Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Trends Immunol ; 45(6): 419-427, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762333

RESUMEN

The humoral arm of mammalian innate immunity regulates several molecular mechanisms involved in resistance to pathogens, inflammation, and tissue repair. Recent studies highlight the crucial role played by humoral mediators in granulomatous inflammation. However the molecular mechanisms linking the function of these soluble molecules to the initiation and maintenance of granulomas remain elusive. We propose that humoral innate immunity coordinates fundamental physiological processes in macrophages which, in turn, initiate activation and transformation events that enable granuloma formation. We discuss the involvement of humoral mediators in processes such as immune activation, phagocytosis, metabolism, and tissue remodeling, and how these can dictate macrophage functionality during granuloma formation. These advances present opportunities for discovering novel disease factors and developing targeted, more effective treatments for granulomatous diseases.


Asunto(s)
Granuloma , Inmunidad Humoral , Inmunidad Innata , Macrófagos , Humanos , Animales , Granuloma/inmunología , Macrófagos/inmunología , Fagocitosis/inmunología , Inflamación/inmunología , Transducción de Señal/inmunología
2.
Clin Microbiol Rev ; 37(2): e0007423, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38602408

RESUMEN

SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.


Asunto(s)
Antifúngicos , Farmacorresistencia Fúngica , Infecciones Fúngicas Invasoras , Antifúngicos/uso terapéutico , Antifúngicos/farmacocinética , Antifúngicos/farmacología , Humanos , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Infecciones Fúngicas Invasoras/microbiología , Hongos/efectos de los fármacos , Animales , Resultado del Tratamiento
3.
Artículo en Inglés | MEDLINE | ID: mdl-38865563

RESUMEN

RATIONALE: The influence of the lung bacterial microbiome, including potential pathogens, in patients with influenza- or COVID-19-associated pulmonary aspergillosis (IAPA or CAPA) is yet to be explored. OBJECTIVES: To explore the composition of the lung bacterial microbiome and its association with viral and fungal infection, immunity and outcome in severe influenza versus COVID-19 with or without aspergillosis. METHODS: We performed a retrospective study in mechanically ventilated influenza and COVID-19 patients with or without invasive aspergillosis in whom bronchoalveolar lavage (BAL) for bacterial culture (with or without PCR) was obtained within two weeks after ICU admission. Additionally, 16S rRNA gene sequencing data and viral and bacterial load of BAL samples from a subset of these patients, and of patients requiring non-invasive ventilation, were analyzed. We integrated 16S rRNA gene sequencing data with existing immune parameter datasets. MEASUREMENTS AND MAIN RESULTS: Potential bacterial pathogens were detected in 20% (28/142) of influenza and 37% (104/281) of COVID-19 patients, while aspergillosis was detected in 38% (54/142) of influenza and 31% (86/281) of COVID-19 patients. A significant association between bacterial pathogens in BAL and 90-day mortality was found only in influenza patients, particularly IAPA patients. COVID-19 but not influenza patients showed increased pro-inflammatory pulmonary cytokine responses to bacterial pathogens. CONCLUSIONS: Aspergillosis is more frequently detected in lungs of severe influenza patients than bacterial pathogens. Detection of bacterial pathogens associates with worse outcome in influenza patients, particularly in those with IAPA, but not in COVID-19 patients. The immunological dynamics of tripartite viral-fungal-bacterial interactions deserve further investigation. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

4.
PLoS Genet ; 18(1): e1009965, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041649

RESUMEN

Aspergillus fumigatus causes a range of human and animal diseases collectively known as aspergillosis. A. fumigatus possesses and expresses a range of genetic determinants of virulence, which facilitate colonisation and disease progression, including the secretion of mycotoxins. Gliotoxin (GT) is the best studied A. fumigatus mycotoxin with a wide range of known toxic effects that impair human immune cell function. GT is also highly toxic to A. fumigatus and this fungus has evolved self-protection mechanisms that include (i) the GT efflux pump GliA, (ii) the GT neutralising enzyme GliT, and (iii) the negative regulation of GT biosynthesis by the bis-thiomethyltransferase GtmA. The transcription factor (TF) RglT is the main regulator of GliT and this GT protection mechanism also occurs in the non-GT producing fungus A. nidulans. However, the A. nidulans genome does not encode GtmA and GliA. This work aimed at analysing the transcriptional response to exogenous GT in A. fumigatus and A. nidulans, two distantly related Aspergillus species, and to identify additional components required for GT protection. RNA-sequencing shows a highly different transcriptional response to exogenous GT with the RglT-dependent regulon also significantly differing between A. fumigatus and A. nidulans. However, we were able to observe homologs whose expression pattern was similar in both species (43 RglT-independent and 11 RglT-dependent). Based on this approach, we identified a novel RglT-dependent methyltranferase, MtrA, involved in GT protection. Taking into consideration the occurrence of RglT-independent modulated genes, we screened an A. fumigatus deletion library of 484 transcription factors (TFs) for sensitivity to GT and identified 15 TFs important for GT self-protection. Of these, the TF KojR, which is essential for kojic acid biosynthesis in Aspergillus oryzae, was also essential for virulence and GT biosynthesis in A. fumigatus, and for GT protection in A. fumigatus, A. nidulans, and A. oryzae. KojR regulates rglT, gliT, gliJ expression and sulfur metabolism in Aspergillus species. Together, this study identified conserved components required for GT protection in Aspergillus species.


Asunto(s)
Aspergillus/crecimiento & desarrollo , Gliotoxina/farmacología , Metiltransferasas/genética , Factores de Transcripción/genética , Aspergillus/efectos de los fármacos , Aspergillus/genética , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/crecimiento & desarrollo , Aspergillus nidulans/efectos de los fármacos , Aspergillus nidulans/genética , Aspergillus nidulans/crecimiento & desarrollo , Aspergillus oryzae/efectos de los fármacos , Aspergillus oryzae/genética , Aspergillus oryzae/crecimiento & desarrollo , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Gliotoxina/biosíntesis , RNA-Seq
5.
Respir Res ; 25(1): 257, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909206

RESUMEN

BACKGROUND: Pulmonary fibrosis (PF) represents the pathologic end stage of several interstitial lung diseases (ILDs) associated with high morbidity and mortality rates. However, current treatments can only delay disease progression rather than provide a cure. The role of inflammation in PF progression is well-established, but new insights into immune regulation are fundamental for developing more efficient therapies. c-MET signaling has been implicated in the migratory capacity and effector functions of immune cells. Nevertheless, the role of this signaling pathway in the context of PF-associated lung diseases remains unexplored. METHODS: To determine the influence of c-MET in immune cells in the progression of pulmonary fibrosis, we used a conditional deletion of c-Met in immune cells. To induce pulmonary fibrosis mice were administered with bleomycin (BLM) intratracheally. Over the course of 21 days, mice were assessed for weight change, and after euthanasia at different timepoints, bronchoalveolar lavage fluid cells and lung tissue were assessed for inflammation and fibrosis. Furthermore, c-MET expression was assessed in cryobiopsy sections, bronchoalveolar lavage fluid cells samples and single cell RNA-sequencing dataset from human patients with distinct interstitial lung diseases. RESULTS: c-MET expression was induced in lung immune cells, specifically in T cells, interstitial macrophages, and neutrophils, during the inflammatory phase of BLM-induced PF mouse model. Deletion of c-Met in immune cells correlated with earlier weight recovery and improved survival of BLM-treated mice. Moreover, the deletion of c-Met in immune cells was associated with early recruitment of the immune cell populations, normally found to express c-MET, leading to a subsequent attenuation of the cytotoxic and proinflammatory environment. Consequently, the less extensive inflammatory response, possibly coupled with tissue repair, culminated in less exacerbated fibrotic lesions. Furthermore, c-MET expression was up-regulated in lung T cells from patients with fibrosing ILD, suggesting a potential involvement of c-MET in the development of fibrosing disease. CONCLUSIONS: These results highlight the critical contribution of c-MET signaling in immune cells to their enhanced uncontrolled recruitment and activation toward a proinflammatory and profibrotic phenotype, leading to the exacerbation of lung injury and consequent development of fibrosis.


Asunto(s)
Ratones Endogámicos C57BL , Neumonía , Proteínas Proto-Oncogénicas c-met , Fibrosis Pulmonar , Animales , Femenino , Humanos , Masculino , Ratones , Bleomicina/toxicidad , Modelos Animales de Enfermedad , Pulmón/patología , Pulmón/metabolismo , Pulmón/inmunología , Ratones Noqueados , Neumonía/inducido químicamente , Neumonía/patología , Neumonía/metabolismo , Neumonía/inmunología , Neumonía/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/genética
6.
PLoS Biol ; 19(6): e3001247, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34061822

RESUMEN

Aspergillus fumigatus is a human fungal pathogen that can cause devastating pulmonary infections, termed "aspergilloses," in individuals suffering immune imbalances or underlying lung conditions. As rapid adaptation to stress is crucial for the outcome of the host-pathogen interplay, here we investigated the role of the versatile posttranslational modification (PTM) persulfidation for both fungal virulence and antifungal host defense. We show that an A. fumigatus mutant with low persulfidation levels is more susceptible to host-mediated killing and displays reduced virulence in murine models of infection. Additionally, we found that a single nucleotide polymorphism (SNP) in the human gene encoding cystathionine γ-lyase (CTH) causes a reduction in cellular persulfidation and correlates with a predisposition of hematopoietic stem cell transplant recipients to invasive pulmonary aspergillosis (IPA), as correct levels of persulfidation are required for optimal antifungal activity of recipients' lung resident host cells. Importantly, the levels of host persulfidation determine the levels of fungal persulfidation, ultimately reflecting a host-pathogen functional correlation and highlighting a potential new therapeutic target for the treatment of aspergillosis.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/patogenicidad , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Sulfuros/metabolismo , Células A549 , Adulto , Animales , Aspergilosis/epidemiología , Aspergilosis/genética , Aspergilosis/microbiología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/enzimología , Cistationina gamma-Liasa/genética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Femenino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Incidencia , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/microbiología , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Polimorfismo de Nucleótido Simple/genética , Células THP-1 , Receptores de Trasplantes , Virulencia/efectos de los fármacos , Adulto Joven
7.
J Immunol ; 209(2): 346-353, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35750336

RESUMEN

Our recent data demonstrate a critical role of the RIG-I-like receptor family in regulating antifungal immunity against Aspergillus fumigatus in a murine model. However, the importance of this pathway in humans and the cell types that use this innate immune receptor family to detect A. fumigatus remain unresolved. In this study, using patients who underwent hematopoietic stem cell transplantation, we demonstrate that a polymorphism in human MAVS present in the donor genome was associated with the incidence of invasive pulmonary aspergillosis. Moreover, in a separate cohort of confirmed invasive pulmonary aspergillosis patients, polymorphisms in the IFIH1 gene alter the inflammatory response, including IFN-responsive chemokines. Returning to our murine model, we now demonstrate that CD11c+ Siglec F+ alveolar macrophages require Mavs expression to maintain host resistance against A. fumigatus. Our data support the role of MAVS signaling in mediating antifungal immunity in both mice and humans at least in part through the role of MAVS-dependent signaling in alveolar macrophages.


Asunto(s)
Aspergillus fumigatus , Aspergilosis Pulmonar Invasiva , Animales , Antifúngicos , Modelos Animales de Enfermedad , Humanos , Macrófagos Alveolares , Ratones
8.
Nature ; 555(7696): 382-386, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29489751

RESUMEN

Resistance to infection is critically dependent on the ability of pattern recognition receptors to recognize microbial invasion and induce protective immune responses. One such family of receptors are the C-type lectins, which are central to antifungal immunity. These receptors activate key effector mechanisms upon recognition of conserved fungal cell-wall carbohydrates. However, several other immunologically active fungal ligands have been described; these include melanin, for which the mechanism of recognition is hitherto undefined. Here we identify a C-type lectin receptor, melanin-sensing C-type lectin receptor (MelLec), that has an essential role in antifungal immunity through recognition of the naphthalene-diol unit of 1,8-dihydroxynaphthalene (DHN)-melanin. MelLec recognizes melanin in conidial spores of Aspergillus fumigatus as well as in other DHN-melanized fungi. MelLec is ubiquitously expressed by CD31+ endothelial cells in mice, and is also expressed by a sub-population of these cells that co-express epithelial cell adhesion molecule and are detected only in the lung and the liver. In mouse models, MelLec was required for protection against disseminated infection with A. fumigatus. In humans, MelLec is also expressed by myeloid cells, and we identified a single nucleotide polymorphism of this receptor that negatively affected myeloid inflammatory responses and significantly increased the susceptibility of stem-cell transplant recipients to disseminated Aspergillus infections. MelLec therefore recognizes an immunologically active component commonly found on fungi and has an essential role in protective antifungal immunity in both mice and humans.


Asunto(s)
Aspergillus fumigatus/inmunología , Lectinas Tipo C/inmunología , Melaninas/inmunología , Naftoles/inmunología , Animales , Aspergilosis/inmunología , Aspergilosis/microbiología , Aspergilosis/prevención & control , Aspergillus fumigatus/química , Aspergillus fumigatus/patogenicidad , Pared Celular/química , Pared Celular/inmunología , Femenino , Humanos , Macrófagos/inmunología , Melaninas/química , Ratones , Ratones Endogámicos C57BL , Naftoles/química , Ratas , Ratas Sprague-Dawley , Esporas Fúngicas/química , Esporas Fúngicas/inmunología , Especificidad por Sustrato
9.
Planta Med ; 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39419081

RESUMEN

Echinacea purpurea has been traditionally used to strengthen the immune system. Therefore, herein, we investigated the potential of E. purpurea aqueous extracts (AEs) obtained from flowers (F), leaves (L), or roots (R) as an immune booster in human primary monocyte-derived macrophages (hMDMs). Additionally, to identify the main class of compounds (phenolic/carboxylic acids vs. alkylamides) responsible for the bioactivity, the three AEs were fractioned by semi-preparative high-performance liquid chromatography (HPLC). The AEs and the isolated phenolic/carboxylic acidic fractions were not cytotoxic for hMDMs for all tested concentrations, as confirmed by the metabolic activity and DNA content assays. Moreover, AE drastically induced the production of the interleukin (IL)-6 and tumor necrosis factor (TNF)-α, with a minimal effect on IL-1ß and prostaglandin E2 (PGE2), supporting their potential for macrophage activation. Interestingly, in the presence of the phenolic/carboxylic acidic fractions, this efficacy considerably decreased, suggesting a complementary effect between compounds. AE also triggered the phosphorylation of the extracellular signal-regulated kinase (ERK) 1/2 and p38 signaling pathways and upregulated the cyclooxygenase (COX)-2 expression in hMDMs. Overall, AE-F was demonstrated to be the most powerful immunostimulant extract that can be related to their higher number in identified bioactive compounds compared to AE-L and AE-R. These results highlight the efficiency of E. purpurea AE to enhance the function of a key cell type of the immune system and their potential as immunostimulant formulations for patients with a compromised immune system due to certain diseases (e.g., acquired immunodeficiencies) and treatments (e.g., chemotherapy).

10.
Mycopathologia ; 189(1): 15, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38265528

RESUMEN

The success of the clinical management of invasive fungal diseases (IFD) is highly dependent on suitable tools for timely and accurate diagnosis for effective treatment. An in-depth analysis of the ability of European institutions to promptly and accurately diagnose IFD was previously conducted to identify limitations and aspects to improve. Here, we evaluated and discussed the specific case of Portugal, for which, to our knowledge, there are no reports describing the national mycological diagnostic capacity and access to antifungal treatment. Data from 16 Portuguese medical institutions were collected via an online electronic case report form covering different parameters, including institution profile, self-perceived IFD incidence, target patients, diagnostic methods and reagents, and available antifungals. The majority of participating institutions (69%) reported a low-very low incidence of IFD, with Candida spp. indicated as the most relevant fungal pathogen, followed by Aspergillus spp. and Cryptococcus spp. All institutions had access to culture and microscopy, whereas 94 and 88% were able to run antigen-detection assays and molecular tests, respectively. All of the institutions capable of providing antifungal therapy declared to have access to at least one antifungal. However, echinocandins were only available at 85% of the sites. Therapeutic drug monitoring (TDM) was reported to remain a very restricted practice in Portugal, being available in 19% of the institutions, with the TDM of itraconazole and posaconazole performed in only 6% of them. Importantly, several of these resources are outsourced to external entities. Except for TDM, Portugal appears to be well-prepared concerning the overall capacity to diagnose and treat IFD. Future efforts should focus on promoting the widespread availability of TDM and improved access to multiple classes of antifungals, to further improve patient outcomes.


Asunto(s)
Antifúngicos , Infecciones Fúngicas Invasoras , Humanos , Portugal , Micología , Itraconazol , Equinocandinas
11.
Mycopathologia ; 189(2): 24, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407673

RESUMEN

OBJECTIVES: Invasive aspergillosis (IA) is a major cause of mortality in immunocompromised patients and it is difficult to diagnose because of the lack of reliable highly sensitive diagnostics. We aimed to identify circulating immunological markers that could be useful for an early diagnosis of IA. METHODS: We collected longitudinally serum samples from 33 cases with probable/proven IA and two matched control cohorts without IA (one with microbiological and clinical evidence of bacterial or viral non-fungal pneumonia and one without evidence of infection, all matched for neutropenia, primary underlying disease, and receipt of corticosteroids/other immunosuppressants) at a tertiary university hospital. In addition, samples from an independent cohort (n = 20 cases of proven/probable IA and 20 matched controls without infection) were obtained. A panel of 92 circulating proteins involved in inflammation was measured by proximity extension assay. A random forest model was used to predict the development of IA using biomarkers measured before diagnosis. RESULTS: While no significant differences were observed between IA cases and infected controls, concentrations of 30 inflammatory biomarkers were different between cases and non-infected controls, of which nine were independently replicated: PD-L1, MMP-10, Interleukin(IL)-10, IL-15RA, IL-18, IL-18R1, CDCP1, CCL19 and IL-17C. From the differential abundance analysis of serum samples collected more than 10 days before diagnosis and at diagnosis, increased IL-17C concentrations in IA patients were replicated in the independent cohort. CONCLUSIONS: An increased circulating concentration of IL-17C was detected both in the discovery and independent cohort, both at the time of diagnosis and in samples 10 days before the diagnosis of IA, suggesting it should be evaluated further as potential (early) biomarker of infection.


Asunto(s)
Aspergilosis , Neoplasias Hematológicas , Humanos , Interleucina-17 , Neoplasias Hematológicas/complicaciones , Aspergilosis/diagnóstico , Bioensayo , Hospitales Universitarios , Antígenos de Neoplasias , Moléculas de Adhesión Celular
12.
Immunology ; 170(4): 510-526, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37635289

RESUMEN

Under perturbing conditions such as infection with Leishmania, a protozoan parasite living within the phagosomes in mammalian macrophages, cellular and organellar structures, and metabolism are dynamically regulated for neutralizing the pressure of parasitism. However, how modulations of the host cell metabolic pathways support Leishmania infection remains unknown. Herein, we report that lipid accumulation heightens the susceptibility of mice to L. donovani infection and promotes resistance to first-line anti-leishmanial drugs. Despite being pro-inflammatory, the in vitro generated uninfected lipid-laden macrophages (LLMs) or adipose-tissue macrophages (ATMs) display lower levels of reactive oxygen and nitrogen species. Upon infection, LLMs secrete higher IL-10 and lower IL-12p70 cytokines, inhibiting CD4+ T cell activation and Th1 response suggesting a key modulatory role for intramacrophage lipid accumulation in anti-leishmanial host defence. We, therefore, examined this causal relationship between lipids and immunomodulation using an in vivo high-fat diet (HFD) mouse model. HFD increased the susceptibility to L. donovani infection accompanied by a defective CD4+ Th1 and CD8+ T cell response. The white adipose tissue of HFD mice displays increased susceptibility to L. donovani infection with the preferential infection of F4/80+ CD11b+ CD11c+ macrophages with higher levels of neutral lipids reserve. The HFD increased resistance to a first-line anti-leishmanial drug associated with a defective adaptive immune response. These data demonstrate that the accumulation of neutral lipids contributes to susceptibility to visceral leishmaniasis hindering host-protective immune response and reducing the efficacy of antiparasitic drug therapies.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Animales , Ratones , Leishmaniasis Visceral/tratamiento farmacológico , Inmunidad Adaptativa , Linfocitos T CD8-positivos , Lípidos , Ratones Endogámicos BALB C , Mamíferos
13.
Am J Respir Crit Care Med ; 206(9): 1140-1152, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35767663

RESUMEN

Rationale: Sarcoidosis is a multisystemic inflammatory disease characterized by the formation of granulomas in response to persistent stimuli. The long pentraxin PTX3 (pentraxin 3) has emerged as a component of humoral innate immunity with essential functions in the resolution of inflammation, but its role during granuloma formation is unknown. Objectives: To evaluate PTX3 as a modulator of pathogenic signals involved in granuloma formation and inflammation in sarcoidosis. Methods: Peripheral blood mononuclear cells obtained from patients with sarcoidosis harboring loss-of-function genetic variants and gene-deleted mice were used to assess the role of PTX3 in experimental models of granuloma formation in vitro and in vivo. The identified mechanisms of granulomatous inflammation were further evaluated in tissue and BAL samples and correlated with the disease course. Measurements and Main Results: We have identified a molecular link between PTX3 deficiency and the pathogenic amplification of complement activation to promote granuloma formation. Mechanistically, PTX3 deficiency licensed the complement component C5a-mediated activation of the metabolic checkpoint kinase mTORC1 (mammalian target of rapamycin complex 1) and the reprogramming of macrophages toward increased glycolysis to foster their proliferation and aggregation. This process sustained the further recruitment of granuloma-promoting immune cells and the associated proinflammatory microenvironment and influenced the clinical course of the disease. Conclusions: Our results identify PTX3 as a pivotal molecule that regulates complement-mediated signaling cues in macrophages to restrain granulomatous inflammation and highlight the therapeutic potential of this signaling axis in targeting granuloma formation in sarcoidosis.


Asunto(s)
Proteína C-Reactiva , Activación de Macrófagos , Sarcoidosis , Componente Amiloide P Sérico , Animales , Ratones , Proteína C-Reactiva/metabolismo , Proteínas del Sistema Complemento , Granuloma , Inflamación , Leucocitos Mononucleares/metabolismo , Componente Amiloide P Sérico/genética , Componente Amiloide P Sérico/metabolismo , Humanos
14.
Proc Natl Acad Sci U S A ; 117(7): 3848-3857, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32024760

RESUMEN

l-tryptophan (Trp), an essential amino acid for mammals, is the precursor of a wide array of immunomodulatory metabolites produced by the kynurenine and serotonin pathways. The kynurenine pathway is a paramount source of several immunoregulatory metabolites, including l-kynurenine (Kyn), the main product of indoleamine 2,3-dioxygenase 1 (IDO1) that catalyzes the rate-limiting step of the pathway. In the serotonin pathway, the metabolite N-acetylserotonin (NAS) has been shown to possess antioxidant, antiinflammatory, and neuroprotective properties in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, little is known about the exact mode of action of the serotonin metabolite and the possible interplay between the 2 Trp metabolic pathways. Prompted by the discovery that NAS neuroprotective effects in EAE are abrogated in mice lacking IDO1 expression, we investigated the NAS mode of action in neuroinflammation. We found that NAS directly binds IDO1 and acts as a positive allosteric modulator (PAM) of the IDO1 enzyme in vitro and in vivo. As a result, increased Kyn will activate the ligand-activated transcription factor aryl hydrocarbon receptor and, consequently, antiinflammatory and immunoregulatory effects. Because NAS also increased IDO1 activity in peripheral blood mononuclear cells of a significant proportion of MS patients, our data may set the basis for the development of IDO1 PAMs as first-in-class drugs in autoimmune/neuroinflammatory diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental/enzimología , Encefalomielitis Autoinmune Experimental/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Regulación Alostérica , Sitio Alostérico , Animales , Biocatálisis , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/genética , Femenino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Quinurenina/metabolismo , Leucocitos Mononucleares/metabolismo , Masculino , Ratones Noqueados , Esclerosis Múltiple/enzimología , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Serotonina/análogos & derivados , Serotonina/química , Serotonina/metabolismo , Triptófano/metabolismo
15.
Thorax ; 77(3): 283-291, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34172558

RESUMEN

RATIONALE: Recent studies have revealed that the lung microbiota of critically ill patients is altered and predicts clinical outcomes. The incidence of invasive fungal infections, namely, invasive pulmonary aspergillosis (IPA), in immunocompromised patients is increasing, but the clinical significance of variations in lung bacterial communities is unknown. OBJECTIVES: To define the contribution of the lung microbiota to the development and course of IPA. METHODS AND MEASUREMENTS: We performed an observational cohort study to characterise the lung microbiota in 104 immunocompromised patients using bacterial 16S ribosomal RNA gene sequencing on bronchoalveolar lavage samples sampled on clinical suspicion of infection. Associations between lung dysbiosis in IPA and pulmonary immunity were evaluated by quantifying alveolar cytokines and chemokines and immune cells. The contribution of microbial signatures to patient outcome was assessed by estimating overall survival. MAIN RESULTS: Patients diagnosed with IPA displayed a decreased alpha diversity, driven by a markedly increased abundance of the Staphylococcus, Escherichia, Paraclostridium and Finegoldia genera and a decreased proportion of the Prevotella and Veillonella genera. The overall composition of the lung microbiome was influenced by the neutrophil counts and associated with differential levels of alveolar cytokines. Importantly, the degree of bacterial diversity at the onset of IPA predicted the survival of infected patients. CONCLUSIONS: Our results reveal the lung microbiota as an understudied source of clinical variation in patients at risk of IPA and highlight its potential as a diagnostic and therapeutic target in the context of respiratory fungal diseases.


Asunto(s)
Aspergilosis Pulmonar Invasiva , Microbiota , Líquido del Lavado Bronquioalveolar/microbiología , Humanos , Huésped Inmunocomprometido , Aspergilosis Pulmonar Invasiva/diagnóstico , Pulmón/microbiología , Microbiota/genética
16.
Clin Exp Immunol ; 208(2): 158-166, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35641161

RESUMEN

Fungal infections affect over a billion people and are responsible for more than 1.5 million deaths each year. Despite progress in diagnostic and therapeutic approaches, the management of severe fungal infections remains a challenge. Recently, the reprogramming of cellular metabolism has emerged as a central mechanism through which the effector functions of immune cells are supported to promote antifungal activity. An improved understanding of the immunometabolic signatures that orchestrate antifungal immunity, together with the dissection of the mechanisms that underlie heterogeneity in individual immune responses, may therefore unveil new targets amenable to adjunctive host-directed therapies. In this review, we highlight recent advances in the metabolic regulation of host-fungus interactions and antifungal immune responses, and outline targetable pathways and mechanisms with promising therapeutic potential.


Asunto(s)
Antifúngicos , Micosis , Antifúngicos/uso terapéutico , Humanos , Inmunoterapia , Micosis/tratamiento farmacológico
17.
Immunity ; 39(2): 372-85, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23973224

RESUMEN

Endogenous tryptophan (Trp) metabolites have an important role in mammalian gut immune homeostasis, yet the potential contribution of Trp metabolites from resident microbiota has never been addressed experimentally. Here, we describe a metabolic pathway whereby Trp metabolites from the microbiota balance mucosal reactivity in mice. Switching from sugar to Trp as an energy source (e.g., under conditions of unrestricted Trp availability), highly adaptive lactobacilli are expanded and produce an aryl hydrocarbon receptor (AhR) ligand-indole-3-aldehyde-that contributes to AhR-dependent Il22 transcription. The resulting IL-22-dependent balanced mucosal response allows for survival of mixed microbial communities yet provides colonization resistance to the fungus Candida albicans and mucosal protection from inflammation. Thus, the microbiota-AhR axis might represent an important strategy pursued by coevolutive commensalism for fine tuning host mucosal reactivity contingent on Trp catabolism.


Asunto(s)
Candida albicans/inmunología , Interleucinas/metabolismo , Limosilactobacillus reuteri/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Candidiasis/inmunología , Metabolismo Energético , Femenino , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Indolamina-Pirrol 2,3,-Dioxigenasa/deficiencia , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indoles/metabolismo , Interleucina-17/deficiencia , Interleucina-17/genética , Limosilactobacillus reuteri/crecimiento & desarrollo , Limosilactobacillus reuteri/inmunología , Metagenoma , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones SCID , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/genética , Probióticos , Receptores de Hidrocarburo de Aril/deficiencia , Receptores de Hidrocarburo de Aril/genética , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/genética , Triptófano/química , Interleucina-22
18.
Mycoses ; 65(6): 599-612, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35484713

RESUMEN

Biological sex, which comprises differences in host sex hormone homeostasis and immune responses, can have a substantial impact on the epidemiology of infectious diseases. Comprehensive data on sex distributions in invasive fungal diseases (IFDs) are lacking. In this review, we performed a literature search of in vitro/animal studies, clinical studies, systematic reviews and meta-analyses of invasive fungal infections. Females represented 51.2% of invasive candidiasis cases, mostly matching the proportions of females among the general population in the United States and Europe (>51%). In contrast, other IFDs were overrepresented in males, including invasive aspergillosis (51% males), mucormycosis (60%), cryptococcosis (74%), coccidioidomycosis (70%), histoplasmosis (61%) and blastomycosis (66%). Behavioural variations, as well as differences related to biological sex, may only in part explain these findings. Further investigations concerning the association between biological sex/gender and the pathogenesis of IFDs are warranted.


Asunto(s)
Actinomicosis , Blastomicosis , Coccidioidomicosis , Criptococosis , Histoplasmosis , Infecciones Fúngicas Invasoras , Enfermedades Pulmonares Fúngicas , Mucormicosis , Nocardiosis , Femenino , Humanos , Infecciones Fúngicas Invasoras/epidemiología , Masculino , Factores de Riesgo , Caracteres Sexuales , Estados Unidos
19.
J Infect Dis ; 224(1): 164-174, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33201217

RESUMEN

BACKGROUND: The thermodimorphic fungi Paracoccidioides spp. are the etiological agents of paracoccidioidomycosis. Although poorly studied, paracoccin (PCN) from Paracoccidioides brasiliensis has been shown to harbor lectinic, enzymatic, and immunomodulatory properties that affect disease development. METHODS: Mutants of P. brasiliensis overexpressing PCN (ov-PCN) were constructed by Agrobacterium tumefaciens-mediated transformation. ov-PCN strains were analyzed and inoculated intranasally or intravenously to mice. Fungal burden, lung pathology, and survival were monitored to evaluate virulence. Electron microscopy was used to evaluate the size of chito-oligomer particles released by ov-PCN or wild-type strains to growth media. RESULTS: ov-PCN strains revealed no differences in cell growth and viability, although PCN overexpression favored cell separation, chitin processing that results in the release of smaller chito-oligomer particles, and enhanced virulence. Our data show that PCN triggers a critical effect in the cell wall biogenesis through the chitinase activity resulting from overexpression of PCN. As such, PCN overexpression aggravates the disease caused by P. brasiliensis. CONCLUSIONS: Our data are consistent with a model in which PCN modulates the cell wall architecture via its chitinase activity. These findings highlight the potential for exploiting PCN function in future therapeutic approaches.


Asunto(s)
Pared Celular/metabolismo , Quitina/metabolismo , Proteínas Fúngicas/fisiología , Lectinas/fisiología , Paracoccidioides/patogenicidad , Animales , Citocinas/biosíntesis , Ratones , Ratones Endogámicos BALB C , Paracoccidioidomicosis/inmunología , Fagocitosis , Virulencia
20.
Curr Top Microbiol Immunol ; 425: 17-28, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32385534

RESUMEN

Dihydroxynaphthalene melanin (DHN-melanin) is an integral component of the conidial cell wall surface, which has a central role in the pathogenicity of the major human airborne fungal pathogen Aspergillus fumigatus. Although the biosynthetic pathway for A. fumigatus DHN-melanin production has been well characterized, the molecular interactions of DHN-melanin with the immune system have been incompletely understood. Recent studies demonstrated that apart from concealing immunostimulatory cell wall polysaccharides, calcium sequestration by DHN-melanin inhibits essential host effector pathways regulating phagosome biogenesis and prevents A. fumigatus conidia killing by phagocytes. From the host perspective, DHN-melanin is specifically recognized by a C-type lectin receptor (MelLeC) present in murine endothelia and in human myeloid cells. Furthermore, DHN-melanin activates platelets and facilitates opsonophagocytosis by macrophages via binding to soluble pattern recognition receptors. Dissecting the dynamics of DHN-melanin organization on the fungal cell wall and the molecular interplay with the immune system will lead to a better understanding of A. fumigatus pathophysiology.


Asunto(s)
Aspergillus fumigatus , Melaninas , Naftoles , Animales , Aspergilosis/inmunología , Aspergilosis/metabolismo , Aspergilosis/microbiología , Aspergillus fumigatus/citología , Aspergillus fumigatus/inmunología , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidad , Pared Celular/química , Pared Celular/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Melaninas/metabolismo , Naftoles/metabolismo , Receptores Mitogénicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA