in our cohort is significantly higher than those in the Database of Genomic Variants-Gold Standard Variants and the Genome Aggregation Database. Most of DLG2 intragenic deletions identified in 69 unrelated patients from our cohort, the literature, and DECIPHER map to the 5' region of the gene, with a hotspot centered around HPin7, exon 8, and HPin8. CONCLUSION: Our findings reinforce the link between DLG2 intragenic deletions and neurodevelopmental disorders, strongly support the haploinsufficiency of this gene, and indicate that these deletions might also have an association with congenital anomalies and dysmorphism.


Asunto(s)
Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Exones/genética , Haploinsuficiencia/genética , Proteínas Supresoras de Tumor/genética , Guanilato-Quinasas/genética
11.
Haematologica ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38867582

RESUMEN

Infants less than 1 year old diagnosed with KMT2A-rearranged (KMT2A-r) acute lymphoblastic leukemia (ALL) are at high risk of remission failure, relapse, and death due to leukemia, despite intensive therapies. Infant KMT2A-r ALL blasts are characterized by DNA hypermethylation. Epigenetic priming with DNA methyltransferase inhibitors increases the cytotoxicity of chemotherapy in preclinical studies. The Children's Oncology Group trial AALL15P1 tested the safety and tolerability of five days of azacitidine immediately prior to the start of chemotherapy on day six, in four post-induction chemotherapy courses for infants with newly diagnosed KMT2A-r ALL. The treatment was welltolerated, with only two of 31 evaluable patients (6.5%) experiencing dose-limiting toxicity. Whole genome bisulfite sequencing of peripheral blood mononuclear cells (PBMCs) demonstrated decreased DNA methylation in 87% of samples tested following five days of azacitidine. Event-free survival was similar to prior studies of newly diagnosed infant ALL. Azacitidine is safe and results in decreased DNA methylation of PBMCs in infants with KMT2A-r ALL, but the incorporation of azacitidine to enhance cytotoxicity did not impact survival. Clinicaltrials.gov identifier: NCT02828358.

12.
BMC Bioinformatics ; 24(1): 197, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173615

RESUMEN

Large-scale population variant data is often used to filter and aid interpretation of variant calls in a single sample. These approaches do not incorporate population information directly into the process of variant calling, and are often limited to filtering which trades recall for precision. In this study, we develop population-aware DeepVariant models with a new channel encoding allele frequencies from the 1000 Genomes Project. This model reduces variant calling errors, improving both precision and recall in single samples, and reduces rare homozygous and pathogenic clinvar calls cohort-wide. We assess the use of population-specific or diverse reference panels, finding the greatest accuracy with diverse panels, suggesting that large, diverse panels are preferable to individual populations, even when the population matches sample ancestry. Finally, we show that this benefit generalizes to samples with different ancestry from the training data even when the ancestry is also excluded from the reference panel.


Asunto(s)
Aprendizaje Profundo , Humanos , Frecuencia de los Genes , Secuenciación Completa del Genoma , Estudio de Asociación del Genoma Completo , Genoma Humano , Polimorfismo de Nucleótido Simple , Secuenciación de Nucleótidos de Alto Rendimiento
13.
Pediatr Blood Cancer ; : e30467, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37259259

RESUMEN

We measured minimal residual disease (MRD) by multiparameter flow cytometry at three time points (TP) in 117 infants with KMT2A (lysine [K]-specific methyltransferase 2A)-rearranged and 58 with KMT2A-germline acute lymphoblastic leukemia (ALL) on Children's Oncology Group AALL0631 study. For KMT2A-rearranged patients, 3-year event-free survival (EFS) by MRD-positive (≥0.01%) versus MRD-negative (<0.01%) was: TP1: 25% (±6%) versus 49% (±7%; p = .0009); TP2: 21% (±8%) versus 47% (±7%; p < .0001); and TP3: 22% (±14%) versus 51% (±6%; p = .0178). For KMT2A-germline patients, 3-year EFS was: TP1: 88% (±12%) versus 87% (±5%; p = .73); TP2: 100% versus 88% (±5%; p = .24); and TP3: 100% versus 87% (±5%; p = .53). MRD was a strong independent outcome predictor in KMT2A-rearranged, but not KMT2A-germline infant ALL.

14.
Proc Natl Acad Sci U S A ; 117(42): 26340-26346, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33020282

RESUMEN

Balanced rearrangements involving the KMT2A gene, located at 11q23, are among the most frequent chromosome aberrations in acute myeloid leukemia (AML). Because of numerous fusion partners, the mutational landscape and prognostic impact of specific 11q23/KMT2A rearrangements are not fully understood. We analyzed clinical features of 172 adults with AML and recurrent 11q23/KMT2A rearrangements, 141 of whom had outcome data available. We compared outcomes of these patients with outcomes of 1,097 patients without an 11q23/KMT2A rearrangement categorized according to the 2017 European LeukemiaNet (ELN) classification. Using targeted next-generation sequencing, we investigated the mutational status of 81 leukemia/cancer-associated genes in 96 patients with 11q23/KMT2A rearrangements with material for molecular studies available. Patients with 11q23/KMT2A rearrangements had a low number of additional gene mutations (median, 1; range 0 to 6), which involved the RAS pathway (KRAS, NRAS, and PTPN11) in 32% of patients. KRAS mutations occurred more often in patients with t(6;11)(q27;q23)/KMT2A-AFDN compared with patients with the other 11q23/KMT2A subsets. Specific gene mutations were too infrequent in patients with specific 11q23/KMT2A rearrangements to assess their associations with outcomes. We demonstrate that younger (age <60 y) patients with t(9;11)(p22;q23)/KMT2A-MLLT3 had better outcomes than patients with other 11q23/KMT2A rearrangements and those without 11q23/KMT2A rearrangements classified in the 2017 ELN intermediate-risk group. Conversely, outcomes of older patients (age ≥60 y) with t(9;11)(p22;q23) were poor and comparable to those of the ELN adverse-risk group patients. Our study shows that patients with an 11q23/KMT2A rearrangement have distinct mutational patterns and outcomes depending on the fusion partner.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/genética , Síndrome de Deleción Distal 11q de Jacobsen/genética , Leucemia Mieloide Aguda/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Adolescente , Adulto , Anciano , Aberraciones Cromosómicas , Femenino , Reordenamiento Génico/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Síndrome de Deleción Distal 11q de Jacobsen/metabolismo , Cariotipificación , Masculino , Persona de Mediana Edad , Mutación/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Translocación Genética/genética , Resultado del Tratamiento
15.
Cancer ; 128(9): 1863-1870, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35201611

RESUMEN

BACKGROUND: Boys with acute lymphoblastic leukemia (ALL) have historically experienced inferior survival compared to girls. This study determined whether sex-based disparities persist with contemporary therapy and whether patterns of treatment failure vary by sex. METHODS: Patients 1 to 30.99 years old were enrolled on frontline Children's Oncology Group trials between 2004 and 2014. Boys received an additional year of maintenance therapy. Sex-based differences in the distribution of various prognosticators, event-free survival (EFS) and overall survival (OS), and subcategories of relapse by site were explored. RESULTS: A total of 8202 (54.4% male) B-cell ALL (B-ALL) and 1562 (74.3% male) T-cell ALL (T-ALL) patients were included. There was no sex-based difference in central nervous system (CNS) status. Boys experienced inferior 5-year EFS and OS (EFS, 84.6% ± 0.5% vs 86.0% ± 0.6%, P = .009; OS, 91.3% ± 0.4% vs 92.5% ± 0.4%, P = .02). This was attributable to boys with B-ALL, who experienced inferior EFS (hazard ratio [HR], 1.2; 95% confidence interval [95% CI], 1.1-1.3; P = .004) and OS (HR, 1.2; 95% CI, 1.0-1.4; P = .046) after adjustment for prognosticators. Inferior B-ALL outcomes in boys were attributable to more relapses (5-year cumulative incidence 11.2% ± 0.5% vs 9.6% ± 0.5%; P = .001), particularly involving the CNS (4.2% ± 0.3% vs 2.5% ± 0.3%; P < .0001). There was no difference in isolated bone marrow relapses (5.4% ± 0.4% vs 6.2% ± 0.4%; P = .49). There were no sex-based differences in EFS or OS in T-ALL. CONCLUSIONS: Sex-based disparities in ALL persist, attributable to increased CNS relapses in boys with B-ALL. Studies of potential mechanisms are warranted. Improved strategies to identify and modify treatment for patients at highest risk of CNS relapse may have particular benefit for boys.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adolescente , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Médula Ósea , Niño , Preescolar , Supervivencia sin Enfermedad , Femenino , Humanos , Lactante , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Recurrencia , Resultado del Tratamiento , Adulto Joven
16.
Bioinformatics ; 36(24): 5582-5589, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33399819

RESUMEN

MOTIVATION: Population-scale sequenced cohorts are foundational resources for genetic analyses, but processing raw reads into analysis-ready cohort-level variants remains challenging. RESULTS: We introduce an open-source cohort-calling method that uses the highly accurate caller DeepVariant and scalable merging tool GLnexus. Using callset quality metrics based on variant recall and precision in benchmark samples and Mendelian consistency in father-mother-child trios, we optimize the method across a range of cohort sizes, sequencing methods and sequencing depths. The resulting callsets show consistent quality improvements over those generated using existing best practices with reduced cost. We further evaluate our pipeline in the deeply sequenced 1000 Genomes Project (1KGP) samples and show superior callset quality metrics and imputation reference panel performance compared to an independently generated GATK Best Practices pipeline. AVAILABILITY AND IMPLEMENTATION: We publicly release the 1KGP individual-level variant calls and cohort callset (https://console.cloud.google.com/storage/browser/brain-genomics-public/research/cohort/1KGP) to foster additional development and evaluation of cohort merging methods as well as broad studies of genetic variation. Both DeepVariant (https://github.com/google/deepvariant) and GLnexus (https://github.com/dnanexus-rnd/GLnexus) are open-source, and the optimized GLnexus setup discovered in this study is also integrated into GLnexus public releases v1.2.2 and later. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

17.
Haematologica ; 107(5): 1034-1044, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34261293

RESUMEN

Expression levels of long non-coding RNA (lncRNA) have been shown to associate with clinical outcome of patients with cytogenetically normal acute myeloid leukemia (CN-AML). However, the frequency and clinical significance of genetic variants in the nucleotide sequences of lncRNA in AML patients is unknown. Herein, we analyzed total RNA sequencing data of 377 younger adults (aged <60 years) with CN-AML, who were comprehensively characterized with regard to clinical outcome. We used available genomic databases and stringent filters to annotate genetic variants unequivocally located in the non-coding transcriptome of AML patients. We detected 981 variants, which are recurrently present in lncRNA that are expressed in leukemic blasts. Among these variants, we identified a cytosine-to-thymidine variant in the lncRNA RP5-1074L1.4 and a cytosine-to-thymidine variant in the lncRNA SNHG15, which independently associated with longer survival of CN-AML patients. The presence of the SNHG15 cytosine-to-thymidine variant was also found to associate with better outcome in an independent dataset of CN-AML patients, despite differences in treatment protocols and RNA sequencing techniques. In order to gain biological insights, we cloned and overexpressed both wild-type and variant versions of the SNHG15 lncRNA. In keeping with its negative prognostic impact, overexpression of the wild-type SNHG15 associated with higher proliferation rate of leukemic blasts when compared with the cytosine-to-thymidine variant. We conclude that recurrent genetic variants of lncRNA that are expressed in the leukemic blasts of CN-AML patients have prognostic and potential biological significance.


Asunto(s)
Leucemia Mieloide Aguda , ARN Largo no Codificante , Transcriptoma , Adulto , Citosina , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Persona de Mediana Edad , Mutación , Pronóstico , ARN Largo no Codificante/genética , Timidina
18.
J Pediatr Hematol Oncol ; 44(1): e109-e113, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33625084

RESUMEN

Therapy-related myeloid neoplasm (t-MN) in the pediatric population is not well characterized. We studied 12 pediatric patients diagnosed with t-MN in our institution since 2006. The median age at the t-MN diagnoses was 14.8 years (range, 9 to 20 y). The primary malignancies included 9 solid tumors and 3 hematopoietic malignancies. Rhabdomyosarcoma (n=4) was the most common primary malignancy. Five of the 9 patients with solid tumors and all 3 patients with hematopoietic malignancies had primary neoplasms involving bone marrow. The median latency period was 5.2 years (range, 1.8 to 13.8 y). Thrombocytopenia was present in all patients at the t-MN diagnoses. Complete or partial monosomy of chromosome 5 or 7 were the 2 most common cytogenetic abnormalities. A quarter of patients demonstrated a genetic predisposition to t-MN: 1 with Li-Fraumeni syndrome with a germline TP53 R248Q mutation, 1 with Noonan syndrome with a somatic mutation (PTPN11 S502T), and 1 with a constitutive chromosomal translocation [t(X;9)(p22;q34)] and a germline TP53 L130V mutation. Outcomes remain poor. Two patients survived 3 and 5.1 years after hematopoietic stem cell transplantation.


Asunto(s)
Cromosomas Humanos Par 5/genética , Predisposición Genética a la Enfermedad , Neoplasias Hematológicas , Trasplante de Células Madre Hematopoyéticas , Síndrome de Li-Fraumeni , Trastornos Mieloproliferativos , Neoplasias Primarias Secundarias , Síndrome de Noonan , Rabdomiosarcoma , Adolescente , Adulto , Aloinjertos , Niño , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 7/genética , Femenino , Neoplasias Hematológicas/epidemiología , Neoplasias Hematológicas/genética , Humanos , Lactante , Síndrome de Li-Fraumeni/epidemiología , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/terapia , Masculino , Trastornos Mieloproliferativos/epidemiología , Trastornos Mieloproliferativos/genética , Neoplasias Primarias Secundarias/epidemiología , Neoplasias Primarias Secundarias/genética , Síndrome de Noonan/epidemiología , Síndrome de Noonan/genética , Síndrome de Noonan/terapia , Rabdomiosarcoma/epidemiología , Rabdomiosarcoma/genética , Rabdomiosarcoma/terapia , Adulto Joven
19.
Psychiatr Psychol Law ; 29(5): 731-751, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36148394

RESUMEN

In DPP v O'Neill, the Victorian Court of Appeal excluded personality disorders from the scope of the sentencing principles that apply to offenders with mental health problems around Australia (the 'Verdins principles'). This decision was based on a fundamental misunderstanding of the nature of personality disorders and had the potential to create serious injustice for many marginalised people. To redress this problem, the authors engaged in a unique process of strategic advocacy, which resulted in the Victorian Court of Appeal overturning O'Neill in the recent case of Brown v The Queen. This article examines the evolution of the Verdins principles, the problems that arose in O'Neill, the collaborative strategy used to address those problems and the successful outcome of that interdisciplinary strategy.

20.
Blood ; 134(15): 1227-1237, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31350265

RESUMEN

Children with Down syndrome (DS) have a 20-fold increased risk of acute lymphoblastic leukemia (ALL) and distinct somatic features, including CRLF2 rearrangement in ∼50% of cases; however, the role of inherited genetic variation in DS-ALL susceptibility is unknown. We report the first genome-wide association study of DS-ALL, comprising a meta-analysis of 4 independent studies, with 542 DS-ALL cases and 1192 DS controls. We identified 4 susceptibility loci at genome-wide significance: rs58923657 near IKZF1 (odds ratio [OR], 2.02; Pmeta = 5.32 × 10-15), rs3731249 in CDKN2A (OR, 3.63; Pmeta = 3.91 × 10-10), rs7090445 in ARID5B (OR, 1.60; Pmeta = 8.44 × 10-9), and rs3781093 in GATA3 (OR, 1.73; Pmeta = 2.89 × 10-8). We performed DS-ALL vs non-DS ALL case-case analyses, comparing risk allele frequencies at these and other established susceptibility loci (BMI1, PIP4K2A, and CEBPE) and found significant association with DS status for CDKN2A (OR, 1.58; Pmeta = 4.1 × 10-4). This association was maintained in separate regression models, both adjusting for and stratifying on CRLF2 overexpression and other molecular subgroups, indicating an increased penetrance of CDKN2A risk alleles in children with DS. Finally, we investigated functional significance of the IKZF1 risk locus, and demonstrated mapping to a B-cell super-enhancer, and risk allele association with decreased enhancer activity and differential protein binding. IKZF1 knockdown resulted in significantly higher proliferation in DS than non-DS lymphoblastoid cell lines. Our findings demonstrate a higher penetrance of the CDKN2A risk locus in DS and serve as a basis for further biological insights into DS-ALL etiology.


Asunto(s)
Síndrome de Down/genética , Polimorfismo de Nucleótido Simple , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Niño , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Proteínas de Unión al ADN/genética , Síndrome de Down/complicaciones , Factor de Transcripción GATA3/genética , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Factor de Transcripción Ikaros/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicaciones , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA