Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Brain Mapp ; 45(10): e26768, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38949537

RESUMEN

Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain-age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain-age has highlighted the need for robust and publicly available brain-age models pre-trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain-age model. Here we expand this work to develop, empirically validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. To achieve this, we selected the best-performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain-age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5-90 years; 53.59% female). The pre-trained models were tested for cross-dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8-80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9-25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age-bins (5-40 and 40-90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open-science, web-based platform for individualized neuroimaging metrics.


Asunto(s)
Envejecimiento , Encéfalo , Imagen por Resonancia Magnética , Humanos , Adolescente , Femenino , Anciano , Adulto , Niño , Adulto Joven , Masculino , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Anciano de 80 o más Años , Preescolar , Persona de Mediana Edad , Envejecimiento/fisiología , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Neuroimagen/normas , Tamaño de la Muestra
2.
Mol Psychiatry ; 27(4): 2282-2290, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35079123

RESUMEN

Interest in the cerebellum is expanding given evidence of its contributions to cognition and emotion, and dysfunction in various psychopathologies. However, research into its genetic architecture and shared influences with liability for mental disorders is lacking. We conducted a genome-wide association study (GWAS) of total cerebellar volume and underlying cerebellar lobe volumes in 33,265 UK-Biobank participants. Total cerebellar volume was heritable (h2SNP = 50.6%), showing moderate genetic homogeneity across lobes (h2SNP from 35.4% to 57.1%; mean genetic correlation between lobes rg ≈ 0.44). We identified 33 GWAS signals associated with total cerebellar volume, of which 6 are known to alter protein-coding gene structure, while a further five mapped to genomic regions known to alter cerebellar tissue gene expression. Use of summary data-based Mendelian randomisation further prioritised genes whose change in expression appears to mediate the SNP-trait association. In total, we highlight 21 unique genes of greatest interest for follow-up analyses. Using LD-regression, we report significant genetic correlations between total cerebellar volume and brainstem, pallidum and thalamus volumes. While the same approach did not result in significant correlations with psychiatric phenotypes, we report enrichment of schizophrenia, bipolar disorder and autism spectrum disorder associated signals within total cerebellar GWAS results via conditional and conjunctional-FDR analysis. Via these methods and GWAS catalogue, we identify which of our cerebellar genomic regions also associate with psychiatric traits. Our results provide important insights into the common allele architecture of cerebellar volume and its overlap with other brain volumes and psychiatric phenotypes.


Asunto(s)
Trastorno del Espectro Autista , Trastornos Mentales , Bancos de Muestras Biológicas , Cerebelo , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Trastornos Mentales/genética , Polimorfismo de Nucleótido Simple/genética , Reino Unido
3.
Hum Mol Genet ; 29(17): 2872-2881, 2020 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-32766777

RESUMEN

Deletions spanning the STS (steroid sulfatase) gene at Xp22.31 are associated with X-linked ichthyosis, corneal opacities, testicular maldescent, cardiac arrhythmia, and higher rates of developmental and mood disorders/traits, possibly related to the smaller volume of some basal ganglia structures. The consequences of duplication of the same genomic region have not been systematically assessed in large or adult samples, although evidence from case reports/series has indicated high rates of developmental phenotypes. We compared multiple measures of physical and mental health, cognition and neuroanatomy in male (n = 414) and female (n = 938) carriers of 0.8-2.5 Mb duplications spanning STS, and non-carrier male (n = 192, 826) and female (n = 227, 235) controls from the UK Biobank (recruited aged 40-69 from the UK general population). Clinical and self-reported diagnoses indicated a higher prevalence of inguinal hernia and mania/bipolar disorder respectively in male duplication carriers, and a higher prevalence of gastro-oesophageal reflux disease and blistering/desquamating skin disorder respectively in female duplication carriers; duplication carriers also exhibited reductions in several depression-related measures, and greater happiness. Cognitive function and academic achievement did not differ between comparison groups. Neuroanatomical analysis suggested greater lateral ventricle and putamen volume in duplication carriers. In conclusion, Xp22.31 duplications appear largely benign, but could slightly increase the likelihood of specific phenotypes (although results were only nominally-significant). In contrast to deletions, duplications might protect against depressive symptoms, possibly via higher STS expression/activity (resulting in elevated endogenous free steroid levels), and through contributing towards an enlarged putamen volume. These results should enable better genetic counselling of individuals with Xp22.31 microduplications.


Asunto(s)
Cromosomas Humanos X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Ictiosis Ligada al Cromosoma X/genética , Esteril-Sulfatasa/genética , Anciano , Bancos de Muestras Biológicas , Duplicación Cromosómica/genética , Cognición/fisiología , Hibridación Genómica Comparativa , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Heterocigoto , Humanos , Ictiosis Ligada al Cromosoma X/patología , Masculino , Salud Mental , Persona de Mediana Edad , Neuroanatomía , Reino Unido
4.
Hum Brain Mapp ; 43(1): 452-469, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33570244

RESUMEN

Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.


Asunto(s)
Amígdala del Cerebelo/anatomía & histología , Cuerpo Estriado/anatomía & histología , Hipocampo/anatomía & histología , Desarrollo Humano/fisiología , Neuroimagen , Tálamo/anatomía & histología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Amígdala del Cerebelo/diagnóstico por imagen , Niño , Preescolar , Cuerpo Estriado/diagnóstico por imagen , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Tálamo/diagnóstico por imagen , Adulto Joven
5.
Hum Brain Mapp ; 43(1): 385-398, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33073925

RESUMEN

The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta-Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1-weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed-effects models and mega-analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = -0.20), cornu ammonis (CA)1 (d = -0.18), CA2/3 (d = -0.11), CA4 (d = -0.19), molecular layer (d = -0.21), granule cell layer of dentate gyrus (d = -0.21), hippocampal tail (d = -0.10), subiculum (d = -0.15), presubiculum (d = -0.18), and hippocampal amygdala transition area (d = -0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non-users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD.


Asunto(s)
Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Imagen por Resonancia Magnética , Neuroimagen , Trastorno Bipolar/tratamiento farmacológico , Genética , Hipocampo/efectos de los fármacos , Humanos
6.
Hum Brain Mapp ; 43(1): 56-82, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32725849

RESUMEN

MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.


Asunto(s)
Trastorno Bipolar , Corteza Cerebral , Imagen por Resonancia Magnética , Neuroimagen , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Humanos , Metaanálisis como Asunto , Estudios Multicéntricos como Asunto
7.
Hum Brain Mapp ; 43(1): 470-499, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33044802

RESUMEN

For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.


Asunto(s)
Variación Biológica Poblacional/fisiología , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Desarrollo Humano/fisiología , Imagen por Resonancia Magnética , Neuroimagen , Caracteres Sexuales , Grosor de la Corteza Cerebral , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Masculino
8.
Hum Brain Mapp ; 43(1): 431-451, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33595143

RESUMEN

Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Desarrollo Humano/fisiología , Neuroimagen , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
9.
Hum Brain Mapp ; 43(1): 414-430, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33027543

RESUMEN

First-degree relatives of patients diagnosed with schizophrenia (SZ-FDRs) show similar patterns of brain abnormalities and cognitive alterations to patients, albeit with smaller effect sizes. First-degree relatives of patients diagnosed with bipolar disorder (BD-FDRs) show divergent patterns; on average, intracranial volume is larger compared to controls, and findings on cognitive alterations in BD-FDRs are inconsistent. Here, we performed a meta-analysis of global and regional brain measures (cortical and subcortical), current IQ, and educational attainment in 5,795 individuals (1,103 SZ-FDRs, 867 BD-FDRs, 2,190 controls, 942 schizophrenia patients, 693 bipolar patients) from 36 schizophrenia and/or bipolar disorder family cohorts, with standardized methods. Compared to controls, SZ-FDRs showed a pattern of widespread thinner cortex, while BD-FDRs had widespread larger cortical surface area. IQ was lower in SZ-FDRs (d = -0.42, p = 3 × 10-5 ), with weak evidence of IQ reductions among BD-FDRs (d = -0.23, p = .045). Both relative groups had similar educational attainment compared to controls. When adjusting for IQ or educational attainment, the group-effects on brain measures changed, albeit modestly. Changes were in the expected direction, with less pronounced brain abnormalities in SZ-FDRs and more pronounced effects in BD-FDRs. To conclude, SZ-FDRs and BD-FDRs show a differential pattern of structural brain abnormalities. In contrast, both had lower IQ scores and similar school achievements compared to controls. Given that brain differences between SZ-FDRs and BD-FDRs remain after adjusting for IQ or educational attainment, we suggest that differential brain developmental processes underlying predisposition for schizophrenia or bipolar disorder are likely independent of general cognitive impairment.


Asunto(s)
Trastorno Bipolar/patología , Disfunción Cognitiva/patología , Escolaridad , Predisposición Genética a la Enfermedad , Inteligencia/fisiología , Neuroimagen , Esquizofrenia/patología , Trastorno Bipolar/complicaciones , Trastorno Bipolar/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Familia , Humanos , Imagen por Resonancia Magnética , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/etiología
10.
Br J Psychiatry ; 218(2): 104-111, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32792019

RESUMEN

BACKGROUND: Schizophrenia is a highly heritable disorder with undetermined neurobiological causes. Understanding the impact on brain anatomy of carrying genetic risk for the disorder will contribute to uncovering its neurobiological underpinnings. AIMS: To examine the effect of rare copy number variants (CNVs) associated with schizophrenia on brain cortical anatomy in a sample of unaffected participants from the UK Biobank. METHOD: We used regression analyses to compare cortical thickness and surface area (total and across gyri) between 120 unaffected carriers of rare CNVs associated with schizophrenia and 16 670 participants without any pathogenic CNV. A measure of cortical thickness and surface area covariance across gyri was also compared between groups. RESULTS: Carrier status was associated with reduced surface area (ß = -0.020 mm2, P < 0.001) and less robustly with increased cortical thickness (ß = 0.015 mm, P = 0.035), and with increased covariance in thickness (carriers z = 0.31 v. non-carriers z = 0.22, P < 0.0005). Associations were mainly present in frontal and parietal areas and driven by a limited number of rare risk alleles included in our analyses (mainly 15q11.2 deletion for surface area and 16p13.11 duplication for thickness covariance). CONCLUSIONS: Results for surface area conformed with previous clinical findings, supporting surface area reductions as an indicator of genetic liability for schizophrenia. Results for cortical thickness, though, argued against its validity as a potential risk marker. Increased structural thickness covariance across gyri also appears related to risk for schizophrenia. The heterogeneity found across the effects of rare risk alleles suggests potential different neurobiological gateways into schizophrenia's phenotype.


Asunto(s)
Esquizofrenia , Bancos de Muestras Biológicas , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad , Genómica , Humanos , Imagen por Resonancia Magnética , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Reino Unido
11.
Mol Psychiatry ; 25(4): 854-862, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30679740

RESUMEN

Schizophrenia is a highly heritable disorder for which anatomical brain alterations have been repeatedly reported in clinical samples. Unaffected at-risk groups have also been studied in an attempt to identify brain changes that do not reflect reverse causation or treatment effects. However, no robust associations have been observed between neuroanatomical phenotypes and known genetic risk factors for schizophrenia. We tested subcortical brain volume differences between 49 unaffected participants carrying at least one of the 12 copy number variants associated with schizophrenia in UK Biobank and 9063 individuals who did not carry any of the 93 copy number variants reported to be pathogenic. Our results show that CNV carriers have reduced volume in some of the subcortical structures previously shown to be reduced in schizophrenia. Moreover, these associations partially accounted for the association between pathogenic copy number variants and cognitive impairment, which is one of the features of schizophrenia.


Asunto(s)
Encéfalo/patología , Variaciones en el Número de Copia de ADN/genética , Esquizofrenia/genética , Adulto , Bancos de Muestras Biológicas , Cognición/fisiología , Disfunción Cognitiva/genética , Femenino , Genómica , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Herencia Multifactorial/genética , Tamaño de los Órganos/genética , Reino Unido/epidemiología , Sustancia Blanca/patología
12.
Mol Psychiatry ; 25(9): 2130-2143, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-30171211

RESUMEN

Bipolar disorders (BDs) are among the leading causes of morbidity and disability. Objective biological markers, such as those based on brain imaging, could aid in clinical management of BD. Machine learning (ML) brings neuroimaging analyses to individual subject level and may potentially allow for their diagnostic use. However, fair and optimal application of ML requires large, multi-site datasets. We applied ML (support vector machines) to MRI data (regional cortical thickness, surface area, subcortical volumes) from 853 BD and 2167 control participants from 13 cohorts in the ENIGMA consortium. We attempted to differentiate BD from control participants, investigated different data handling strategies and studied the neuroimaging/clinical features most important for classification. Individual site accuracies ranged from 45.23% to 81.07%. Aggregate subject-level analyses yielded the highest accuracy (65.23%, 95% CI = 63.47-67.00, ROC-AUC = 71.49%, 95% CI = 69.39-73.59), followed by leave-one-site-out cross-validation (accuracy = 58.67%, 95% CI = 56.70-60.63). Meta-analysis of individual site accuracies did not provide above chance results. There was substantial agreement between the regions that contributed to identification of BD participants in the best performing site and in the aggregate dataset (Cohen's Kappa = 0.83, 95% CI = 0.829-0.831). Treatment with anticonvulsants and age were associated with greater odds of correct classification. Although short of the 80% clinically relevant accuracy threshold, the results are promising and provide a fair and realistic estimate of classification performance, which can be achieved in a large, ecologically valid, multi-site sample of BD participants based on regional neurostructural measures. Furthermore, the significant classification in different samples was based on plausible and similar neuroanatomical features. Future multi-site studies should move towards sharing of raw/voxelwise neuroimaging data.


Asunto(s)
Trastorno Bipolar , Trastorno Bipolar/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Neuroimagen
13.
J Med Genet ; 57(10): 692-698, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32139392

RESUMEN

BACKGROUND: X-linked ichthyosis (XLI) is an uncommon dermatological condition resulting from a deficiency of the enzyme steroid sulfatase (STS), often caused by X-linked deletions spanning STS. Some medical comorbidities have been identified in XLI cases, but small samples of relatively young patients has limited this. STS is highly expressed in subcortical brain structures, and males with XLI and female deletion carriers appear at increased risk of developmental/mood disorders and associated traits; the neurocognitive basis of these findings has not been examined. METHODS: Using the UK Biobank resource, comprising participants aged 40-69 years recruited from the general UK population, we compared multiple medical/neurobehavioural phenotypes in males (n=86) and females (n=312) carrying genetic deletions spanning STS (0.8-2.5 Mb) (cases) to male (n=190 577) and female (n=227 862) non-carrier controls. RESULTS: We identified an elevated rate of atrial fibrillation/flutter in male deletion carriers (10.5% vs 2.7% in male controls, Benjamini-Hochberg corrected p=0.009), and increased rates of mental distress (p=0.003), irritability (p<0.001) and depressive-anxiety traits (p<0.05) in male deletion carriers relative to male controls completing the Mental Health Questionnaire. While academic attainment was unaffected, male and female deletion carriers exhibited impaired performance on the Fluid Intelligence Test (Cohen's d≤0.05, corrected p<0.1). Neuroanatomical analysis in female deletion carriers indicated reduced right putamen and left nucleus accumbens volumes (Cohen's d≤0.26, corrected p<0.1). CONCLUSION: Adult males with XLI disease-causing deletions are apparently at increased risk of cardiac arrhythmias and self-reported mood problems; altered basal ganglia structure may underlie altered function and XLI-associated psychiatric/behavioural phenotypes. These results provide information for genetic counselling of deletion-carrying individuals and reinforce the need for multidisciplinary medical care.


Asunto(s)
Arritmias Cardíacas/genética , Ictiosis Ligada al Cromosoma X/genética , Trastornos Mentales/genética , Esteril-Sulfatasa/genética , Adulto , Anciano , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/patología , Arritmias Cardíacas/psicología , Bancos de Muestras Biológicas , Femenino , Eliminación de Gen , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Ictiosis Ligada al Cromosoma X/complicaciones , Ictiosis Ligada al Cromosoma X/patología , Ictiosis Ligada al Cromosoma X/psicología , Masculino , Trastornos Mentales/complicaciones , Trastornos Mentales/patología , Trastornos Mentales/psicología , Persona de Mediana Edad , Fenotipo , Piel/patología , Encuestas y Cuestionarios , Reino Unido/epidemiología
14.
Br J Psychiatry ; 213(3): 548-554, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30113288

RESUMEN

BACKGROUND: Fractional anisotropy in the uncinate fasciculus and the cingulum may be biomarkers for bipolar disorder and may even be distinctly affected in different subtypes of bipolar disorder, an area in need of further research.AimsThis study aims to establish if fractional anisotropy in the uncinate fasciculus and cingulum shows differences between healthy controls, patients with bipolar disorder type I (BD-I) and type II (BD-II), and their unaffected siblings. METHOD: Fractional anisotropy measures from the uncinate fasciculus, cingulum body and parahippocampal cingulum were compared with tractography methods in 40 healthy controls, 32 patients with BD-I, 34 patients with BD-II, 17 siblings of patients with BD-I and 14 siblings of patients with BD-II. RESULTS: The main effects were found in both the right and left uncinate fasciculus, with patients with BD-I showing significantly lower fractional anisotropy than both patients with BD-II and healthy controls. Participants with BD-II did not differ from healthy controls. Siblings showed similar effects in the left uncinate fasciculus. In a subsequent complementary analysis, we investigated the association between fractional anisotropy in the uncinate fasciculus and polygenic risk for bipolar disorder and psychosis in a large cohort (n = 570) of healthy participants. However, we found no significant association. CONCLUSIONS: Fractional anisotropy in the uncinate fasciculus differs significantly between patients with BD-I and patients with BD-II and healthy controls. This supports the hypothesis of differences in the physiological sub-tract between bipolar disorder subtypes. Similar results were found in unaffected siblings, suggesting the potential for this biomarker to represent an endophenotype for BD-I. However, fractional anisotropy in the uncinate fasciculus seems unrelated to polygenic risk for bipolar disorder or psychosis.Declaration of interestNone.


Asunto(s)
Trastorno Bipolar/fisiopatología , Encéfalo/patología , Imagen de Difusión Tensora , Adulto , Anisotropía , Trastorno Bipolar/clasificación , Estudios de Casos y Controles , Femenino , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Núcleo Accumbens/patología , Corteza Prefrontal/patología , Escalas de Valoración Psiquiátrica , Hermanos , Sustancia Blanca/patología
15.
Neuroimage ; 113: 387-96, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25795342

RESUMEN

FMRI BOLD responses to changes in neural activity are influenced by the reactivity of the vasculature. By complementing a task-related BOLD acquisition with a vascular reactivity measure obtained through breath-holding or hypercapnia, this unwanted variance can be statistically reduced in the BOLD responses of interest. Recently, it has been suggested that vascular reactivity can also be estimated using a resting state scan. This study aimed to compare three breath-hold based analysis approaches (block design, sine-cosine regressor and CO2 regressor) and a resting state approach (CO2 regressor) to measure vascular reactivity. We tested BOLD variance explained by the model and repeatability of the measures. Fifteen healthy participants underwent a breath-hold task and a resting state scan with end-tidal CO2 being recorded during both. Vascular reactivity was defined as CO2-related BOLD percent signal change/mmHg change in CO2. Maps and regional vascular reactivity estimates showed high repeatability when the breath-hold task was used. Repeatability and variance explained by the CO2 trace regressor were lower for the resting state data based approach, which resulted in highly variable measures of vascular reactivity. We conclude that breath-hold based vascular reactivity estimations are more repeatable than resting-based estimates, and that there are limitations with replacing breath-hold scans by resting state scans for vascular reactivity assessment.


Asunto(s)
Vasos Sanguíneos/fisiología , Respiración , Descanso/fisiología , Adulto , Dióxido de Carbono/sangre , Circulación Cerebrovascular , Femenino , Lateralidad Funcional/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Modelos Neurológicos , Oxígeno/sangre , Reproducibilidad de los Resultados , Adulto Joven
16.
Bipolar Disord ; 17(5): 461-70, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25771686

RESUMEN

OBJECTIVES: Emotion regulation deficits are a core feature of bipolar disorder. However, their potential neurobiological underpinnings and existence beyond bipolar I disorder remain unexplored. Our main goal was to investigate whether both individuals with bipolar I and bipolar II disorder show deficits in emotion regulation during an attention control task, and to explore the neurophysiological underpinnings of this potential deficit. METHODS: Twenty healthy controls, 16 euthymic participants with bipolar I disorder, and 19 euthymic participants with bipolar II disorder completed psychometric and clinical assessments, a neuroimaging emotion regulation paradigm, and an anatomical diffusion-weighted scan. Groups were matched for age, gender, and verbal IQ. RESULTS: During the presence of emotional distracters, subjects with bipolar I disorder showed slowed reaction times to targets, and increased blood oxygenation level-dependent (BOLD) responses in the amygdala, accumbens, and dorsolateral prefrontal cortex, but not increased inverse functional connectivity between these prefrontal and subcortical areas, and altered white matter microstructure organization in the right uncinate fasciculus. Subjects with bipolar II disorder showed no altered reaction times, increased BOLD responses in the same brain areas, increased inverse functional connectivity between the prefrontal cortex and amygdala, and no abnormalities in white matter organization. CONCLUSIONS: Participants with bipolar I disorder showed abnormalities in functional and anatomical connectivity between prefrontal cortices and subcortical structures in emotion regulation circuitry. However, these deficits did not extend to subjects with bipolar II disorder, suggesting fundamental differences in the pathophysiology of bipolar disorder subtypes.


Asunto(s)
Trastorno Bipolar/fisiopatología , Encéfalo/fisiopatología , Emociones , Autocontrol/psicología , Adulto , Amígdala del Cerebelo/patología , Amígdala del Cerebelo/fisiopatología , Atención , Trastorno Bipolar/clasificación , Trastorno Bipolar/patología , Trastorno Bipolar/psicología , Encéfalo/patología , Estudios de Casos y Controles , Imagen de Difusión Tensora , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Núcleo Accumbens/patología , Núcleo Accumbens/fisiopatología , Corteza Prefrontal/patología , Corteza Prefrontal/fisiopatología , Tiempo de Reacción , Encuestas y Cuestionarios , Sustancia Blanca/patología , Sustancia Blanca/fisiopatología
17.
Transl Psychiatry ; 14(1): 194, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649377

RESUMEN

Recent research has highlighted the role of complement genes in shaping the microstructure of the brain during early development, and in contributing to common allele risk for Schizophrenia. We hypothesised that common risk variants for schizophrenia within complement genes will associate with structural changes in white matter microstructure within tracts innervating the frontal lobe. Results showed that risk alleles within the complement gene set, but also intergenic alleles, significantly predict axonal density in white matter tracts connecting frontal cortex with parietal, temporal and occipital cortices. Specifically, risk alleles within the Major Histocompatibility Complex region in chromosome 6 appeared to drive these associations. No significant associations were found for the orientation dispersion index. These results suggest that changes in axonal packing - but not in axonal coherence - determined by common risk alleles within the MHC genomic region - including variants related to the Complement system - appear as a potential neurobiological mechanism for schizophrenia.


Asunto(s)
Alelos , Predisposición Genética a la Enfermedad , Complejo Mayor de Histocompatibilidad , Esquizofrenia , Sustancia Blanca , Humanos , Esquizofrenia/genética , Esquizofrenia/patología , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Femenino , Masculino , Adulto , Complejo Mayor de Histocompatibilidad/genética , Adulto Joven , Lóbulo Frontal/patología , Lóbulo Frontal/diagnóstico por imagen , Persona de Mediana Edad , Imagen de Difusión Tensora , Cromosomas Humanos Par 6/genética , Axones/patología , Polimorfismo de Nucleótido Simple
18.
Lancet Digit Health ; 6(3): e211-e221, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395541

RESUMEN

The value of normative models in research and clinical practice relies on their robustness and a systematic comparison of different modelling algorithms and parameters; however, this has not been done to date. We aimed to identify the optimal approach for normative modelling of brain morphometric data through systematic empirical benchmarking, by quantifying the accuracy of different algorithms and identifying parameters that optimised model performance. We developed this framework with regional morphometric data from 37 407 healthy individuals (53% female and 47% male; aged 3-90 years) from 87 datasets from Europe, Australia, the USA, South Africa, and east Asia following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The multivariate fractional polynomial regression (MFPR) emerged as the preferred algorithm, optimised with non-linear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3000 study participants. This model can inform about the biological and behavioural implications of deviations from typical age-related neuroanatomical changes and support future study designs. The model and scripts described here are freely available through CentileBrain.


Asunto(s)
Benchmarking , Longevidad , Humanos , Masculino , Femenino , Encéfalo/diagnóstico por imagen , Modelos Estadísticos , Algoritmos
19.
Am J Psychiatry ; 181(8): 728-740, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38859702

RESUMEN

OBJECTIVE: Specific phobia is a common anxiety disorder, but the literature on associated brain structure alterations exhibits substantial gaps. The ENIGMA Anxiety Working Group examined brain structure differences between individuals with specific phobias and healthy control subjects as well as between the animal and blood-injection-injury (BII) subtypes of specific phobia. Additionally, the authors investigated associations of brain structure with symptom severity and age (youths vs. adults). METHODS: Data sets from 31 original studies were combined to create a final sample with 1,452 participants with phobia and 2,991 healthy participants (62.7% female; ages 5-90). Imaging processing and quality control were performed using established ENIGMA protocols. Subcortical volumes as well as cortical surface area and thickness were examined in a preregistered analysis. RESULTS: Compared with the healthy control group, the phobia group showed mostly smaller subcortical volumes, mixed surface differences, and larger cortical thickness across a substantial number of regions. The phobia subgroups also showed differences, including, as hypothesized, larger medial orbitofrontal cortex thickness in BII phobia (N=182) compared with animal phobia (N=739). All findings were driven by adult participants; no significant results were observed in children and adolescents. CONCLUSIONS: Brain alterations associated with specific phobia exceeded those of other anxiety disorders in comparable analyses in extent and effect size and were not limited to reductions in brain structure. Moreover, phenomenological differences between phobia subgroups were reflected in diverging neural underpinnings, including brain areas related to fear processing and higher cognitive processes. The findings implicate brain structure alterations in specific phobia, although subcortical alterations in particular may also relate to broader internalizing psychopathology.


Asunto(s)
Imagen por Resonancia Magnética , Trastornos Fóbicos , Humanos , Trastornos Fóbicos/patología , Adulto , Femenino , Masculino , Niño , Adolescente , Adulto Joven , Persona de Mediana Edad , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Anciano , Preescolar , Anciano de 80 o más Años , Corteza Cerebral/patología , Corteza Cerebral/diagnóstico por imagen , Animales , Estudios de Casos y Controles
20.
Hum Brain Mapp ; 34(5): 1220-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22162203

RESUMEN

The anterior insula and the dorsal anterior cingulate cortex (ACC) are regarded as key brain structures associated with the integration of perceived phobic characteristics of external stimuli and the perception of ones own body responses that leads to emotional feelings. To test to what extent the activity in these two brain structures anatomically and functionally overlap during phobic reactions and interoception, we submitted the same group of phobic participants (n = 29; either spider or blood-injection-injury (BII) phobics) and controls (n = 17) to both type of experimental paradigms. Results showed that there was a clear anatomical overlap in the Blood Oxygen Level-Dependent (BOLD) responses within the anterior insula and ACC elicited during phobic symptom provocation and during interoceptive awareness. The activity within these two brain structures also showed to be correlated in the spider phobia group, but not in the BII phobic participants. Our results seem to support the idea that the activity within these two brain areas would be associated with the integration of perceived stimuli characteristics and bodily responses that lead to what we label as "fear." However, that seems not to be the case in BII phobia, where more research is needed in order to clarify to what extent that could be associated with the idiosyncratic physiological response that these patients present in front of phobic stimuli (i.e., drop in heart rate and blood pressure).


Asunto(s)
Giro del Cíngulo/patología , Giro del Cíngulo/fisiopatología , Vías Nerviosas/patología , Trastornos Fóbicos/etiología , Trastornos Fóbicos/patología , Adolescente , Análisis de Varianza , Mapeo Encefálico , Femenino , Lateralidad Funcional , Giro del Cíngulo/irrigación sanguínea , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/irrigación sanguínea , Oxígeno/sangre , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA