Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Cancer ; 22(1): 30, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-34980006

RESUMEN

BACKGROUND: Breast cancer (BC) is the most common malignancy in women, in whom it reaches 20% of the total neoplasia incidence. Most BCs are considered sporadic and a number of factors, including familiarity, age, hormonal cycles and diet, have been reported to be BC risk factors. Also the gut microbiota plays a role in breast cancer development. In fact, its imbalance has been associated to various human diseases including cancer although a consequential cause-effect phenomenon has never been proven. METHODS: The aim of this work was to characterize the breast tissue microbiome in 34 women affected by BC using an NGS-based method, and analyzing the tumoral and the adjacent non-tumoral tissue of each patient. RESULTS: The healthy and tumor tissues differed in bacterial composition and richness: the number of Amplicon Sequence Variants (ASVs) was higher in healthy tissues than in tumor tissues (p = 0.001). Moreover, our analyses, able to investigate from phylum down to species taxa for each sample, revealed major differences in the two richest phyla, namely, Proteobacteria and Actinobacteria. Notably, the levels of Actinobacteria and Proteobacteria were, respectively, higher and lower in healthy with respect to tumor tissues. CONCLUSIONS: Our study provides information about the breast tissue microbial composition, as compared with very closely adjacent healthy tissue (paired samples within the same woman); the differences found are such to have possible diagnostic and therapeutic implications; further studies are necessary to clarify if the differences found in the breast tissue microbiome are simply an association or a concausative pathogenetic effect in BC. A comparison of different results on similar studies seems not to assess a universal microbiome signature, but single ones depending on the environmental cohorts' locations.


Asunto(s)
Neoplasias de la Mama/microbiología , Mama/microbiología , Disbiosis/microbiología , Microbioma Gastrointestinal/genética , Adulto , Biodiversidad , Femenino , Humanos , Persona de Mediana Edad , ARN Ribosómico 16S/análisis
2.
Pediatr Res ; 91(3): 627-636, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33762689

RESUMEN

BACKGROUND: Recent studies have reported a dysfunctional gut microbiome in breastfed infants. Probiotics have been used in an attempt to restore the gut microbiome; however, colonization has been transient, inconsistent among individuals, or has not positively impacted the host's gut. METHODS: This is a 2-year follow-up study to a randomized controlled trial wherein 7-day-old infants received 1.8 × 1010 colony-forming unit Bifidobacterium longum subsp. infantis (B. infantis) EVC001 (EVC) daily for 21 days or breast milk alone (unsupplemented (UNS)). In the follow-up study, mothers (n = 48) collected infant stool at 4, 6, 8, 10, and 12 months postnatal and completed the health-diet questionnaires. RESULTS: Fecal B. infantis was 2.5-3.5 log units higher at 6-12 months in the EVC group compared with the UNS group (P < 0.01) and this relationship strengthened with the exclusion of infants who consumed infant formula and antibiotics. Infants in the EVC group had significantly higher Bifidobacteriaceae and lower Bacteroidaceae and Lachnospiraceae (P < 0.05). There were no differences in any health conditions between the two groups. CONCLUSIONS: Probiotic supplementation with B. infantis within the first month postnatal, in combination with breast milk, resulted in stable colonization that persisted until at least 1 year postnatal. IMPACT: A dysfunctional gut microbiome in breastfed infants is common in resource-rich nations and associated with an increased risk of immune diseases. Probiotics only transiently exist in the gut without persistent colonization or altering the gut microbiome. This is the first study to show that early probiotic supplementation with B. infantis with breast milk results in stable colonization of B. infantis and improvements to the gut microbiome 1 year postnatal. This study addresses a key gap in the literature whereby probiotics can restore the gut microbiome if biologically selected microorganisms are matched with their specific food in an open ecological niche.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Bifidobacterium longum subspecies infantis , Lactancia Materna , Heces/microbiología , Femenino , Estudios de Seguimiento , Humanos , Lactante , Leche Humana
3.
Proc Natl Acad Sci U S A ; 116(8): 3030-3035, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30635418

RESUMEN

Microbes have been critical drivers of evolutionary innovation in animals. To understand the processes that influence the origin of specialized symbiotic organs, we report the sequencing and analysis of the genome of Euprymna scolopes, a model cephalopod with richly characterized host-microbe interactions. We identified large-scale genomic reorganization shared between E. scolopes and Octopus bimaculoides and posit that this reorganization has contributed to the evolution of cephalopod complexity. To reveal genomic signatures of host-symbiont interactions, we focused on two specialized organs of E. scolopes: the light organ, which harbors a monoculture of Vibrio fischeri, and the accessory nidamental gland (ANG), a reproductive organ containing a bacterial consortium. Our findings suggest that the two symbiotic organs within E. scolopes originated by different evolutionary mechanisms. Transcripts expressed in these microbe-associated tissues displayed their own unique signatures in both coding sequences and the surrounding regulatory regions. Compared with other tissues, the light organ showed an abundance of genes associated with immunity and mediating light, whereas the ANG was enriched in orphan genes known only from E. scolopes Together, these analyses provide evidence for different patterns of genomic evolution of symbiotic organs within a single host.


Asunto(s)
Bacterias/aislamiento & purificación , Interacciones Microbiota-Huesped/genética , Octopodiformes/microbiología , Simbiosis/genética , Aliivibrio fischeri/genética , Aliivibrio fischeri/aislamiento & purificación , Animales , Bacterias/clasificación , Bacterias/genética , Cefalópodos/genética , Cefalópodos/microbiología , Decapodiformes/genética , Decapodiformes/microbiología , Genoma/genética , Octopodiformes/genética
4.
Bioinformatics ; 35(13): 2318-2319, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30475995

RESUMEN

SUMMARY: The removal of human genomic reads from shotgun metagenomic sequencing is a critical step in protecting subject privacy. Freely available tools addressing this issue require advanced programing knowledge or are limited by analytical time and data load due to their server-based nature. Here, we compared the most cited tools for host-DNA removal using synthetic and real metagenomic datasets. Then, we integrated the most efficient pipeline in a graphical user interface to make these tools available without command line use. This interface, GenCoF, rapidly removes human genome contaminants from metagenomic datasets. Additionally, the tool offers quality-filtering, data reduction and interactive modification of any parameter in order to customize the analysis. GenCoF offers both quality and host-associated filtering in a non-commercial, freely available tool in a local, interactive and easy-to-use interface. AVAILABILITY AND IMPLEMENTATION: GenCoF is freely available (under a GPL license) for Mac OS and Linux at https://github.com/MattCzajkowski/GenCoF. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genoma Humano , Programas Informáticos , Humanos , Metagenoma , Privacidad
5.
BMC Genomics ; 20(1): 407, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31117953

RESUMEN

BACKGROUND: Magnetotactic bacteria (MTB) are ubiquitous in natural aquatic environments. MTB can produce intracellular magnetic particles, navigate along geomagnetic field, and respond to light. However, the potential mechanism by which MTB respond to illumination and their evolutionary relationship with photosynthetic bacteria remain elusive. RESULTS: We utilized genomes of the well-sequenced genus Magnetospirillum, including the newly sequenced MTB strain Magnetospirillum sp. XM-1 to perform a comprehensive genomic comparison with phototrophic bacteria within the family Rhodospirillaceae regarding the illumination response mechanism. First, photoreceptor genes were identified in the genomes of both MTB and phototrophic bacteria in the Rhodospirillaceae family, but no photosynthesis genes were found in the MTB genomes. Most of the photoreceptor genes in the MTB genomes from this family encode phytochrome-domain photoreceptors that likely induce red/far-red light phototaxis. Second, illumination also causes damage within the cell, and in Rhodospirillaceae, both MTB and phototrophic bacteria possess complex but similar sets of response and repair genes, such as oxidative stress response, iron homeostasis and DNA repair system genes. Lastly, phylogenomic analysis showed that MTB cluster closely with phototrophic bacteria in this family. One photoheterotrophic genus, Phaeospirillum, clustered within and displays high genomic similarity with Magnetospirillum. Moreover, the phylogenetic tree topologies of magnetosome synthesis genes in MTB and photosynthesis genes in phototrophic bacteria from the Rhodospirillaceae family were reasonably congruent with the phylogenomic tree, suggesting that these two traits were most likely vertically transferred during the evolution of their lineages. CONCLUSION: Our new genomic data indicate that MTB and phototrophic bacteria within the family Rhodospirillaceae possess diversified photoreceptors that may be responsible for phototaxis. Their genomes also contain comprehensive stress response genes to mediate the negative effects caused by illumination. Based on phylogenetic studies, most of MTB and phototrophic bacteria in the Rhodospirillaceae family evolved vertically with magnetosome synthesis and photosynthesis genes. The ancestor of Rhodospirillaceae was likely a magnetotactic phototrophic bacteria, however, gain or loss of magnetotaxis and phototrophic abilities might have occurred during the evolution of ancestral Rhodospirillaceae lineages.


Asunto(s)
Evolución Biológica , Genoma Bacteriano , Magnetosomas/genética , Rhodospirillaceae/genética , Proteínas Bacterianas/genética , Genómica , Luz , Magnetosomas/efectos de la radiación , Filogenia , Rhodospirillaceae/efectos de la radiación
6.
Pediatr Res ; 86(6): 749-757, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31443102

RESUMEN

BACKGROUND: Infant gut dysbiosis, often associated with low abundance of bifidobacteria, is linked to impaired immune development and inflammation-a risk factor for increased incidence of several childhood diseases. We investigated the impact of B. infantis EVC001 colonization on enteric inflammation in a subset of exclusively breastfed term infants from a larger clinical study. METHODS: Stool samples (n = 120) were collected from infants randomly selected to receive either 1.8 × 1010 CFU B. infantis EVC001 daily for 21 days (EVC001) or breast milk alone (controls), starting at day 7 postnatal. The fecal microbiome was analyzed using 16S ribosomal RNA, proinflammatory cytokines using multiplexed immunoassay, and fecal calprotectin using ELISA at three time points: days 6 (Baseline), 40, and 60 postnatal. RESULTS: Fecal calprotectin concentration negatively correlated with Bifidobacterium abundance (P < 0.0001; ρ = -0.72), and proinflammatory cytokines correlated with Clostridiaceae and Enterobacteriaceae, yet negatively correlated with Bifidobacteriaceae abundance. Proinflammatory cytokines were significantly lower in EVC001-fed infants on days 40 and 60 postnatally compared to baseline and compared to control infants. CONCLUSION: Our findings indicate that gut dysbiosis (absence of B. infantis) is associated with increased intestinal inflammation. Early addition of EVC001 to diet represents a novel strategy to prevent enteric inflammation during a critical developmental phase.


Asunto(s)
Bifidobacterium longum subspecies infantis/crecimiento & desarrollo , Lactancia Materna , Enteritis/prevención & control , Citocinas/metabolismo , Enteritis/metabolismo , Enteritis/microbiología , Heces/química , Heces/microbiología , Femenino , Microbioma Gastrointestinal , Humanos , Recién Nacido , Mediadores de Inflamación/metabolismo , Complejo de Antígeno L1 de Leucocito/análisis , Masculino , Estudios Prospectivos
7.
Environ Microbiol ; 20(2): 842-861, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29266662

RESUMEN

Microbialites are one of the oldest known ecosystems on Earth and the coordinated metabolisms and activities of these mineral-depositing communities have had a profound impact on the habitability of the planet. Despite efforts to understand the diversity and metabolic potential of these systems, there has not been a systematic molecular analysis of the transcriptional changes that occur within a living microbialite over time. In this study, we generated metatranscriptomic libraries from actively growing thrombolites, a type of microbialite, throughout diel and seasonal cycles and observed dynamic shifts in the population and metabolic transcriptional activity. The most transcribed genes in all seasons were associated with photosynthesis, but only transcripts associated with photosystem II exhibited diel cycling. Photosystem I transcripts were constitutively expressed at all time points including midnight and sunrise. Transcripts associated with nitrogen fixation, methanogenesis and dissimilatory sulfate reduction exhibited diel cycling, and variability between seasons. Networking analysis of the metatranscriptomes showed correlated expression patterns helping to elucidate how metabolic interactions are coordinated within the thrombolite community. These findings have identified distinctive temporal patterns within the thrombolites and will serve an important foundation to understand the mechanisms by which these communities form and respond to changes in their environment.


Asunto(s)
Alphaproteobacteria/metabolismo , Carbonato de Calcio/metabolismo , Cianobacterias/metabolismo , Deltaproteobacteria/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Ecosistema , Perfilación de la Expresión Génica , Biblioteca de Genes , Fijación del Nitrógeno/genética , Fotosíntesis/genética , Complejo de Proteína del Fotosistema I/biosíntesis , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema II/biosíntesis , Complejo de Proteína del Fotosistema II/genética , Estaciones del Año , Transcriptoma/genética
8.
Int J Mol Sci ; 18(1)2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-28067829

RESUMEN

The history of medicine abounds in cases of mysterious deaths, especially by infectious diseases, which were probably unresolved because of the lack of knowledge and of appropriate technology. The aim of this study was to exploit contemporary technologies to try to identify the cause of death of a young boy who died from a putative "infection" at the end of the 18th century, and for whom an extraordinarily well-preserved minute bone fragment was available. After confirming the nature of the sample, we used laser microdissection to select the most "informative" area to be examined. Tissue genotyping indicated male gender, thereby confirming the notary's report. 16S ribosomal RNA sequencing showed that Proteobacteria and Actinobacteria were more abundant than Firmicutes and Bacteroidetes, and that Pseudomonas was the most abundant bacterial genus in the Pseudomonadaceae family. These data suggest that the patient most likely died from Pseudomonas osteomyelitis. This case is an example of how new technological approaches, like laser microdissection and next-generation sequencing, can resolve ancient cases of uncertain etiopathology. Lastly, medical samples may contain a wealth of information that may not be accessible until more sophisticated technology becomes available. Therefore, one may envisage the possibility of systematically storing medical samples for evaluation by future generations.


Asunto(s)
Huesos/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Captura por Microdisección con Láser , Microbiota , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Causas de Muerte , Niño , Firmicutes/genética , Firmicutes/aislamiento & purificación , Genotipo , Historia del Siglo XVIII , Humanos , Masculino , Osteomielitis/historia , Osteomielitis/microbiología , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , Infecciones por Pseudomonas/historia , Infecciones por Pseudomonas/microbiología , ARN Ribosómico 16S/genética
9.
Environ Microbiol ; 18(5): 1452-69, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26471001

RESUMEN

Modern stromatolites represent ideal ecosystems to understand the biological processes required for the precipitation of carbonate due to their long evolutionary history and occurrence in a wide range of habitats. However, most of the prior molecular work on stromatolites has focused on understanding the taxonomic complexity and not fully elucidating the functional capabilities of these systems. Here, we begin to characterize the microbiome associated with stromatolites of Little Darby Island, The Bahamas using predictive metagenomics of the 16S rRNA gene coupled with direct whole shotgun sequencing. The metagenomic analysis of the Little Darby stromatolites revealed many shared taxa and core pathways associated with biologically induced carbonate precipitation, suggesting functional convergence within Bahamian stromatolites. A comparison of the Little Darby stromatolites with other lithifying microbial ecosystems also revealed that although factors, such as geographic location and salinity, do drive some differences within the population, there are extensive similarities within the microbial populations. These results suggest that for stromatolite formation, 'who' is in the community is not as critical as metabolic activities and environmental interactions. Together, these analyses help improve our understanding of the similarities among lithifying ecosystems and provide an important first step in characterizing the shared microbiome of modern stromatolites.


Asunto(s)
Sedimentos Geológicos/microbiología , Metagenómica/métodos , Microbiota/genética , Bahamas , Evolución Biológica , Islas , ARN Ribosómico 16S/genética
10.
Am J Gastroenterol ; 111(6): 879-90, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27045926

RESUMEN

OBJECTIVES: Celiac disease (CD)-associated duodenal dysbiosis has not yet been clearly defined, and the mechanisms by which CD-associated dysbiosis could concur to CD development or exacerbation are unknown. In this study, we analyzed the duodenal microbiome of CD patients. METHODS: The microbiome was evaluated in duodenal biopsy samples of 20 adult patients with active CD, 6 CD patients on a gluten-free diet, and 15 controls by DNA sequencing of 16S ribosomal RNA libraries. Bacterial species were cultured, isolated and identified by mass spectrometry. Isolated bacterial species were used to infect CaCo-2 cells, and to stimulate normal duodenal explants and cultured human and murine dendritic cells (DCs). Inflammatory markers and cytokines were evaluated by immunofluorescence and ELISA, respectively. RESULTS: Proteobacteria was the most abundant and Firmicutes and Actinobacteria the least abundant phyla in the microbiome profiles of active CD patients. Members of the Neisseria genus (Betaproteobacteria class) were significantly more abundant in active CD patients than in the other two groups (P=0.03). Neisseria flavescens (CD-Nf) was the most abundant Neisseria species in active CD duodenum. Whole-genome sequencing of CD-Nf and control-Nf showed genetic diversity of the iron acquisition systems and of some hemoglobin-related genes. CD-Nf was able to escape the lysosomal compartment in CaCo-2 cells and to induce an inflammatory response in DCs and in ex-vivo mucosal explants. CONCLUSIONS: Marked dysbiosis and an abundance of a peculiar CD-Nf strain characterize the duodenal microbiome in active CD patients thus suggesting that the CD-associated microbiota could contribute to the many inflammatory signals in this disorder.


Asunto(s)
Enfermedad Celíaca/microbiología , Duodeno/microbiología , Disbiosis/microbiología , Metagenómica , Neisseria/aislamiento & purificación , Actinobacteria/clasificación , Actinobacteria/aislamiento & purificación , Adulto , Biopsia , Células CACO-2 , Dieta Sin Gluten , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Italia , Masculino , Microbiota , Neisseria/clasificación , Proteobacteria/clasificación , Proteobacteria/aislamiento & purificación
12.
Nutrients ; 14(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35276854

RESUMEN

Necrotizing enterocolitis (NEC) is a disease mainly of preterm infants with a 30-50% mortality rate and long-term morbidities for survivors. Treatment strategies are limited and have not improved in decades, prompting research into prevention strategies, particularly with probiotics. Recent work with the probiotic B. infantis EVC001 suggests that this organism may generate a more appropriate microbiome for preterm infants who generally have inappropriate gut colonization and inflammation, both risk factors for NEC. Experimental NEC involving Paneth cell disruption in combination with bacterial dysbiosis or formula feeding was induced in P14-16 C57Bl/6 mice with or without gavaged B. infantis. Following completion of the model, serum, small intestinal tissue, the cecum, and colon were harvested to examine inflammatory cytokines, injury, and the microbiome, respectively. EVC001 treatment significantly decreased NEC in a bacterial dysbiosis dependent model, but this decrease was model-dependent. In the NEC model dependent on formula feeding, no difference in injury was observed, but trending to significant differences was observed in serum cytokines. EVC001 also improved wound closure at six and twelve hours compared to the sham control in intestinal epithelial monolayers. These findings suggest that B. infantis EVC001 can prevent experimental NEC through anti-inflammatory and epithelial barrier restoration properties.


Asunto(s)
Enterocolitis Necrotizante , Enfermedades del Recién Nacido , Animales , Bifidobacterium longum subspecies infantis , Enterocolitis Necrotizante/microbiología , Enterocolitis Necrotizante/prevención & control , Humanos , Recién Nacido , Recien Nacido Prematuro , Ratones , Ratones Endogámicos C57BL
13.
Front Pediatr ; 10: 893059, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081629

RESUMEN

Necrotizing enterocolitis (NEC) is a leading cause of premature newborn morbidity and mortality. The clinical features of NEC consistently include prematurity, gut dysbiosis and enteral inflammation, yet the pathogenesis remains obscure. Herein we combine metagenomics and targeted metabolomics, with functional in vivo and in vitro assessment, to define a novel molecular mechanism of NEC. One thousand six hundred and forty seven publicly available metagenomics datasets were analyzed (NEC = 245; healthy = 1,402) using artificial intelligence methodologies. Targeted metabolomic profiling was used to quantify the concentration of specified fecal metabolites at NEC onset (n = 8), during recovery (n = 6), and in age matched controls (n = 10). Toxicity assays of discovered metabolites were performed in vivo in mice and in vitro using human intestinal epithelial cells. Metagenomic and targeted metabolomic analyses revealed significant differences in pyruvate fermentation pathways and associated intermediates. Notably, the short chain fatty acid formate was elevated in the stool of NEC patients at disease onset (P = 0.005) dissipated during recovery (P = 0.02) and positively correlated with degree of intestinal injury (r 2 = 0.86). In vitro, formate caused enterocyte cytotoxicity in human cells through necroptosis (P < 0.01). In vivo, luminal formate caused significant dose and development dependent NEC-like injury in newborn mice. Enterobacter cloacae and Klebsiella pneumoniae were the most discriminatory taxa related to NEC dysbiosis and increased formate production. Together, these data suggest a novel biochemical mechanism of NEC through the microbial production of formate. Clinical efforts to prevent NEC should focus on reducing the functional consequences of newborn gut dysbiosis associated metabolic pathways.

14.
Sci Transl Med ; 14(640): eabk1107, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35417188

RESUMEN

Disrupted development of the gut microbiota is a contributing cause of childhood malnutrition. Bifidobacterium longum subspecies infantis is a prominent early colonizer of the infant gut that consumes human milk oligosaccharides (HMOs). We found that the absolute abundance of Bifidobacterium infantis is lower in 3- to 24-month-old Bangladeshi infants with severe acute malnutrition (SAM) compared to their healthy age-matched counterparts. A single-blind, placebo-controlled trial (SYNERGIE) was conducted in 2- to 6-month-old Bangladeshi infants with SAM. A commercial U.S. donor-derived B. infantis strain (EVC001) was administered daily with or without the HMO lacto-N-neotetraose for 28 days. This intervention increased fecal B. infantis abundance in infants with SAM, although to levels still 10- to 100-fold lower than in untreated healthy controls. EVC001 treatment promoted weight gain that was associated with reduced intestinal inflammation markers in infants with SAM. We cultured fecal B. infantis strains from Bangladeshi infants and colonized gnotobiotic mice with these cultured strains. The gnotobiotic mice were fed a diet representative of that consumed by 6-month-old Bangladeshi infants, with or without HMO supplementation. One B. infantis strain, Bg_2D9, expressing two gene clusters involved in uptake and utilization of N-glycans and plant-derived polysaccharides, exhibited superior fitness over EVC001. The fitness advantage of Bg_2D9 was confirmed in a gnotobiotic mouse model of mother-to-infant gut microbiota transmission where dams received a pretreatment fecal community from a SAM infant in the SYNERGIE trial. Whether Bg_2D9 is superior to EVC001 for treating malnourished infants who consume a diet with limited breastmilk requires further clinical testing.


Asunto(s)
Bifidobacterium longum subspecies infantis , Desnutrición Aguda Severa , Animales , Bifidobacterium , Heces/microbiología , Humanos , Lactante , Ratones , Leche Humana , Método Simple Ciego , Aumento de Peso
16.
Sci Rep ; 11(1): 1472, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33479326

RESUMEN

The gut microbiome plays an important role in early life, protecting newborns from enteric pathogens, promoting immune system development and providing key functions to the infant host. Currently, there are limited data to broadly assess the status of the US healthy infant gut microbiome. To address this gap, we performed a multi-state metagenomic survey and found high levels of bacteria associated with enteric inflammation (e.g. Escherichia, Klebsiella), antibiotic resistance genes, and signatures of dysbiosis, independent of location, age, and diet. Bifidobacterium were less abundant than generally expected and the species identified, including B. breve, B. longum and B. bifidum, had limited genetic capacity to metabolize human milk oligosaccharides (HMOs), while B. infantis strains with a complete capacity for HMOs utilization were found to be exceptionally rare. Considering microbiome composition and functional capacity, this survey revealed a previously unappreciated dysbiosis that is widespread in the contemporary US infant gut microbiome.


Asunto(s)
Bifidobacterium/genética , Microbioma Gastrointestinal , Metagenómica/métodos , Bifidobacterium/aislamiento & purificación , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Bases de Datos Factuales , Dieta , Farmacorresistencia Bacteriana/genética , Disbiosis , Heces/microbiología , Humanos , Lactante , Recién Nacido , Leche Humana/metabolismo , Oligosacáridos/metabolismo , Estados Unidos
17.
Diagnostics (Basel) ; 11(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34829491

RESUMEN

Laboratory medicine, along with genetic investigations in sports medicine, is taking on an increasingly important role in monitoring athletes' health conditions. Acute or intense exercise can result in metabolic imbalances, muscle injuries or reveal cardiovascular disorders. This study aimed to monitor the health status of a basketball player with an integrated approach, including biochemical and genetic investigations and advanced imaging techniques, to shed light on the causes of recurrent syncope he experienced during exercise. Biochemical analyses showed that the athlete had abnormal iron, ferritin and bilirubin levels. Coronary Computed Tomographic Angiography highlighted the presence of an intramyocardial bridge, suggesting this may be the cause of the observed syncopes. The athlete was excluded from competitive activity. In order to understand if this cardiac malformation could be caused by an inherited genetic condition, both array-CGH and whole exome sequencing were performed. Array-CGH showed two intronic deletions involving MACROD2 and COMMD10 genes, which could be related to a congenital heart defect; whole exome sequencing highlighted the genotype compatible with Gilbert syndrome. However, no clear pathogenic mutations related to the patient's cardiological phenotype were detected, even after applying machine learning methods. This case report highlights the importance and the need to provide exhaustive personalized diagnostic work up for the athletes in order to cover the cause of their malaise and for safeguarding their health. This multidisciplinary approach can be useful to create ad personam training and treatments, thus avoiding the appearance of diseases and injuries which, if underestimated, can become irreversible disorders and sometimes can result in the death of the athlete.

18.
Front Pediatr ; 9: 618009, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33665175

RESUMEN

Background: Preterm birth is a major determinant of neonatal survival and morbidity, but the gut microbiome and associated enteric inflammation are also key factors in neonatal development and the risk of associated morbidities. We prospectively and longitudinally followed two cohorts of preterm infants, one of which was fed activated Bifidobacterium longum subsp. infantis (B. infantis) EVC001 8 × 109 CFU daily, and the other was not fed a probiotic. Hospital feeding protocol assigned all infants born at <1500 g and/or < 32 weeks corrected gestational age to the probiotic feeding protocol, whereas infants born at >1500 g and/or >32 weeks corrected gestational age were not fed a probiotic. Fecal samples were opportunistically collected from 77 infants throughout the hospital stay, and subjected to shotgun metagenomic sequencing and quantification of enteric inflammation. De-identified metadata was collected from patient medical records. Results: The gut microbiome of preterm infants was typified by a high abundance of Enterobacteriaceae and/or Staphylococcaceae, and multivariate modeling identified the probiotic intervention, rather than degree of prematurity, day of life, or other clinical interventions, as the primary source of change in the gut microbiome. Among infants fed B. infantis EVC001, a high abundance of total Bifidobacteriaceae developed rapidly, the majority of which was B. infantis confirmed via subspecies-specific qPCR. Associated with this higher abundance of Bifidobacteriaceae, we found increased functional capacity for utilization of human milk oligosaccharides (HMOs), as well as reduced abundance of antibiotic resistance genes (ARGs) and the taxa that harbored them. Importantly, we found that infants fed B. infantis EVC001 exhibited diminished enteric inflammation, even when other clinical variables were accounted for using multivariate modeling. Conclusion: These results provide an important observational background for probiotic use in a NICU setting, and describe the clinical, physiological, and microbiome-associated improvements in preterm infants associated with B. infantis EVC001 feeding.

19.
High Throughput ; 9(2)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230716

RESUMEN

Over the past century, there has been a steady increase in the stool pH of infants from industrialized countries. Analysis of historical data revealed a strong association between abundance of Bifidobacterium in the gut microbiome of breasted infants and stool pH, suggesting that this taxon plays a key role in determining the pH in the gut. Bifidobacterium longum subsp. infantis is uniquely equipped to metabolize human milk oligosaccharides (HMO) from breastmilk into acidic end products, mainly lactate and acetate. The presence of these acidic compounds in the infant gut is linked to a lower stool pH. Conversely, infants lacking B. infantis have a significantly higher stool pH, carry a higher abundance of potential pathogens and mucus-eroding bacteria in their gut microbiomes, and have signs of chronic enteric inflammation. This suggests the presence of B. infantis and low intestinal pH may be critical to maintaining a protective environment in the infant gut. Here, we summarize recent studies demonstrating that feeding B. infantis EVC001 to breastfed infants results in significantly lower fecal pH compared to controls and propose that low pH is one critical factor in preventing the invasion and overgrowth of harmful bacteria in the infant gut, a process known as colonization resistance.

20.
Front Nutr ; 7: 33, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32346537

RESUMEN

Mounting evidence supports a connection between the composition of the infant gut microbiome and long-term health. In fact, aberrant microbiome compositions during key developmental windows in early life are associated with increased disease risk; therefore, making pertinent modifications to the microbiome during infancy offers significant promise to improve human health. There is growing support for integrating the concept of ecosystem services (the provision of benefits from ecosystems to humans) in linking specific microbiome functions to human well-being. This framework is widely applied in conservation efforts of macro-ecosystems and offers a systematic approach to guide restoration actions aimed to recover critical ecological functions. The aim of this work is to apply the ecosystem services framework to integrate recent studies demonstrating stable alteration of the gut microbiome of breastfed infants when Bifidobacterium longum subsp. infantis EVC001, a gut symbiont capable of efficiently utilizing human milk oligosaccharides into organic acids that are beneficial for the infant and lower intestinal pH, is reintroduced. Additionally, using examples from the literature we illustrate how the absence of B. infantis results in diminished ecosystem services, which may be associated with health consequences related to immune and metabolic disorders. Finally, we propose a model by which infant gut dysbiosis can be defined as a reduction in ecosystem services supplied to the host by the gut microbiome rather than merely changes in diversity or taxonomic composition. Given the increased interest in targeted microbiome modification therapies to decrease acute and chronic disease risk, the model presented here provides a framework to assess the effectiveness of such strategies from a host-centered perspective.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA