Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Transfusion ; 62(5): 1045-1064, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35285520

RESUMEN

BACKGROUND: Diseases caused by arthropod-borne viruses remain a burden to global health; in particular, Zika virus (ZIKV) has been reported in 87 countries and territories. In healthy blood donors, ZIKV RNA can be detected in red blood cells (RBCs) months after infection, clearance of detectable nucleic acid in plasma, and seroconversion. However, little information is available on the impact of ZIKV infection to metabolism. STUDY DESIGN AND METHODS: We applied mass spectrometry-based metabolomics and lipidomics approaches to investigate the impact of ZIKV infection on RBCs over the course of infection. ZIKV-infected blood donors (n = 25) were identified through molecular and serologic methods, which included nucleic acid amplification testing and real-time polymerase chain reaction (PCR) for detection of ZIKV RNA and enzyme-linked immunosorbent assay (ELISA) for detection of flavivirus-specific IgM and IgG. RESULTS: In ZIKV RNA-positive donors, we observed lower glucose and lactate levels, and higher levels of ribose phosphate, suggestive of the activation of the pentose phosphate pathway. The top pathways altered in RBCs from ZIKV-IgM-positive donors include amino acid metabolism and biosynthesis, fatty acid metabolism and biosynthesis, linoleic acid and arachidonate metabolism and glutathione metabolism. RBCs from ZIKV-infected donors had increased levels of early glycolytic metabolites, and higher levels of metabolites of the pentose phosphate pathway. Alterations in acyl-carnitine and fatty acid metabolism are consistent with impaired membrane lipid homeostasis in RBCs from ZIKV IgM positive donors. CONCLUSION: RBC from healthy blood donors who had been infected by ZIKV are characterized by long-lasting metabolic alterations even months after infection has resolved.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Anticuerpos Antivirales , Donantes de Sangre , Ensayo de Inmunoadsorción Enzimática , Eritrocitos , Ácidos Grasos , Humanos , Inmunoglobulina M , ARN Viral , Virus Zika/genética , Infección por el Virus Zika/diagnóstico
2.
Nucleic Acids Res ; 47(3): 1404-1415, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30541105

RESUMEN

ASCE ATPases include ring-translocases such as cellular helicases and viral DNA packaging motors (terminases). These motors have conserved Walker A and B motifs that bind Mg2+-ATP and a catalytic carboxylate that activates water for hydrolysis. Here we demonstrate that Glu179 serves as the catalytic carboxylate in bacteriophage λ terminase and probe its mechanistic role. All changes of Glu179 are lethal: non-conservative changes abrogate ATP hydrolysis and DNA translocation, while the conservative E179D change attenuates ATP hydrolysis and alters single molecule translocation dynamics, consistent with a slowed chemical hydrolysis step. Molecular dynamics simulations of several homologous terminases suggest a novel mechanism, supported by experiments, wherein the conserved Walker A arginine 'toggles' between interacting with a glutamate residue in the 'lid' subdomain and the catalytic glutamate upon ATP binding; this switch helps mediate a transition from an 'open' state to a 'closed' state that tightly binds nucleotide and DNA, and also positions the catalytic glutamate next to the γ-phosphate to align the hydrolysis transition state. Concomitant reorientation of the lid subdomain may mediate mechanochemical coupling of ATP hydrolysis and DNA translocation. Given the strong conservation of these structural elements in terminase enzymes, this mechanism may be universal for viral packaging motors.


Asunto(s)
Empaquetamiento del ADN/genética , ADN Viral/genética , Genoma Viral/genética , Ensamble de Virus/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Arginina/genética , Arginina/metabolismo , Bacteriófago lambda/enzimología , Catálisis , Endodesoxirribonucleasas/genética , Ácido Glutámico/genética , Hidrólisis , Fosfatos/metabolismo
3.
Metabolomics ; 14(7): 100, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30830393

RESUMEN

INTRODUCTION: Mass spectrometry and computational biology have advanced significantly in the past ten years, bringing the field of metabolomics a step closer to personalized medicine applications. Despite these analytical advancements, collection of blood samples for routine clinical analysis is still performed through traditional blood draws. OBJECTIVE: TAP capillary blood collection has been recently introduced for the rapid, painless draw of small volumes of blood (~ 100 µL), though little is known about the comparability of metabolic phenotypes of blood drawn via traditional venipuncture and TAP devices. METHODS: UHPLC-MS-targeted metabolomics analyses were performed on blood drawn traditionally or through TAP devices from 5 healthy volunteers. Absolute quantitation of 45 clinically-relevant metabolites was calculated against stable heavy isotope-labeled internal standards. RESULTS: Ranges for 39 out of 45 quantified metabolites overlapped between drawing methods. Pyruvate and succinate were over threefold higher in the TAP samples than in traditional blood draws. No significant changes were observed for other carboxylates, glucose or lactate. TAP samples were characterized by increases in reduced glutathione and decreases in urate and cystine, markers of oxidation of purines and cysteine-overall suggesting decreased oxidation during draws. The absolute levels of bile acids and acyl-carnitines, as well as almost all amino acids, perfectly correlated among groups (Spearman r ≥ 0.95). CONCLUSION: Though further more extensive studies will be mandatory, this pilot suggests that TAP-derived blood may be a logistically-friendly source of blood for large scale metabolomics studies-especially those addressing amino acids, glycemia and lactatemia as well as bile acids, acyl-carnitine levels.


Asunto(s)
Recolección de Muestras de Sangre , Metabolómica , Adulto , Cromatografía Líquida de Alta Presión , Femenino , Voluntarios Sanos , Humanos , Masculino , Espectrometría de Masas , Adulto Joven
4.
ACS Chem Biol ; 17(7): 1853-1865, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35796308

RESUMEN

Biological therapeutics represent an increasing and critical component of newly approved drugs; however, the inability to deliver biologics intracellularly in a controlled manner remains a major limitation. We have developed a semi-synthetic, tunable phage-like particle (PLP) platform derived from bacteriophage λ. The shell surface can be decorated with small-molecule, biological and synthetic moieties, alone or in combination and in defined ratios. Here, we demonstrate that the platform can be used to deliver biological macromolecules intracellularly and in a controlled manner. Ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that has been widely recognized as an ideal target for the treatment of a variety of cancers. Recently, UbV.7.2, a novel biologic derived from the ubiquitin scaffold, was developed for inhibition of USP7, but issues remain in achieving efficient and controlled intracellular delivery of the biologic. We have shown that decoration of PLPs with trastuzumab (Trz), a HER2-targeted therapeutic used in the treatment of various cancers, results in specific targeting and uptake of Trz-PLPs into HER2-overexpressing breast cancer cells. By simultaneously decorating PLPs with Trz and UbV.7.2, we now show that these particles are also internalized by HER2-positive cells, thus providing a means for intracellular delivery of the biologic in a controlled fashion. Internalized particles retain USP7 inhibition activity of UbV.7.2 and alter the metabolic and proteomic landscapes of these cells. This study demonstrates that the λ "designer nanoparticles" represent a powerful system for the intracellular delivery of biologics in a defined dose.


Asunto(s)
Productos Biológicos , Neoplasias de la Mama , Nanopartículas , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Humanos , Proteómica , Trastuzumab , Peptidasa Específica de Ubiquitina 7
5.
NPJ Vaccines ; 7(1): 57, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35618725

RESUMEN

The response by vaccine developers to the COVID-19 pandemic has been extraordinary with effective vaccines authorized for emergency use in the United States within 1 year of the appearance of the first COVID-19 cases. However, the emergence of SARS-CoV-2 variants and obstacles with the global rollout of new vaccines highlight the need for platforms that are amenable to rapid tuning and stable formulation to facilitate the logistics of vaccine delivery worldwide. We developed a "designer nanoparticle" platform using phage-like particles (PLPs) derived from bacteriophage lambda for a multivalent display of antigens in rigorously defined ratios. Here, we engineered PLPs that display the receptor-binding domain (RBD) protein from SARS-CoV-2 and MERS-CoV, alone (RBDSARS-PLPs and RBDMERS-PLPs) and in combination (hCoV-RBD PLPs). Functionalized particles possess physiochemical properties compatible with pharmaceutical standards and retain antigenicity. Following primary immunization, BALB/c mice immunized with RBDSARS- or RBDMERS-PLPs display serum RBD-specific IgG endpoint and live virus neutralization titers that, in the case of SARS-CoV-2, were comparable to those detected in convalescent plasma from infected patients. Further, these antibody levels remain elevated up to 6 months post-prime. In dose-response studies, immunization with as little as one microgram of RBDSARS-PLPs elicited robust neutralizing antibody responses. Finally, animals immunized with RBDSARS-PLPs, RBDMERS-PLPs, and hCoV-RBD PLPs were protected against SARS-CoV-2 and/or MERS-CoV lung infection and disease. Collectively, these data suggest that the designer PLP system provides a platform for facile and rapid generation of single and multi-target vaccines.

6.
ACS Nano ; 15(7): 11789-11805, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34189924

RESUMEN

| Several diseases exhibit a high degree of heterogeneity and diverse reprogramming of cellular pathways. To address this complexity, additional strategies and technologies must be developed to define their scope and variability with the goal of improving current treatments. Nanomedicines derived from viruses are modular systems that can be easily adapted for combinatorial approaches, including imaging, biomarker targeting, and intracellular delivery of therapeutics. Here, we describe a "designer nanoparticle" system that can be rapidly engineered in a tunable and defined manner. Phage-like particles (PLPs) derived from bacteriophage lambda possess physiochemical properties compatible with pharmaceutical standards, and in vitro particle tracking and cell targeting are accomplished by simultaneous display of fluorescein-5-maleimide (F5M) and trastuzumab (Trz), respectively (Trz-PLPs). Trz-PLPs bind to the oncogenically active human epidermal growth factor receptor 2 (HER2) and are internalized by breast cancer cells of the HER2 overexpression subtype, but not by those lacking the HER2 amplification. Compared to treatment with Trz, robust internalization of Trz-PLPs results in higher intracellular concentrations of Trz, prolonged inhibition of cell growth, and modulated regulation of cellular programs associated with HER2 signaling, proliferation, metabolism, and protein synthesis. Given the implications to cancer pathogenesis and that dysregulated signaling and metabolism can lead to drug resistance and cancer cell survival, the present study identifies metabolic and proteomic liabilities that could be exploited by the PLP platform to enhance therapeutic efficacy. The lambda PLP system is robust and rapidly modifiable, which offers a platform that can be easily "tuned" for broad utility and tailored functionality.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Trastuzumab/farmacología , Bacteriófago lambda , Proteómica , Neoplasias de la Mama/tratamiento farmacológico , Receptor ErbB-2/metabolismo , Nanopartículas/química , Línea Celular Tumoral
7.
Front Physiol ; 11: 396, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32425810

RESUMEN

Reticuloendothelial macrophages engulf ∼0.2 trillion senescent erythrocytes daily in a process called erythrophagocytosis (EP). This critical mechanism preserves systemic heme-iron homeostasis by regulating red blood cell (RBC) catabolism and iron recycling. Although extensive work has demonstrated the various effects on macrophage metabolic reprogramming by stimulation with proinflammatory cytokines, little is known about the impact of EP on the macrophage metabolome and proteome. Thus, we performed mass spectrometry-based metabolomics and proteomics analyses of mouse bone marrow-derived macrophages (BMDMs) before and after EP of IgG-coated RBCs. Further, metabolomics was performed on BMDMs incubated with free IgG to ensure that changes to macrophage metabolism were due to opsonized RBCs and not to free IgG binding. Uniformly labeled tracing experiments were conducted on BMDMs in the presence and absence of IgG-coated RBCs to assess the flux of glucose through the pentose phosphate pathway (PPP). In this study, we demonstrate that EP significantly alters amino acid and fatty acid metabolism, the Krebs cycle, OXPHOS, and arachidonate-linoleate metabolism. Increases in levels of amino acids, lipids and oxylipins, heme products, and RBC-derived proteins are noted in BMDMs following EP. Tracing experiments with U-13C6 glucose indicated a slower flux through glycolysis and enhanced PPP activation. Notably, we show that it is fueled by glucose derived from the macrophages themselves or from the extracellular media prior to EP, but not from opsonized RBCs. The PPP-derived NADPH can then fuel the oxidative burst, leading to the generation of reactive oxygen species necessary to promote digestion of phagocytosed RBC proteins via radical attack. Results were confirmed by redox proteomics experiments, demonstrating the oxidation of Cys152 and Cys94 of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and hemoglobin-ß, respectively. Significant increases in early Krebs cycle and C5-branched dibasic acid metabolites (α-ketoglutarate and 2-hydroxyglutarate, respectively) indicate that EP promotes the dysregulation of mitochondrial metabolism. Lastly, EP stimulated aminolevulinic acid (ALA) synthase and arginase activity as indicated by significant accumulations of ALA and ornithine after IgG-mediated RBC ingestion. Importantly, EP-mediated metabolic reprogramming of BMDMs does not occur following exposure to IgG alone. In conclusion, we show that EP reprograms macrophage metabolism and modifies macrophage polarization.

8.
J Mol Biol ; 431(22): 4455-4474, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31473160

RESUMEN

Many viruses employ ATP-powered motors for genome packaging. We combined genetic, biochemical, and single-molecule techniques to confirm the predicted Walker-B ATP-binding motif in the phage λ motor and to investigate the roles of the conserved residues. Most changes of the conserved hydrophobic residues resulted in >107-fold decrease in phage yield, but we identified nine mutants with partial activity. Several were cold-sensitive, suggesting that mobility of the residues is important. Single-molecule measurements showed that the partially active A175L exhibits a small reduction in motor velocity and increase in slipping, consistent with a slowed ATP binding transition, whereas G176S exhibits decreased slipping, consistent with an accelerated transition. All changes to the conserved D178, predicted to coordinate Mg2+•ATP, were lethal except conservative change D178E. Biochemical interrogation of the inactive D178N protein found no folding or assembly defects and near-normal endonuclease activity, but a ∼200-fold reduction in steady-state ATPase activity, a lag in the single-turnover ATPase time course, and no DNA packaging, consistent with a critical role in ATP-coupled DNA translocation. Molecular dynamics simulations of related enzymes suggest that the aspartate plays an important role in enhancing the catalytic activity of the motor by bridging the Walker motifs and precisely contributing its charged group to help polarize the bound nucleotide. Supporting this prediction, single-molecule measurements revealed that change D178E reduces motor velocity without increasing slipping, consistent with a slowed hydrolysis step. Our studies thus illuminate the mechanistic roles of Walker-B residues in ATP binding, hydrolysis, and DNA translocation by this powerful motor.


Asunto(s)
Dominio AAA/genética , Bacteriófago lambda/enzimología , ADN Viral/química , ADN Viral/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , ADN Viral/genética , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Simulación de Dinámica Molecular , Mutación , Nucleoproteínas/química , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Estructura Cuaternaria de Proteína , Proteínas Virales/genética , Ensamble de Virus/genética , Ensamble de Virus/fisiología
9.
Sci Rep ; 4: 6210, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25182730

RESUMEN

Central nervous system-specific proteins (CSPs), transported across the damaged blood-brain-barrier (BBB) to cerebrospinal fluid (CSF) and blood (serum), might be promising diagnostic, prognostic and predictive protein biomarkers of disease in individual multiple sclerosis (MS) patients because they are not expected to be present at appreciable levels in the circulation of healthy subjects. We hypothesized that microwave &magnetic (M(2)) proteomics of CSPs in brain tissue might be an effective means to prioritize putative CSP biomarkers for future immunoassays in serum. To test this hypothesis, we used M(2) proteomics to longitudinally assess CSP expression in brain tissue from mice during experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Confirmation of central nervous system (CNS)-infiltrating inflammatory cell response and CSP expression in serum was achieved with cytokine ELISPOT and ELISA immunoassays, respectively, for selected CSPs. M(2) proteomics (and ELISA) revealed characteristic CSP expression waves, including synapsin-1 and α-II-spectrin, which peaked at day 7 in brain tissue (and serum) and preceded clinical EAE symptoms that began at day 10 and peaked at day 20. Moreover, M(2) proteomics supports the concept that relatively few CNS-infiltrating inflammatory cells can have a disproportionally large impact on CSP expression prior to clinical manifestation of EAE.


Asunto(s)
Sistema Nervioso Central/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Proteoma/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Fenómenos Magnéticos , Ratones , Ratones Endogámicos C57BL , Microondas , Esclerosis Múltiple/metabolismo , Proteómica/métodos , Espectrina/metabolismo , Sinapsinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA