Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 33(45): 12887-12896, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29058912

RESUMEN

Manipulating the composition of a mixed alkylthiol self-assembled monolayer (SAM) modified gold surface using both electrochemical and electroless methods is demonstrated. Through the use of fluorophore labeled thiolated DNA and in situ fluorescence microscopy with a gold single crystal bead electrode, a procedure was developed to study and quantify the selective desorption of an alkylthiolate SAM. This method enabled a self-consistent measurement of the removal of the SAM from the 111 surface compared to the 100 surface region at various potentials. A 20-fold increase in the electrochemical removal and replacement of the SAM from the 111 surface over the 100 surface was realized at -0.8 V/AgAgCl. A related procedure was developed for the solution-based electroless removal of the SAM using NaBH4 achieving a similar selectivity at the same potential. Unfortunately, in the electroless process fine control over the reducing potential was difficult to achieve. In addition, working in the presence of O2 complicates the solution potential measurement due to depolarization by the reduction of O2, resulting in a less clear relationship between selectivity and measured solution potential. Interestingly, the electrochemical method was not disturbed by the presence of O2. In preparation for work with Au nanorods, electrochemical measurements were performed in electrolyte that included 1 mM CTAB and was found to not interfere with this method. Preliminary results are promising for using this methodology for treatment of acid-terminated alkylthiol modified Au nanorods.

2.
J Am Chem Soc ; 137(1): 276-88, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25495479

RESUMEN

The use of a single crystal gold bead electrode is demonstrated for characterization of self-assembled monolayers (SAM)s formed on the bead surface expressing a complete set of face centered cubic (fcc) surface structures represented by a stereographic projection. Simultaneous analysis of many crystallographic orientations was accomplished through the use of an in situ fluorescence microscopic imaging technique coupled with electrochemical measurements. SAMs were prepared from different classes of molecules, which were modified with a fluorescent tag enabling characterization of the influence of electrical potential and a direct comparison of the influence of surface structure on SAMs adsorbed onto low index, vicinal and chiral surfaces. The assembly of alkylthiol, Aib peptide and DNA SAMs are studied as a function of the electrical potential of the interface revealing how the organization of these SAMs depend on the surface crystallographic orientation, all in one measurement. This approach allows for a simultaneous determination of SAMs assembled onto an electrode surface onto which the whole fcc stereographic triangle can be mapped, revealing the influence of intermolecular interactions as well as the atomic arrangement of the substrate. Moreover, this method enables study of the influence of the Au surface atom arrangement on SAMs that were created and analyzed, both under identical conditions, something that can be challenging for the typical studies of this kind using individual gold single crystal electrodes. Also demonstrated is the analysis of a SAM containing two components prepared using thiol exchange. The two component SAM shows remarkable differences in the surface coverage, which strongly depends on the surface crystallography enabling estimates of the thiol exchange energetics. In addition, these electrode surfaces enable studies of molecular adsorption onto the symmetry related chiral surfaces since more than one stereographic triangle can be imaged at the same time. The ability to observe a SAM modified surface that contains many complete fcc stereographic triangles will facilitate the study of the single and multicomponent SAMs, identifying interesting surfaces for further analysis.

3.
RSC Adv ; 14(14): 9514-9528, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38516160

RESUMEN

Drop-cast crosslinked hydrogels are a common platform for enzymatic electrochemical biosensors. Despite the widespread use of these complex systems, there are still several questions about how their physicochemical properties affect their performance, stability, and reproducibility. In this work, first-generation faradaic biosensors composed of glucose oxidase and branched polyethyleneimine (BPEI) are prepared using either glutaraldehyde (GA) or ethylene glycol diglycidyl ether (EGDGE) as crosslinkers. While EGDGE gels present an increasing electrochemical response with increasing crosslinker concentration, the current of GA gels decreases at high crosslinker concentration probably due to the hampered diffusion on tightly networked gels. We compared different strategies to use fluorescence microscopy to gain insight into the gel structure either by labeling the gel components with fluorophores or taking advantage of the intrinsic fluorescence of the imines formed upon crosslinking with GA. By monitoring the fluorescence of the crosslinking bonds and the electrochemical response, we demonstrate that hydrolysis, a common hydrogel degradation mechanism, is not responsible for the loss of electrical current over time in gels prepared with glutaraldehyde. Most hydrogel-based electrochemical biosensor studies do not perform specific experiments to determine the cause of the degradation and instead just infer it from the dependence of the current on the preparation conditions (most commonly concentrations). We show that, by taking advantage of several analytical techniques, it is possible to gain more knowledge about the degradation mechanisms and design better enzymatic biosensors.

4.
Langmuir ; 29(6): 2065-74, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-23317370

RESUMEN

In situ examination of the reductive desorption process for Au microelectrodes modified with a thiol self-assembled monolayer (SAM) using fluorescence microscopy enabled the study of the fate of the desorbed thiolate species. The Bodipy labeled alkyl-thiol SAM, when adsorbed, is not fluorescent due to quenching by the Au surface. Once reductively desorbed, the thiolate molecules fluoresce and their direction and speed are monitored. At moderately negative reduction potentials, the thiolate species hemispherically diffuse away from the microelectrode. Also observed is the influence of a closely positioned counter electrode on the direction of the desorbed thiolate movement. As the potential becomes more negative, the molecules move in an upward direction, with a speed that depends on the amount of dissolved H(2) produced by water reduction. Shown is that this motion is controlled, in large part, by the change in the electrolyte density near the electrode due to dissolved H(2). These results should help in explaining the extent of readsorption at oxidative potentials observed in cyclic voltammetry (CV) reductive desorption measurements, as well as improving the general understanding of the SAM removal process by reductive desorption. The electrogenerated H(2) was also shown to be able to reductively remove the thiol SAM from the Pt/Ir particles that decorate the microelectrode glass sheath.

5.
Biosensors (Basel) ; 13(6)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37366947

RESUMEN

The inclusion of online, in situ biosensors in microfluidic cell cultures is important to monitor and characterize a physiologically mimicking environment. This work presents the performance of second-generation electrochemical enzymatic biosensors to detect glucose in cell culture media. Glutaraldehyde and ethylene glycol diglycidyl ether (EGDGE) were tested as cross-linkers to immobilize glucose oxidase and an osmium-modified redox polymer on the surface of carbon electrodes. Tests employing screen printed electrodes showed adequate performance in a Roswell Park Memorial Institute (RPMI-1640) media spiked with fetal bovine serum (FBS). Comparable first-generation sensors were shown to be heavily affected by complex biological media. This difference is explained in terms of the respective charge transfer mechanisms. Under the tested conditions, electron hopping between Os redox centers was less vulnerable than H2O2 diffusion to biofouling by the substances present in the cell culture matrix. By employing pencil leads as electrodes, the incorporation of these electrodes in a polydimethylsiloxane (PDMS) microfluidic channel was achieved simply and at a low cost. Under flow conditions, electrodes fabricated using EGDGE presented the best performance with a limit of detection of 0.5 mM, a linear range up to 10 mM, and a sensitivity of 4.69 µA mM-1 cm-2.


Asunto(s)
Técnicas Biosensibles , Glucosa , Glucosa/metabolismo , Microfluídica , Polímeros/química , Peróxido de Hidrógeno , Glucosa Oxidasa/química , Oxidación-Reducción , Electrodos , Técnicas de Cultivo Tridimensional de Células , Técnicas Electroquímicas , Enzimas Inmovilizadas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA