RESUMEN
PD-L1 has two receptors: PD-1 and CD80. Previous reports assumed that PD-L1 and CD80 interacted in trans, but recent reports showed that only cis PD-L1/CD80 interactions existed, and prevention of cis PD-L1/CD80 interactions on antigen-presenting cells (APCs) reduced antitumor immunity via augmenting PD-L1/PD-1 and CD80/CTLA4 interactions between T and APCs. Here, using tumor-bearing mice capable of cis and trans or trans only PD-L1/CD80 interactions, we show that trans PD-L1/CD80 interactions do exist between tumor and T cells, and the effects of trans PD-L1/CD80 interactions require tumor cell expression of MHC-I and T cell expression of CD28. The blockade of PD-L1/CD80 interactions in mice with both cis and trans interactions or with only trans interactions augments antitumor immunity by expanding IFN-γ-producing CD8+ T cells and IFN-γ-dependent NOS2-expressing tumor-associated macrophages. Our studies indicate that although cis and trans PD-L1/CD80 interactions may have opposite effects on antitumor immunity, the net effect of blocking PD-L1/CD80 interactions in vivo augments CD8+ T cell-mediated antitumor immunity.
Asunto(s)
Antígeno B7-H1 , Linfocitos T CD8-positivos , Ratones , Animales , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Activación de Linfocitos , Antígeno B7-1 , Moléculas de Adhesión CelularRESUMEN
Regulatory T (Treg) cells are critical in preventing aberrant immune responses. Posttranscriptional control of gene expression by microRNA (miRNA) has recently emerged as an essential genetic element for Treg cell function. Here, we report that mice with Treg cell-specific ablation of miR-142 (hereafter Foxp3CremiR-142fl/fl mice) developed a fatal systemic autoimmune disorder due to a breakdown in peripheral T-cell tolerance. Foxp3CremiR-142fl/fl mice displayed a significant decrease in the abundance and suppressive capacity of Treg cells. Expression profiling of miR-142-deficient Treg cells revealed an up-regulation of multiple genes in the interferon gamma (IFNγ) signaling network. We identified several of these IFNγ-associated genes as direct miR-142-3p targets and observed excessive IFNγ production and signaling in miR-142-deficient Treg cells. Ifng ablation rescued the Treg cell homeostatic defect and alleviated development of autoimmunity in Foxp3CremiR-142fl/fl mice. Thus, our findings implicate miR-142 as an indispensable regulator of Treg cell homeostasis that exerts its function by attenuating IFNγ responses.
Asunto(s)
Autoinmunidad/inmunología , Regulación de la Expresión Génica/inmunología , Homeostasis/inmunología , MicroARNs/inmunología , Linfocitos T Reguladores/inmunología , Enfermedad Aguda , Animales , Autoinmunidad/genética , Trasplante de Médula Ósea/métodos , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica/métodos , Enfermedad Injerto contra Huésped/inmunología , Homeostasis/genética , Interferón gamma/genética , Interferón gamma/inmunología , Interferón gamma/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , MicroARNs/genética , RNA-Seq/métodos , Transducción de Señal/genética , Linfocitos T Reguladores/metabolismoRESUMEN
Chronic graft-versus-host disease (cGVHD) is an autoimmune-like syndrome. CXCR5-PD-1hi peripheral T-helper (Tph) cells have an important pathogenic role in autoimmune diseases, but the role of Tph cells in cGVHD remains unknown. We show that in patients with cGVHD, expansion of Tph cells among blood CD4+ T cells was associated with cGVHD severity. These cells augmented memory B-cell differentiation and production of immunoglobulin G via interleukin 21 (IL-21). Tph cell expansion was also observed in a murine model of cGVHD. This Tph cell expansion in the blood is associated with the expansion of pathogenic tissue-resident T-helper (Trh) cells that form lymphoid aggregates surrounded by collagen in graft-versus-host disease (GVHD) target tissues. Adoptive transfer experiments showed that Trh cells from GVHD target tissues give rise to Tph cells in the blood, and conversely, Tph cells from the blood give rise to Trh cells in GVHD target tissues. Tph cells in the blood and Trh cells in GVHD target tissues had highly overlapping T-cell receptor α and ß repertoires. Deficiency of IL-21R, B-cell lymphoma 6 (BCL6), or T-bet in donor T cells markedly reduced the proportions of Tph cells in the blood and Trh cells in GVHD target tissues and reduced T-B interaction in the lymphoid aggregates. These results indicate that clonally related pathogenic Tph cells and Trh cells traffic between the blood and cGVHD target tissues, and that IL-21R-BCL6 signaling and T-bet are required for the development and expansion of Tph and Trh cells in the pathogenesis of cGVHD.
Asunto(s)
Síndrome de Bronquiolitis Obliterante , Enfermedad Injerto contra Huésped , Humanos , Ratones , Animales , Linfocitos T Colaboradores-Inductores , Linfocitos T CD4-Positivos , Linfocitos B/patología , Enfermedad CrónicaRESUMEN
Previous studies have demonstrated that sirolimus (SRL) is an effective agent for the treatment of refractory/relapsed (R/R) ITP. However, the therapeutic window of sirolimus in the treatment of ITP has not been established. As the toxicity of sirolimus increases with higher blood concentrations, it is crucial to determine the optimal therapeutic concentration of SRL for the treatment of ITP. Thus, in this study, we used a retrospective cohort of ITP patients treated with sirolimus to propose the therapeutic dosage window for sirolimus. A total of 275 laboratory results of SRL blood concentration from 63 ITP patients treated with SRL were analyzed retrospectively. The ITP patients were divided into five groups based on their SRL blood concentration: 0-4 ng/ml, 4-8 ng/ml, 8-12 ng/ml, 12-16 ng/ml and ≥16 ng/ml. In addition to the SRL blood concentration, platelet counts and adverse events that occurred during the first 6 weeks of SRL treatment were analyzed. These findings were then used to establish the decision matrix tables and ROC curves, which helped identify the therapeutic window of SRL. Based on the values and trends of true-positive rate (TPR) and false-positive rate (FPR) in the ROC curve, patients who achieved a SRL blood concentration of 4-12 ng/ml displayed a higher response rate compared to those with a SRL concentration of 0-4 ng/ml or ≥16ng/ml. Additionally, the response rate was better for patients with a SRL concentration of 8-12 ng/ml compared to 4-8 ng/ml. Adverse events were related to the concentration of SRL; however, there was no significant difference in the incidence of adverse events between the concentrations of 4-8 ng/ml and 8-12 ng/ml (P > .05). Regression analysis suggested that the concentration of SRL correlated with the patient's age, PLT count at the start of SRL administration, and the dose of SRL. It is suggested that the optimal blood concentration of SRL monotherapy for managing ITP is 8-12 ng/ml. This range may achieve a favorable balance between clinical efficacy and the severity of adverse events.
Although sirolimus (SRL) has been proven to be an effective alternative agent for refractory/relapsed immune thrombocytopenia (R/R ITP), there is currently no recommended optimal blood concentration during its administration. We collected data on SRL drug concentration, platelet response, and drug side effects in ITP patients, constructed ROC curves to evaluate the relationship between the SRL concentration and both efficacy and side effects, and finally suggested a most appropriate SRL blood concentration (812ng/ml). This concentration window ensured optimal efficacy of SRL in the treatment of ITP while maintaining tolerable side effects. Additionally, we conducted a multivariate analysis to explore factors that may influence SRL blood concentration. The present study made an important contribution to the precision therapy of ITP with sirolimus by clarifying the optimal blood concentration range.
Asunto(s)
Trasplante de Riñón , Púrpura Trombocitopénica Idiopática , Trombocitopenia , Humanos , Sirolimus/farmacología , Sirolimus/uso terapéutico , Inmunosupresores/uso terapéutico , Estudios Retrospectivos , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Trombocitopenia/tratamiento farmacológicoRESUMEN
Cutaneous sclerosis is one of the most common clinical manifestations of chronic graft-versus-host disease (cGVHD). Donor CD4(+) T and B cells play important roles in cGVHD pathogenesis, but the role of antibodies from donor B cells remains unclear. In the current studies, we generated immunoglobulin (Ig)H(µÎ³1) DBA/2 mice whose B cells have normal antigen-presentation and regulatory functions but cannot secrete antibodies. With a murine cGVHD model using DBA/2 donors and BALB/c recipients, we have shown that wild-type (WT) grafts induce persistent cGVHD with damage in the thymus, peripheral lymphoid organs, and skin, as well as cutaneous T helper 17 cell (Th17) infiltration. In contrast, IgH(µÎ³1) grafts induced only transient cGVHD with little damage in the thymus or peripheral lymph organs or with little cutaneous Th17 infiltration. Injections of IgG-containing sera from cGVHD recipients given WT grafts but not IgG-deficient sera from recipients given IgH(µÎ³1) grafts led to deposition of IgG in the thymus and skin, with resulting damage in the thymus and peripheral lymph organs, cutaneous Th17 infiltration, and perpetuation of cGVHD in recipients given IgH(µÎ³1) grafts. These results indicate that donor B-cell antibodies augment cutaneous cGVHD in part by damaging the thymus and increasing tissue infiltration of pathogenic Th17 cells.
Asunto(s)
Subgrupos de Linfocitos B/inmunología , Enfermedad Injerto contra Huésped/inmunología , Isoanticuerpos/inmunología , Animales , Subgrupos de Linfocitos B/metabolismo , Subgrupos de Linfocitos B/trasplante , Quimiocina CCL20/metabolismo , Enfermedad Crónica , Células Dendríticas/metabolismo , Enfermedad Injerto contra Huésped/patología , Inmunoglobulina G/análisis , Cadenas Pesadas de Inmunoglobulina , Cadenas gamma de Inmunoglobulina/genética , Cadenas gamma de Inmunoglobulina/inmunología , Cadenas mu de Inmunoglobulina/genética , Cadenas mu de Inmunoglobulina/inmunología , Interleucina-23/metabolismo , Tejido Linfoide/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos DBA , Quimera por Radiación , Piel/patología , Organismos Libres de Patógenos Específicos , Células Th17/inmunología , Timo/patologíaRESUMEN
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system with demyelination, axon damage, and paralysis. Induction of mixed chimerism with allogeneic donors has been shown to not cause graft-versus-host disease (GVHD) in animal models and humans. We have reported that induction of MHC-mismatched mixed chimerism can cure autoimmunity in autoimmune NOD mice, but this approach has not yet been tested in animal models of MS, such as experimental autoimmune encephalomyelitis (EAE). Here, we report that MHC-mismatched mixed chimerism with C57BL/6 (H-2(b)) donor in SJL/J (H-2(s)) EAE recipients eliminates clinical symptoms and prevents relapse. This cure is demonstrated by not only disappearance of clinical signs but also reversal of autoimmunity; elimination of infiltrating T, B, and macrophage cells in the spinal cord; and regeneration of myelin sheath. The reversal of autoimmunity is associated with a marked reduction of autoreactivity of CD4(+) T cells and significant increase in the percentage of Foxp3(+) Treg among host-type CD4(+) T cells in the spleen and lymph nodes. The latter is associated with a marked reduction of the percentage of host-type CD4(+)CD8(+) thymocytes and an increase of Treg percentage among the CD4(+)CD8(+) and CD4(+)CD8(-) thymocytes. Thymectomy leads to loss of prevention of EAE relapse by induction of mixed chimerism, although there is a dramatic expansion of host-type Treg cells in the lymph nodes. These results indicate that induction of MHC-mismatched mixed chimerism can restore thymic negative selection of autoreactive CD4(+) T cells, augment production of Foxp3(+) Treg, and cure EAE.
Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Linfocitos T Reguladores/inmunología , Timo/inmunología , Quimera por Trasplante/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/terapia , Femenino , Citometría de Flujo , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Ratones Endogámicos C57BL , Ratones Endogámicos , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Esclerosis Múltiple/terapia , Recurrencia , Linfocitos T Reguladores/metabolismo , Timocitos/inmunología , Trasplante HomólogoRESUMEN
Interactions of B7H1 (programmed death ligand 1 [PD-L1]) with its two ligands, PD-1 and CD80, on T cells play a pivotal role in controlling T cell activation, proliferation, anergy, and apoptosis. However, the interactions between the two pathways remain unknown. Using an alloimmune response model of graft-versus-host disease (GVHD), we report in this study that: 1) Comparison of proliferation and apoptosis of wild-type (WT) and PD-1(-/-)CD4(+) conventional T (Tcon) cells in WT and B7H1(-/-) recipients revealed that B7H1/CD80 interaction per se augments T cell proliferation, and this interaction augments T cell apoptosis mediated by B7H1/PD-1 interaction. This observation was recapitulated in an in vitro MLR assay. 2) Specific blockade of the B7H1/CD80 axis by anti-B7H1 mAb reduces WT-alloreactive Tcon cell proliferation, IL-2 production, expression of PD-1, and apoptosis, resulting in worsening GVHD. In contrast, specific blockade of B7H1/CD80 interaction reduces donor PD-1(-/-) Tcon cell proliferation without an impact on apoptosis, resulting in ameliorating GVHD. 3) B7H1 fused to an Ig Fc domain (B7H1-Ig), when produced in vivo by hydrodynamic injection of B7H1-Ig plasmid, ameliorates GVHD by augmenting proliferation and apoptosis of WT- alloreactive Tcon cells. Conversely, B7H1-Ig treatment has no impact on apoptosis but augments PD-1(-/-) T cell proliferation and worsens GVHD. These results indicate that B7H1/CD80 interaction augments Tcon cell proliferation, IL-2 production, and expression of PD-1, which leads to increased apoptosis mediated by the B7H1/PD-1 pathway. Additionally, by engaging both PD-1 and CD80, B7H1-Ig can be a powerful therapeutic reagent for downregulating the T cell immune response.
Asunto(s)
Apoptosis/inmunología , Antígeno B7-1/inmunología , Antígeno B7-H1/inmunología , Linfocitos T CD4-Positivos/inmunología , Enfermedad Injerto contra Huésped/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Animales , Apoptosis/genética , Antígeno B7-1/genética , Antígeno B7-H1/genética , Antígeno B7-H1/farmacología , Linfocitos T CD4-Positivos/patología , Proliferación Celular/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/patología , Enfermedad Injerto contra Huésped/terapia , Interleucina-2/genética , Interleucina-2/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Receptor de Muerte Celular Programada 1/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/farmacologíaRESUMEN
Chronic graft-versus-host disease (cGVHD) is an autoimmune-like syndrome, and donor B cells play important roles in augmenting its pathogenesis. B cell-depleting anti-CD20 mAb has been administered before or after cGVHD onset for preventing or treating cGVHD in the clinic. Although administration before onset appeared to be more effective, the effect is variable and sometimes minimal. Here, we used 2 mouse cGVHD models to evaluate the preventive and therapeutic effect of anti-CD20 mAb. With the model of DBA/2 donor to MHC-matched BALB/c recipient, 1 intravenous injection of anti-CD20 mAb (40 mg/kg) the following day or on day 7 after hematopoietic cell transplantation when serum autoantibodies were undetectable effectively prevented induction of cGVHD and preserved a strong graft-versus-leukemia (GVL) effect. The separation of GVL effect from GVHD was associated with a significant reduction of donor CD4(+) T cell proliferation and expansion and protection of host thymic medullary epithelial cells. Anti-CD20 mAb administration also prevented expansion of donor T cells and induction of cGVHD in another mouse model of C57BL/6 donor to MHC-mismatched BALB/c recipients. In contrast, administration of anti-CD20 mAb after GVHD onset was not able to effectively deplete donor B cells or ameliorate cGVHD in either model. These results indicate that administration of anti-CD20 mAb before signs of cGVHD can prevent induction of autoimmune-like cGVHD while preserving a GVL effect; there is little effect if administered after cGVHD onset. This provides new insights into clinical prevention and therapy of cGVHD with B cell-depleting reagents.
Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Enfermedad Injerto contra Huésped/prevención & control , Efecto Injerto vs Leucemia/fisiología , Animales , Anticuerpos Monoclonales Humanizados/administración & dosificación , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BLRESUMEN
We reported previously that anti-CD3 mAb treatment before hematopoietic cell transplantation (HCT) prevented graft-versus-host disease (GVHD) and preserved graft-versus-leukemia (GVL) effects in mice. These effects were associated with downregulated donor T cell expression of tissue-specific homing and chemokine receptors, marked reduction of donor T cell migration into GVHD target tissues, and deletion of CD103(+) dendritic cells (DCs) in mesenteric lymph nodes (MLN). MLN CD103(+) DCs and peripheral lymph node (PLN) DCs include CCR7(+) and CCR7(-) subsets, but the role of these DC subsets in regulating donor T cell expression of homing and chemokine receptors remain unclear. Here, we show that recipient CCR7(+), but not CCR7(-), DCs in MLN induced donor T cell expression of gut-specific homing and chemokine receptors in a retinoid acid-dependent manner. CCR7 regulated activated DC migration from tissue to draining lymph node, but it was not required for the ability of DCs to induce donor T cell expression of tissue-specific homing and chemokine receptors. Finally, anti-CD3 treatment depleted CCR7(+) but not CCR7(-) DCs by inducing sequential expansion and apoptosis of CCR7(+) DCs in MLN and PLN. Apoptosis of CCR7(+) DCs was associated with DC upregulation of Fas expression and natural killer cell but not T, B, or dendritic cell upregulation of FasL expression in the lymph nodes. These results suggest that depletion of CCR7(+) host-type DCs, with subsequent inhibition of donor T cell migration into GVHD target tissues, can be an effective approach in prevention of acute GVHD and preservation of GVL effects.
Asunto(s)
Células Dendríticas/inmunología , Receptores CCR7/inmunología , Linfocitos T/inmunología , Linfocitos T/trasplante , Acondicionamiento Pretrasplante/métodos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Complejo CD3/inmunología , Movimiento Celular/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de Quimiocina/inmunología , Donantes de Tejidos , Trasplante Homólogo , Tropismo/inmunologíaRESUMEN
PURPOSE: We present a phase I/II first-in-human trial evaluating the safety and efficacy of 50 mg and 200 mg doses of linvoseltamab, a B-cell maturation antigen × CD3 bispecific antibody in relapsed/refractory multiple myeloma (RRMM). METHODS: Phase II eligible patients had RRMM that either progressed on/after ≥three lines of therapy including a proteasome inhibitor (PI), an immunomodulatory drug (IMiD), and an anti-CD38 antibody or was triple-class (PI/IMiD/anti-CD38) refractory. Phase II treatment was once a week through week 14 and then once every 2 weeks. Phase II 200 mg patients who achieved a ≥very good partial response by week 24 received linvoseltamab once every 4 weeks. The primary end point in phase II was overall response rate (ORR). RESULTS: Among the 117 patients treated with 200 mg, the median age was 70 years, 39% had high-risk cytogenetics, and 28% had penta-refractory disease. At a median follow-up of 14.3 months, the ORR was 71%, with 50% achieving ≥complete response (CR). In 104 patients treated with 50 mg at a median follow-up of 7.4 months, the ORR was 48%, with 21% achieving ≥CR. The median duration of response (DOR) for 200 mg patients (n = 83) was 29.4 months (95% CI, 19.2 to not evaluable). Among 200 mg patients, the most common adverse events included cytokine release syndrome (35.0% Gr1, 10.3% Gr2, 0.9% Gr3), neutropenia (0.9% Gr2, 18.8% Gr3, 23.1% Gr4), and anemia (3.4% Gr1, 4.3% Gr2, 30.8% Gr3). Immune effector cell-associated neurotoxicity syndrome occurred in 7.7% of patients (2.6% each Gr1, Gr2, Gr3). Infections were reported in 74.4% of patients (33.3% Gr3, 2.6% Gr4); infection frequency and severity declined over time. CONCLUSION: Linvoseltamab 200 mg induced deep and durable responses, with a median DOR of 29.4 months, in patients with RRMM with an acceptable safety profile.
Asunto(s)
Anticuerpos Biespecíficos , Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Anciano , Masculino , Femenino , Persona de Mediana Edad , Anciano de 80 o más Años , Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Biespecíficos/efectos adversos , Anticuerpos Biespecíficos/administración & dosificación , Antígeno de Maduración de Linfocitos B/antagonistas & inhibidores , Antígeno de Maduración de Linfocitos B/inmunología , Adulto , Recurrencia Local de Neoplasia/tratamiento farmacológicoRESUMEN
Introduction: While allogeneic hematopoietic stem cell transplantation (allo-HSCT) can be a curative regimen for acute myeloid leukemia (AML), relapse of AML remains a serious risk post-transplantation. Once relapsed, salvage options are limited and management of AML is difficult. Here we designed a prospective study to examine the efficacy and tolerability of maintenance therapy with azacytidine (AZA) plus low-dose lenalidomide (LEN) to prevent relapse after allo-HSCT for AML patients (ChiCTR2200061803). Methods: AML patients post-allo-HSCT were treated with AZA (75 mg/m2 for 7 days), followed by LEN (5 mg/m2, day 10-28), and a 4-week resting interval, which was defined as one treatment cycle. A total of 8 cycles was recommended. Results: 37 patients were enrolled, 25 patients received at least 5 cycles, and 16 patients finished all 8 cycles. With a median follow-up time of 608 (43-1440) days, the estimated 1-year disease free survival (DFS) was 82%, cumulative incidence of relapse (CIR) was 18%, and overall survival (OS) was 100%. Three patients (8%) had grade 1-2 neutropenia without fever; one patient developed grade 3-4 thrombocytopenia and minor subdural hematoma; 4/37 patients (11%) developed chronic GVHD with a score of 1-2, without requiring systemic treatment; No patient developed acute GVHD. After AZA/LEN prophylaxis, increasing numbers of CD56+NK and CD8+ T, and decreasing of CD19+ B cells were observed. Discussion: Azacitidine combined with low-dose lenalidomide was observed to be an effective relapse prophylaxis option after allo-HSCT in AML patients, and can be administered safely without significantly increasing the risk of GVHD, infection and other AEs. Clinical Trial Registration: www.chictr.org, identifier ChiCTR2200061803.
Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Leucopenia , Humanos , Lenalidomida , Estudios Prospectivos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Azacitidina/uso terapéutico , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Leucemia Mieloide Aguda/terapiaRESUMEN
STAT3 deficiency (STAT3-/-) in donor T cells prevents graft-versus-host disease (GVHD), but the impact on graft-versus-leukemia (GVL) activity and mechanisms of GVHD prevention remains unclear. Here, using murine models of GVHD, we show that STAT3-/- donor T cells induced only mild reversible acute GVHD while preserving GVL effects against nonsusceptible acute lymphoblastic leukemia (ALL) cells in a donor T cell dose-dependent manner. GVHD prevention depended on programmed death ligand 1/programmed cell death protein 1 (PD-L1/PD-1) signaling. In GVHD target tissues, STAT3 deficiency amplified PD-L1/PD-1 inhibition of glutathione (GSH)/Myc pathways that regulate metabolic reprogramming in activated T cells, with decreased glycolytic and mitochondrial ATP production and increased mitochondrial ROS production and dysfunction, leading to tissue-specific deletion of host-reactive T cells and prevention of GVHD. Mitochondrial STAT3 deficiency alone did not reduce GSH expression or prevent GVHD. In lymphoid tissues, the lack of host-tissue PD-L1 interaction with PD-1 reduced the inhibition of the GSH/Myc pathway despite reduced GSH production caused by STAT3 deficiency and allowed donor T cell functions that mediate GVL activity. Therefore, STAT3 deficiency in donor T cells augments PD-1 signaling-mediated inhibition of GSH/Myc pathways and augments dysfunction of T cells in GVHD target tissues while sparing T cells in lymphoid tissues, leading to prevention of GVHD while preserving GVL effects.
Asunto(s)
Enfermedad Injerto contra Huésped , Leucemia , Ratones , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/prevención & control , Linfocitos T/metabolismo , Efecto Injerto vs Leucemia/genética , Trasplante de Médula ÓseaRESUMEN
OBJECTIVE: The complex pathogenesis of relapsed and refractory (R/R) immune thrombocytopenia (ITP) contributes to the varied efficacy and tolerability of current treatment regimens. Rapamycin, an immunomodulatory agent, was originally used in the prevention of organ rejection after organ transplantation. Additional evidence now shows that rapamycin can successfully treat R/R ITP. Here, we summarize recent clinical progress on the role and potential mechanism of rapamycin in the treatment of ITP. METHODS: PubMed, Web of Science and CNKI database were searched to identify eligible studies, and the clinical data and preclinical studies on the use of mTOR inhibitors in ITP treatment were reviewed. The key results (efficacy and safety) of the most recent clinical reports were summarized. RESULTS SUMMARIZED: Case series provide evidence of the effectiveness and tolerable safety profile of rapamycin in ITP, including primary and some secondary ITP. Mechanistic explorations indicate that rapamycin can regulate immune cell subsets (Th1, Th2, Th17, Treg, Breg, MDSC, etc.), modulate cytokine secretion (IL-6, IL-10, TGF-ß, BAFF, etc.) and promote platelet autophagy. CONCLUSIONS: Emerging clinical data and basic studies suggest that rapamycin, as a multifaceted regulator, could provide a new promising option for the therapy of ITP. Additional research is needed to identify those patients which may benefit the most, as well as therapeutic regimens with which rapamycin may be combined.
Asunto(s)
Púrpura Trombocitopénica Idiopática , Trombocitopenia , Humanos , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Sirolimus/uso terapéutico , Células Th17 , Linfocitos T ReguladoresRESUMEN
It is well documented that COVID-19 vaccines greatly reduce the severity and complications of SARS-CoV-2 infection. However, it has been reported that COVID-19 related vaccines may induce or exacerbate autoimmune hematological disorders, for example, a decrease in platelet numbers characteristic of immune thrombocytopenia (ITP). To investigate this, we retrospectively reported, for the first time, the clinical characteristics of 42 ITP patients after COVID-19 vaccination in southwest China. Of the 42 patients, 28 patients were historically diagnosed ITP, and their platelet counts (PC) decrease mainly occurred after the first-dose vaccinations. The average PC after vaccination was 39.5 × 109/L and recovered to an average of 80.6 × 109/L after treatment. Efficacy of treatment was 90%, and only 10% maintained low PC at the third month of treatment. More interestingly, of the 42 patients, 14 were newly diagnosed ITP following vaccination. Of these 14 patients, 6 patients (43%) were found PC deterioration after the first vaccine dose, and 7 patients (50%) after the second dose. Fortunately, the peripheral PC of all 14 patients recovered significantly after treatment, and the average PC was 139.4 × 109/L, including 8 CRs (complete response) and 6 PRs (partial response). Notably, 9 of the 14 cases were found to have abnormal immune indices when thrombocytopenia diagnosed. No severe organ hemorrhage was found in either subgroup. These results are reassuring the vaccine safety for ITP patients, in that the risks of aggravating thrombocytopenia by COVID-19 vaccination do exist, but it was transient and can be effectively controlled through intensive clinical monitoring and management.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Púrpura Trombocitopénica Idiopática , Trombocitopenia , Humanos , COVID-19/prevención & control , COVID-19/complicaciones , Vacunas contra la COVID-19/efectos adversos , Púrpura Trombocitopénica Idiopática/inducido químicamente , Púrpura Trombocitopénica Idiopática/epidemiología , Estudios Retrospectivos , SARS-CoV-2 , Trombocitopenia/inducido químicamente , Trombocitopenia/epidemiología , Vacunación/efectos adversosRESUMEN
BACKGROUND AND PURPOSE: Is minimal residual disease (MRD) monitoring by multiparameter flow cytometry (MFC) prognostic for acute myeloid leukemia (AML) patients before allogeneic hemopoietic stem cell transplantation (allo-HSCT)? And if so, what level of MRD eradication can be used to help guide the timing of HSCT? Can haplo-HSCT improve the prognosis of AML patients with MRD positive? To figure out these questions, we initiated this retrospective study. METHODS: 96 AML patients were included retrospectively and divided into 5 groups, according to pre-transplantation MRD levels (from 5 × 10-2 to <1 × 10-4), to analyze the overall survival (OS), disease-free survival (DFS) and cumulative incidence of relapse (CIR). Secondly, we compared the prognosis of MRD-negative (MRDneg) and MRD-positive (MRDpos) AML patients (cutoff value = 1 × 10-3) who underwent allo-HSCT, and further analyzed the prognosis of MRDpos patients after received different transplantation modalities. RESULTS: It is found that the 2-year OS and DFS of MRD negative group were better than the MRD positive group, and that the deeper the eradication of MRD before transplantation, the better the prognosis of patients. The CIR in patients received HLA-identical transplantation, was higher in the MRDpos than in the MRDneg. Haploid transplantation reduced the CIR disparity between MRDpos and MRDneg group. Subsequently, in AML patients who remain MRD positive before HSCT, we show that haplo-HSCT offered a better prognosis than HLA-identical transplantation (MSDT and MUDT). CONCLUSION: It is suggested that achieving MFC-MRD <10-3 (10-4 or even better) before allo-HSCT could reduce the relapse of AML and improve OS and DFS significantly, while haplo-HSCT may be preferred for patients not achieving MRD negativity.
Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Citometría de Flujo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Leucemia Mieloide Aguda/etiología , Leucemia Mieloide Aguda/terapia , Neoplasia Residual/etiología , Pronóstico , Recurrencia , Estudios Retrospectivos , Trasplante HomólogoRESUMEN
The emergence of new drugs has provided additional options in the treatment of relapsed and refractory (R/R) Hodgkin's lymphoma (HL). However, the use of autologous stem cell transplantation (ASCT) has not been completely replaced in this setting. The use of anti-programmed death-1 (PD-1) antibody bridging to ASCT and as maintenance after transplantation is a novel approach in HL treatment. In this case, we report that PD-1 monoclonal antibody (mAb) plus ASCT with modified BEAM regimen (carmustine + etoposide + cytarabine + melphalan) containing high-dose cytarabine to treat R/R HL may represent a promising regimen in this difficult-to-treat setting.
RESUMEN
OBJECTIVE: The objective of this study was to evaluate the safety and efficacy of sirolimus (SRL) in the prevention of graft-versus-host disease (GVHD) in recipients following allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS: Randomized controlled trials (RCTs) evaluating the safety and efficacy of SRL-based prophylaxis regimens in patients receiving allo-HSCT were obtained from PubMed, Embase, and the Cochrane database. Following specific inclusion and exclusion criteria, studies were selected and screened by two independent reviewers who subsequently extracted the study data. The Cochrane risk bias evaluation tool was used for quality evaluation, and RevMan 5.3 software was used for statistical analysis comparing the effects of SRL-based and non-SRL-based regimens on acute GVHD, chronic GVHD, overall survival (OS), relapse rate, non-relapse mortality (NRM), thrombotic microangiopathy (TMA), and veno-occlusive disease (VOD). RESULTS: Seven studies were included in this meta-analysis, with a total sample size of 1,673 cases, including 778 cases of patients receiving SRL-based regimens and 895 cases in which patients received non-SRL-based regimens. Our data revealed that SRL containing prophylaxis can effectively reduce the incidence of grade II-IV acute GVHD (RR = 0.75, 95% CI: 0.68â¼0.82, p < 0.0001). SRL-based prophylaxis was not associated with an improvement of grade III-IV acute GVHD (RR = 0.78, 95% CI: 0.59â¼1.03, p = 0.08), chronic GVHD (p = 0.89), OS (p = 0.98), and relapse rate (p = 0.16). Despite its immunosuppressant effects, SRL-based regimens did not increase bacterial (p = 0.68), fungal (p = 0.70), or CMV (p = 0.10) infections. However, patients receiving SRL-based regimens had increased TMA (p < 0.00001) and VOD (p < 0.00001). CONCLUSIONS: This meta-analysis indicates that addition of sirolimus is an effective alternative prophylaxis strategy for II-IV aGVHD but may cause endothelial cell injury and result in secondary TMA or VOD events.
RESUMEN
The mTOR pathway plays a central role in many cellular processes, such as cellular growth, protein synthesis, glucose, and lipid metabolism. Aberrant regulation of mTOR is a hallmark of many cancers, including hematological malignancies. mTOR inhibitors, such as Rapamycin and Rapamycin analogs (Rapalogs), have become a promising class of agents to treat malignant blood diseases-either alone or in combination with other treatment regimens. This review highlights experimental evidence underlying the molecular mechanisms of mTOR inhibitors and summarizes their evolving role in the treatment of hematologic disease, including leukemia, lymphoma, myeloma, immune hemocytopenia, and graft-versus-host disease (GVHD). Based on data presented in this review, we believe that mTOR inhibitors are becoming a trusted therapeutic in the clinical hematologist's toolbelt and should be considered more routinely in combination therapy for the management of hematologic disease.
RESUMEN
Immune thrombocytopenia (ITP) is an autoimmune disease which arises due to self-destruction of circulating platelets. Failure to respond or maintain a response to first-line treatment can lead to refractory/relapsed (R/R) ITP. The mechanism remains complicated and lacks a standard clinical treatment. Sirolimus (SRL) is a mammalian target of rapamycin (mTOR) inhibitor that has been demonstrated to inhibit lymphocyte activity, indicating potential for SRL in treatment of ITP. Activation of the mTOR pathway in autoimmune diseases suggests that SRL might be a useful agent for treating ITP. Accordingly, we initiated an open-label, prospective clinical trial using SRL for patients with R/R ITP (ChiCTR-ONC-17012126). The trial enrolled 86 patients, each dosed with 2-4 mg/day of SRL. By the third month, 40% of patients (34 of 86) achieved complete remission (CR) and 45% of patients (39 of 86) achieved partial remission (PR), whereby establishing an overall response rate (ORR) of 85%. By 6 months of treatment, 41% of patients (32 of 78) achieved CR and 29% of patients (23 of 78) achieved PR, establishing an ORR of 70% without serious side effects. After 12 months follow-up, the ORR remained at 65%. We also found that SRL treatment exhibited higher efficacy in achieving CR in ITP patients who were younger than 40 years old or steroid dependent by univariate analysis. Importantly, in patients who responded, SRL treatment was associated with a reduction in the percentage of Th2, Th17 cells, and increase in the percentage of M-MDSCs and Tregs, indicating that SRL may reestablish peripheral tolerance. Taken together, Sirolimus demonstrated efficacy as a second-line agent for R/R ITP.
RESUMEN
PURPOSE: Relapse is a major cause of treatment failure after allogeneic hematopoietic stem-cell transplantation (allo-HSCT) for high-risk acute myeloid leukemia (HR-AML). The aim of this study was to explore the effect of recombinant human granulocyte colony-stimulating factor (rhG-CSF) combined with minimal-dose decitabine (Dec) on the prevention of HR-AML relapse after allo-HSCT. PATIENTS AND METHODS: We conducted a phase II, open-label, multicenter, randomized controlled trial. Two hundred four patients with HR-AML who had received allo-HSCT 60-100 days before randomization and who were minimal residual disease negative were randomly assigned 1:1 to either rhG-CSF combined with minimal-dose Dec (G-Dec group: 100 µg/m2 of rhG-CSF on days 0-5 and 5 mg/m2 of Dec on days 1-5) or no intervention (non-G-Dec group). The primary outcome was relapse after transplantation, and the secondary outcomes were chronic graft-versus-host disease (cGVHD), safety of the treatment, and survival. RESULTS: The estimated 2-year cumulative incidence of relapse in the G-Dec group was 15.0% (95% CI, 8.0% to 22.1%), compared with 38.3% (95% CI, 28.8% to 47.9%) in the non-G-Dec group (P < .01), with a hazard ratio (HR) of 0.32 (95% CI, 0.18 to 0.57; P < .01). There was no statistically significant difference between the G-Dec and non-G-Dec groups in the 2-year cumulative incidence of cGVHD without relapse (23.0% [95% CI, 14.7% to 31.3%] and 21.7% [95% CI, 13.6% to 29.7%], respectively; P = .82), with an HR of 1.07 (95% CI, 0.60 to 1.92; P = .81). After rhG-CSF combined with minimal-dose Dec maintenance, increasing numbers of natural killer, CD8+ T, and regulatory T cells were observed. CONCLUSION: Our findings suggest that rhG-CSF combined with minimal-dose Dec maintenance after allo-HSCT can reduce the incidence of relapse, accompanied by changes in the number of lymphocyte subtypes.