Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immun Ageing ; 21(1): 19, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38468336

RESUMEN

BACKGROUND: Increased levels of pro-inflammatory proteins in plasma can be detected in older individuals and associate with the so called chronic low-grade inflammation, which contributes to a faster progression of aged-related cardiovascular (CV) diseases, including frailty, neurodegeneration, gastro-intestinal diseases and disorders reflected by alterations in the composition of gut microbiota. However, successful genetic programme of long-living individuals alters the trajectory of the ageing process, by promoting an efficient immune response that can counterbalance deleterious effects of inflammation and the CV complications. This is the case of BPIFB4 gene in which, homozygosity for a four single-nucleotide polymorphism (SNP) haplotype, the Longevity-Associated Variant (LAV) correlates with prolonged health span and reduced risk of CV complications and inflammation. The relation between LAV-BPIFB4 and inflammation has been proven in different experimental models, here we hypothesized that also human homozygous carriers of LAV-BPIFB4 gene may experience a lower inflammatory burden as detected by plasma proteomics that could explain their favourable CV risk trajectory over time. Moreover, we explored the therapeutic effects of LAV-BPIFB4 in inflammatory disease and monolayer model of intestinal barrier. RESULTS: We used high-throughput proteomic approach to explore the profiles of circulating proteins from 591 baseline participants selected from the PLIC cohort according to the BPIFB4 genotype to identify the signatures and differences of BPIFB4 genotypes useful for health and disease management. The observational analysis identified a panel of differentially expressed circulating proteins between the homozygous LAV-BPIFB4 carriers and the other alternative BPIFB4 genotypes highlighting in the latter ones a higher grade of immune-inflammatory markers. Moreover, in vitro studies performed on intestinal epithelial organs from inflammatory bowel disease (IBD) patients and monolayer model of intestinal barrier demonstrated the benefit of LAV-BPIFB4 treatment. CONCLUSIONS: Homozygosity for LAV-BPIFB4 results in the attenuation of inflammation in PLIC cohort and IBD patients providing preliminary evidences for its therapeutic use in inflammatory disorders that need to be further characterized and confirmed by independent studies.

2.
Int J Cancer ; 152(4): 661-671, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36056571

RESUMEN

Previous studies on the immunogenicity of SARS-CoV-2 mRNA vaccines showed a reduced seroconversion in cancer patients. The aim of our study is to evaluate the immunogenicity of two doses of mRNA vaccines in solid cancer patients with or without a previous exposure to the virus. This is a single-institution, prospective, nonrandomized study. Patients in active treatment and a control cohort of healthy people received two doses of BNT162b2 (Comirnaty, BioNTech/Pfizer, The United States) or mRNA-1273 (Spikevax, Moderna). Vaccine was administered before starting anticancer therapy or on the first day of the treatment cycle. SARS-CoV-2 antibody levels against S1, RBD (to evaluate vaccine response) and N proteins (to evaluate previous infection) were measured in plasma before the first dose and 30 days after the second one. From January to June 2021, 195 consecutive cancer patients and 20 healthy controls were enrolled. Thirty-one cancer patients had a previous exposure to SARS-CoV-2. Cancer patients previously exposed to the virus had significantly higher median levels of anti-S1 and anti-RBD IgG, compared to healthy controls (P = .0349) and to cancer patients without a previous infection (P < .001). Vaccine type (anti-S1: P < .0001; anti-RBD: P = .0045), comorbidities (anti-S1: P = .0274; anti-RBD: P = .0048) and the use of G-CSF (anti-S1: P = .0151) negatively affected the antibody response. Conversely, previous exposure to SARS-CoV-2 significantly enhanced the response to vaccination (anti-S1: P < .0001; anti-RBD: P = .0026). Vaccine immunogenicity in cancer patients with a previous exposure to SARS-CoV-2 seems comparable to that of healthy subjects. On the other hand, clinical variables of immune frailty negatively affect humoral immune response to vaccination.


Asunto(s)
COVID-19 , Neoplasias , Humanos , Vacuna BNT162 , Vacuna nCoV-2019 mRNA-1273 , COVID-19/prevención & control , Estudios Prospectivos , SARS-CoV-2 , Vacunas de ARNm , Anticuerpos Antivirales , Vacunación , Neoplasias/terapia
3.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047437

RESUMEN

The homozygous genotype of the Longevity-Associated Variant (LAV) in Bactericidal/Permeability-Increasing Fold-Containing Family B member 4 (BPIFB4) is enriched in long-living individuals of three independent populations and its genetic transfer in C57BL/6J mice showed a delay in frailty progression and improvement of several biomarkers of aging and multiple aspects of health. The C57BL/6J strain is a suitable model for studying therapies aimed at extending healthy aging and longevity due to its relatively short lifespan and the availability of aging biomarkers. Epigenetic clocks based on DNA methylation profiles are reliable molecular biomarkers of aging, while frailty measurement tools are used to evaluate overall health during aging. In this study, we show that the systemic gene transfer of LAV-BPIFB4 in aged C57BL/6J mice was associated with a significant reduction in the epigenetic clock-based biological age, as measured by a three CpG clock method. Furthermore, LAV-BPIFB4 gene transfer resulted in an improvement of the Vitality Score with a reduction in the Frailty Index. These findings further support the use of LAV-BPIFB4 gene therapy to induce beneficial effects on epigenetic mechanisms associated with aging and frailty in aged mice, with potential implications for future therapies to prevent frailty in humans.


Asunto(s)
Fragilidad , Longevidad , Humanos , Ratones , Animales , Anciano , Longevidad/genética , Fragilidad/genética , Ratones Endogámicos C57BL , Epigénesis Genética , Biomarcadores , Terapia Genética , Metilación de ADN , Péptidos y Proteínas de Señalización Intercelular/genética
4.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36499641

RESUMEN

Huntington's disease (HD) is caused by the production of mutant Huntingtin (mHTT), characterized by long polyglutamine repeats with toxic effects. There are currently no clinically validated therapeutic agents that slow or halt HD progression, resulting in a significant clinical unmet need. The striatum-derived STHdh cell line, generated from mHTT knock-in mouse embryos (STHdhQ111/Q111), represents a useful model to study mechanisms behind pathogenesis of HD and to investigate potential new therapeutic targets. Indeed, these cells show susceptibility to nucleolar stress, activated DNA damage response and apoptotic signals, and elevated levels of H3K9me3 that all together concur in the progressive HD pathogenesis. We have previously shown that the adeno-associated viral vector-mediated delivery of the longevity-associated variant (LAV) of BPIFB4 prevents HD progression in a mouse model of HD. Here, we show that LAV-BPIFB4 stably infected in STHdhQ111/Q111 cells reduces (i) nucleolar stress and DNA damage through the improvement of DNA repair machinery, (ii) apoptosis, through the inhibition of the caspase 3 death signaling, and (iii) the levels of H3K9me3, by accelerating the histone clearance, via the ubiquitin-proteasome pathway. These findings pave the way to propose LAV-BPIFB4 as a promising target for innovative therapeutic strategies in HD.


Asunto(s)
Enfermedad de Huntington , Animales , Ratones , Apoptosis/genética , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Neostriado/metabolismo , Neuroprotección/genética , Variación Genética
5.
Cancer ; 127(7): 1091-1101, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33270908

RESUMEN

BACKGROUND: Patients with cancer are considered at high risk for the novel respiratory illness coronavirus disease 2019 (COVID-19). General measures to keep COVID-19-free cancer divisions have been adopted worldwide. The objective of this study was to evaluate the efficacy of triage to identify COVID-19 among patients with cancer. METHODS: From March 20 to April 17, 2020, data were collected from patients who were treated or followed at the authors' institution in a prospective clinical trial. The primary endpoint was to estimate the cumulative incidence of COVID-19-positive patients who were identified using a triage process through the aid of medical and patient questionnaires. Based on a diagnostic algorithm, patients with suspect symptoms underwent an infectious disease specialist's evaluation and a COVID-19 swab. Serologic tests were proposed for patients who had symptoms or altered laboratory tests that did not fall into the diagnostic algorithm but were suspicious for COVID-19. RESULTS: Overall, 562 patients were enrolled. Six patients (1%) were diagnosed with COVID-19, of whom 4 (67%) had the disease detected through telehealth triage, and 2 patients (33%) without suspect symptoms at triage had the disease detected later. Seventy-one patients (13%) had suspect symptoms and/or altered laboratory tests that were not included in the diagnostic algorithm and, of these, 47 patients (73%) underwent testing for severe acute respiratory syndrome coronavirus 2 antibody: 6 (13%) were positive for IgG (n = 5) or for both IgM and IgG (n = 1), and antibody tests were negative in the remaining 41 patients. CONCLUSIONS: The triage process had a positive effect on the detection of COVID-19 in patients with cancer. Telehealth triage was helpful in detecting suspect patients and to keep a COVID-19-free cancer center. The overall incidence of COVID-19 diagnosis (1%) and antibody positivity (13%) in patients with suspect symptoms was similar to that observed in the general population.


Asunto(s)
Prueba de COVID-19/estadística & datos numéricos , COVID-19/diagnóstico , Neoplasias/terapia , Triaje/estadística & datos numéricos , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/complicaciones , COVID-19/virología , Prueba de COVID-19/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/complicaciones , Neoplasias/diagnóstico , Estudios Prospectivos , Reproducibilidad de los Resultados , SARS-CoV-2/fisiología , Sensibilidad y Especificidad , Triaje/métodos
6.
Eur Heart J ; 41(26): 2487-2497, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-31289820

RESUMEN

AIMS: Here, we aimed to determine the therapeutic effect of longevity-associated variant (LAV)-BPIFB4 gene therapy on atherosclerosis. METHODS AND RESULTS: ApoE knockout mice (ApoE-/-) fed a high-fat diet were randomly allocated to receive LAV-BPIFB4, wild-type (WT)-BPIFB4, or empty vector via adeno-associated viral vector injection. The primary endpoints of the study were to assess (i) vascular reactivity and (ii) atherosclerotic disease severity, by Echo-Doppler imaging, histology and ultrastructural analysis. Moreover, we assessed the capacity of the LAV-BPIFB4 protein to shift monocyte-derived macrophages of atherosclerotic mice and patients towards an anti-inflammatory phenotype. LAV-BPIFB4 gene therapy rescued endothelial function of mesenteric and femoral arteries from ApoE-/- mice; this effect was blunted by AMD3100, a CXC chemokine receptor type 4 (CXCR4) inhibitor. LAV-BPIFB4-treated mice showed a CXCR4-mediated shift in the balance between Ly6Chigh/Ly6Clow monocytes and M2/M1 macrophages, along with decreased T cell proliferation and elevated circulating levels of interleukins IL-23 and IL-27. In vitro conditioning with LAV-BPIFB4 protein of macrophages from atherosclerotic patients resulted in a CXCR4-dependent M2 polarization phenotype. Furthermore, LAV-BPIFB4 treatment of arteries explanted from atherosclerotic patients increased the release of atheroprotective IL-33, while inhibiting the release of pro-inflammatory IL-1ß, inducing endothelial nitric oxide synthase phosphorylation and restoring endothelial function. Finally, significantly lower plasma BPIFB4 was detected in patients with pathological carotid stenosis (>25%) and intima media thickness >2 mm. CONCLUSION: Transfer of the LAV of BPIFB4 reduces the atherogenic process and skews macrophages towards an M2-resolving phenotype through modulation of CXCR4, thus opening up novel therapeutic possibilities in cardiovascular disease.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Anciano , Animales , Apolipoproteínas E , Aterosclerosis/genética , Grosor Intima-Media Carotídeo , Femenino , Humanos , Inflamación , Péptidos y Proteínas de Señalización Intercelular , Longevidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Noqueados para ApoE , Persona de Mediana Edad , Fosfoproteínas , Receptores CXCR4
7.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807855

RESUMEN

Growing research has focused on obesity as a prognostic factor during therapy with immune-checkpoint inhibitors (ICIs). The role of body-mass index (BMI) in predicting response and toxicity to ICIs is not clear, as studies have shown inconsistent results and significant interpretation biases. We performed a systematic review to evaluate the relationship between BMI and survival outcomes during ICIs, with a side focus on the incidence of immune-related adverse events (irAEs). A total of 17 studies were included in this systematic review. Altogether, the current evidence does not support a clearly positive association of BMI with survival outcomes. Regarding toxicities, available studies confirm a superimposable rate of irAEs among obese and normal weight patients. Intrinsic limitations of the analyzed studies include the retrospective nature, the heterogeneity of patients' cohorts, and differences in BMI categorization for obese patients across different studies. These factors might explain the heterogeneity of available results, and the subsequent absence of a well-established role of baseline BMI on the efficacy of ICIs among cancer patients. Further prospective studies are needed, in order to clarify the role of obesity in cancer patients treated with immunotherapy.


Asunto(s)
Índice de Masa Corporal , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia , Neoplasias/mortalidad , Neoplasias/terapia , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Tasa de Supervivencia
8.
Br J Cancer ; 121(9): 768-775, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31558803

RESUMEN

BACKGROUND: Current approaches aimed at inducing immunogenic cell death (ICD) to incite an immune response against cancer neoantigens are based on the use of chemotherapeutics and other agents. Results are hampered by issues of efficacy, combinatorial approaches, dosing and toxicity. Here, we adopted a strategy based on the use of an immunomolecule that overcomes pharmachemical limitations. METHODS: Cytofluorometry, electron microscopy, RT-PCR, western blotting, apotome immunofluorescence, MLR and xenografts. RESULTS: We report that an ICD process can be activated without the use of pharmacological compounds. We show that in Kras-mut/TP53-mut colorectal cancer cells the 15 kDa ßGBP cytokine, a T cell effector with onco-suppressor properties and a potential role in cancer immunosurveillance, induces key canonical events required for ICD induction. We document ER stress, autophagy that extends from cancer cells to the corresponding xenograft tumours, CRT cell surface shifting, ATP release and evidence of dendritic cell activation, a process required for priming cytotoxic T cells into a specific anticancer immunogenic response. CONCLUSIONS: Our findings provide experimental evidence for a rationale to explore a strategy based on the use of an immunomolecule that as a single agent couples oncosuppression with the activation of procedures necessary for the induction of long term response to cancer.


Asunto(s)
Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Proteínas Proto-Oncogénicas p21(ras)/inmunología , Adenosina Trifosfato/inmunología , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Muerte Celular Autofágica/efectos de los fármacos , Muerte Celular Autofágica/inmunología , Calreticulina/inmunología , Calreticulina/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Muerte Celular/inmunología , Línea Celular Tumoral , Células Dendríticas/inmunología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/inmunología , Femenino , Galectinas/farmacología , Xenoinjertos , Humanos , Vigilancia Inmunológica , Ratones , Ratones Desnudos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos
9.
Int J Mol Sci ; 19(10)2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30347645

RESUMEN

Evolutionary forces select genetic variants that allow adaptation to environmental stresses. The genomes of centenarian populations could recapitulate the evolutionary adaptation model and reveal the secrets of disease resistance shown by these individuals. Indeed, longevity phenotype is supposed to have a genetic background able to survive or escape to age-related diseases. Among these, cardiovascular diseases (CVDs) are the most lethal and their major risk factor is aging and the associated frailty status. One example of genetic evolution revealed by the study of centenarians genome is the four missense Single Nucleotide Polymorphisms (SNPs) haplotype in bactericidal/permeability-increasing fold-containing family B, member 4 (BPIFB4) locus that is enriched in long living individuals: the longevity associated variant (LAV). Indeed, LAV-BPIFB4 is able to improve endothelial function and revascularization through the increase of endothelial nitric oxide synthase (eNOS) dependent nitric oxide production. This review recapitulates the beneficial effects of LAV-BPIFB4 and its therapeutic potential for the treatment of CVDs.


Asunto(s)
Enfermedades Cardiovasculares/genética , Longevidad/genética , Fosfoproteínas/genética , Polimorfismo de Nucleótido Simple , Selección Genética , Evolución Molecular , Humanos , Péptidos y Proteínas de Señalización Intercelular
10.
BMC Med Genet ; 18(1): 147, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29237418

RESUMEN

BACKGROUND: Mutations in the gene that encodes CDGSH iron sulfur domain 2 (CISD2) are causative of Wolfram syndrome type 2 (WFS2), a rare autosomal recessive neurodegenerative disorder mainly characterized by diabetes mellitus, optic atrophy, peptic ulcer bleeding and defective platelet aggregation. Four mutations in the CISD2 gene have been reported. Among these mutations, the homozygous c.103 + 1G > A substitution was identified in the donor splice site of intron 1 in two Italian sisters and was predicted to cause a exon 1 to be skipped. METHODS: Here, we employed molecular assays to characterize the c.103 + 1G > A mutation using the patient's peripheral blood mononuclear cells (PBMCs). 5'-RACE coupled with RT-PCR were used to analyse the effect of the c.103 + 1G > A mutation on mRNA splicing. Western blot analysis was used to analyse the consequences of the CISD2 mutation on the encoded protein. RESULTS: We demonstrated that the c.103 + 1G > A mutation functionally impaired mRNA splicing, producing multiple splice variants characterized by the whole or partial absence of exon 1, which introduced amino acid changes and a premature stop. The affected mRNAs resulted in either predicted targets for nonsense mRNA decay (NMD) or non-functional isoforms. CONCLUSIONS: We concluded that the c.103 + 1G > A mutation resulted in the loss of functional CISD2 protein in the two Italian WFS2 patients.


Asunto(s)
Envejecimiento Prematuro/genética , Pérdida Auditiva Sensorineural/genética , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Mutación , Atrofia Óptica/genética , Sitios de Empalme de ARN/genética , Secuencia de Bases , Células Sanguíneas , Codón sin Sentido , Exones/genética , Femenino , Humanos , Intrones/genética , Leucocitos Mononucleares , Proteínas de la Membrana/química , Isoformas de Proteínas/genética , Sitios de Empalme de ARN/fisiología , Empalme del ARN , ARN Mensajero/genética , Análisis de Secuencia , Eliminación de Secuencia
11.
Cardiovasc Diabetol ; 15: 71, 2016 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-27137793

RESUMEN

BACKGROUND: Intracellular antioxidant response to high glucose is mediated by Cu/Mn-superoxide dismutases (SOD-1/SOD-2), catalase (CAT) and glutathione peroxidases (GPx), particularly glutathione peroxidase-1 (GPx-1). Although oscillating glucose can induce a more deleterious effect than high glucose on endothelial cells, the mechanism by which oscillating glucose exerts its dangerous effects is incompletely understood; however, the involvement of oxidative damage has been generally accepted. In this study we sought to determine whether oscillating glucose differentially modulates antioxidant response, and to elucidate the potential regulatory mechanisms exerted by the microRNA-185 (miR-185). METHODS: Human endothelial cells were exposed for 1 week to constant and oscillating high glucose. SOD-1, SOD-2, CAT and GPx-1, as well as two markers of oxidative stress [8-hydroxy-2'-deoxyguanosine (8-OHdG) and the phosphorylated form of H2AX (γ-H2AX)] were measured at the end of the experiment. Intracellular miR-185 was measured and loss-of function assays were performed in HUVEC. Bioinformatic tool was used to predict the link between miR-185 on 3'UTR of GPx-1 gene. Luciferase assay was performed to confirm the binding on HUVEC. RESULTS: After exposure to constant high glucose SOD-1 and GPx-1 increased, while in oscillating glucose SOD-1 increased and GPx-1 did not. SOD-2 and CAT remained unchanged under both conditions. A critical involvement of oscillating glucose-induced miR-185 in the dysregulation of endogenous GPx-1 was found. Computational analyses predict GPx-1 as miR-185's target. HUVEC cultures were used to confirm glucose's causal role on the expression of miR-185, its target mRNA and protein and finally the activation of antioxidant response. In vitro luciferase assays confirmed computational predictions targeting of miR-185 on 3'-UTR of GPx-1 mRNA. Knockdown of miR-185, using anti-miR-185 inhibitor, was accompanied by a significant upregulation of GPx-1 in oscillating glucose. 8-OHdG and γ-H2AX increased more in oscillating glucose than in constant high glucose. CONCLUSIONS: Glucose oscillations may exert more deleterious effects on the endothelium than high glucose, likely due to an impaired response of GPx-1, coupled by the upregulation of miR-185.


Asunto(s)
Células Endoteliales/metabolismo , Glucosa/metabolismo , Glutatión Peroxidasa/metabolismo , MicroARNs/metabolismo , Antioxidantes/farmacología , Catalasa/metabolismo , Células Endoteliales/efectos de los fármacos , Humanos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Glutatión Peroxidasa GPX1
12.
J Biol Chem ; 289(5): 2826-38, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24311781

RESUMEN

Valproic acid (VPA), an histone deacetylase inhibitor, is emerging as a promising therapeutic agent for the treatments of gliomas by virtue of its ability to reactivate the expression of epigenetically silenced genes. VPA induces the unfolded protein response (UPR), an adaptive pathway displaying a dichotomic yin yang characteristic; it initially contributes in safeguarding the malignant cell survival, whereas long-lasting activation favors a proapoptotic response. By triggering UPR, VPA might tip the balance between cellular adaptation and programmed cell death via the deregulation of protein homeostasis and induction of proteotoxicity. Here we aimed to investigate the impact of proteostasis on glioma stem cells (GSC) using VPA treatment combined with subversion of SEL1L, a crucial protein involved in homeostatic pathways, cancer aggressiveness, and stem cell state maintenance. We investigated the global expression of GSC lines untreated and treated with VPA, SEL1L interference, and GSC line response to VPA treatment by analyzing cell viability via MTT assay, neurosphere formation, and endoplasmic reticulum stress/UPR-responsive proteins. Moreover, SEL1L immunohistochemistry was performed on primary glial tumors. The results show that (i) VPA affects GSC lines viability and anchorage-dependent growth by inducing differentiative programs and cell cycle progression, (ii) SEL1L down-modulation synergy enhances VPA cytotoxic effects by influencing GSCs proliferation and self-renewal properties, and (iii) SEL1L expression is indicative of glioma proliferation rate, malignancy, and endoplasmic reticulum stress statuses. Targeting the proteostasis network in association to VPA treatment may provide an alternative approach to deplete GSC and improve glioma treatments.


Asunto(s)
Neoplasias Encefálicas/patología , Resistencia a Antineoplásicos/genética , Glioma/patología , Proteínas/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Ácido Valproico/toxicidad , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Inhibidores Enzimáticos/toxicidad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Glioma/tratamiento farmacológico , Glioma/metabolismo , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteínas/genética , Respuesta de Proteína Desplegada/fisiología
13.
Transl Med UniSa ; 26(1): 15-29, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560614

RESUMEN

Gender medicine is a multidisciplinary science and represents an important perspective for pathophysiological and clinical studies in the third millennium. Here, it is provided an overview of the topics discussed in a recent course on the Role of Sex and Gender in Ageing and Longevity. The paper highlights three themes discussed in the course, i.e., the interaction of gender/sex with, i) the pathophysiology of age-related diseases; ii), the role of genetics and epigenetics in ageing and longevity and, iii) the immune responses of older people to pathogens, vaccines, autoantigens, and allergens. Although largely unexplored, it is clear that sex and gender are modulators of disease biology and treatment outcomes. It is becoming evident that men and women should no longer be considered as subgroups, but as biologically distinct groups of patients deserving consideration for specific therapeutic approaches.

14.
Cardiovasc Res ; 119(7): 1583-1595, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-36635236

RESUMEN

AIMS: The ageing heart naturally incurs a progressive decline in function and perfusion that available treatments cannot halt. However, some exceptional individuals maintain good health until the very late stage of their life due to favourable gene-environment interaction. We have previously shown that carriers of a longevity-associated variant (LAV) of the BPIFB4 gene enjoy prolonged health spans and lesser cardiovascular complications. Moreover, supplementation of LAV-BPIFB4 via an adeno-associated viral vector improves cardiovascular performance in limb ischaemia, atherosclerosis, and diabetes models. Here, we asked whether the LAV-BPIFB4 gene could address the unmet therapeutic need to delay the heart's spontaneous ageing. METHODS AND RESULTS: Immunohistological studies showed a remarkable reduction in vessel coverage by pericytes in failing hearts explanted from elderly patients. This defect was attenuated in patients carrying the homozygous LAV-BPIFB4 genotype. Moreover, pericytes isolated from older hearts showed low levels of BPIFB4, depressed pro-angiogenic activity, and loss of ribosome biogenesis. LAV-BPIFB4 supplementation restored pericyte function and pericyte-endothelial cell interactions through a mechanism involving the nucleolar protein nucleolin. Conversely, BPIFB4 silencing in normal pericytes mimed the heart failure pericytes. Finally, gene therapy with LAV-BPIFB4 prevented cardiac deterioration in middle-aged mice and rescued cardiac function and myocardial perfusion in older mice by improving microvasculature density and pericyte coverage. CONCLUSIONS: We report the success of the LAV-BPIFB4 gene/protein in improving homeostatic processes in the heart's ageing. These findings open to using LAV-BPIFB4 to reverse the decline of heart performance in older people.


Asunto(s)
Cardiomiopatías , Longevidad , Animales , Ratones , Envejecimiento/genética , Cardiomiopatías/genética , Cardiomiopatías/patología , Fenómenos Fisiológicos Cardiovasculares , Genotipo , Longevidad/genética , Pericitos/patología
15.
Cell Death Dis ; 14(8): 523, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582912

RESUMEN

Long-living individuals (LLIs) escape age-related cardiovascular complications until the very last stage of life. Previous studies have shown that a Longevity-Associated Variant (LAV) of the BPI Fold Containing Family B Member 4 (BPIFB4) gene correlates with an extraordinarily prolonged life span. Moreover, delivery of the LAV-BPIFB4 gene exerted therapeutic action in murine models of atherosclerosis, limb ischemia, diabetic cardiomyopathy, and aging. We hypothesize that downregulation of BPIFB4 expression marks the severity of coronary artery disease (CAD) in human subjects, and supplementation of the LAV-BPIFB4 protects the heart from ischemia. In an elderly cohort with acute myocardial infarction (MI), patients with three-vessel CAD were characterized by lower levels of the natural logarithm (Ln) of peripheral blood BPIFB4 (p = 0.0077). The inverse association between Ln BPIFB4 and three-vessel CAD was confirmed by logistic regression adjusting for confounders (Odds Ratio = 0.81, p = 0.0054). Moreover, in infarcted mice, a single administration of LAV-BPIFB4 rescued cardiac function and vascularization. In vitro studies showed that LAV-BPIFB4 protein supplementation exerted chronotropic and inotropic actions on induced pluripotent stem cell (iPSC)-derived cardiomyocytes. In addition, LAV-BPIFB4 inhibited the pro-fibrotic phenotype in human cardiac fibroblasts. These findings provide a strong rationale and proof of concept evidence for treating CAD with the longevity BPIFB4 gene/protein.


Asunto(s)
Enfermedad de la Arteria Coronaria , Péptidos y Proteínas de Señalización Intercelular , Longevidad , Anciano , Animales , Humanos , Ratones , Envejecimiento/genética , Haplotipos/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Isquemia , Longevidad/genética
16.
J Biol Chem ; 286(21): 18708-19, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21454627

RESUMEN

Murine SEL-1L (mSEL-1L) is a key component of the endoplasmic reticulum-associated degradation pathway. It is essential during development as revealed by the multi-organ dysfunction and in uterus lethality occurring in homozygous mSEL-1L-deficient mice. Here we show that mSEL-1L is highly expressed in pluripotent embryonic stem cells and multipotent neural stem cells (NSCs) but silenced in all mature neural derivatives (i.e. astrocytes, oligodendrocytes, and neurons) by mmu-miR-183. NSCs derived from homozygous mSEL-1L-deficient embryos (mSEL-1L(-/-) NSCs) fail to proliferate in vitro, show a drastic reduction of the Notch effector HES-5, and reveal a significant down-modulation of the early neural progenitor markers PAX-6 and OLIG-2, when compared with the wild type (mSEL-1L(+/+) NSCs) counterpart. Furthermore, these cells are almost completely deprived of the neural marker Nestin, display a significant decrease of SOX-2 expression, and rapidly undergo premature astrocytic commitment and apoptosis. The data suggest severe self-renewal defects occurring in these cells probably mediated by misregulation of the Notch signaling. The results reported here denote mSEL-1L as a primitive marker with a possible involvement in the regulation of neural progenitor stemness maintenance and lineage determination.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Apoptosis/fisiología , Linaje de la Célula/fisiología , Células Madre Multipotentes/metabolismo , Células-Madre Neurales/metabolismo , Proteínas/metabolismo , Animales , Antígenos de Diferenciación/genética , Astrocitos/citología , Astrocitos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Multipotentes/citología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Células-Madre Neurales/citología , Factor de Transcripción 2 de los Oligodendrocitos , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Proteínas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
17.
J Cell Physiol ; 227(3): 1226-34, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21618531

RESUMEN

The health of cells is preserved by the levels and correct folding states of the proteome, which is generated and maintained by the proteostasis network, an integrated biological system consisting of several cytoprotective and degradative pathways. Indeed, the health conditions of the proteostasis network is a fundamental prerequisite to life as the inability to cope with the mismanagement of protein folding arising from genetic, epigenetic, and micro-environment stress appears to trigger a whole spectrum of unrelated diseases. Here we describe the potential functional role of the proteostasis network in tumor biology and in conformational diseases debating on how the signaling branches of this biological system may be manipulated to develop more efficacious and selective therapeutic strategies. We discuss the dual strategy of these processes in modulating the folding activity of molecular chaperones in order to counteract the antithetic proteostasis deficiencies occurring in cancer and loss/gain of function diseases. Finally, we provide perspectives on how to improve the outcome of these disorders by taking advantage of proteostasis modeling.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Chaperonas Moleculares/metabolismo , Terapia Molecular Dirigida/métodos , Neoplasias/metabolismo , Neoplasias/terapia , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/terapia , Humanos , Neoplasias/patología , Deficiencias en la Proteostasis/patología
18.
J Cell Physiol ; 227(1): 14-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21412777

RESUMEN

The use of human stem cells in biomedical research projects is increasing steadily and the number of cells that are being derived develops at a remarkable pace. However, stem cells around the world are vastly different in their provenance, programming, and potentials. Furthermore, knowledge on the actual number of cell types, their derivation, availability, and characteristics is rather sparse. Usually, "colleague-supply" avenues constantly furnish cells to laboratories around the world without ensuring their correct identity, characterization, and quality. These parameters are critical if the cells will be eventually used in toxicology studies and drug discovery. Here, we outline some basic principles in establishing a stem cell-specific bank.


Asunto(s)
Células Madre , Bancos de Tejidos/tendencias , Humanos , Bancos de Tejidos/organización & administración
19.
Dig Dis Sci ; 57(4): 905-12, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22350780

RESUMEN

BACKGROUND: SEL1L gene product is implicated in the endoplasmic reticulum (ER)-associated protein degradation and Unfolded Protein Response pathways. This gene and associated miRNAs have been indicated as predictive and prognostic markers of pancreatic cancer. AIM: Explore the role of SEL1L in colorectal cancer (CRC) progression. METHODS: SEL1L expression was analysed immunohistochemically in 153 adenomas and 71 CRCs from African American and North Italian patients. The distribution of stained cells was determined by computing median and inter quartile range. The receiver operating characteristics plot was used as discriminate power of SEL1L expression, CRC diagnosis and the effects on patient survival. RESULTS: SEL1L was low in normal mucosa and confined to few scattered cells at the base crypt of the villi and in the foveolar glandular compartment. The highest levels were in Paneth cells within the lysosomes. The enterocytic progenitor cells and mature enterocytes showed less cytoplasmic staining. In CRCs, SEL1L expression significantly correlated with the progression from adenoma to carcinoma (P = 0.0001) being stronger in well-to-moderately differentiated cancers. No correlation was found with other clinicopathological characteristics or ethnicity. CONCLUSIONS: SEL1L expression is a potential CRC tissue biomarker since its expression is significantly higher in adenoma cells with respect to normal mucosa. The levels of expression decrease sensibly in undifferentiated CRC cancers. Interestingly, Paneth cells contain high levels of SEL1L protein that could indicate pre-neoplastic mucosa undergoing neoplastic transformation. Since SEL1L's major function lies within ER stress and active ERAD response, it may identify CRCs with differentiated secretory phenotype and acute cellular stress.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Transformación Celular Neoplásica , Neoplasias Colorrectales/diagnóstico , Proteínas/metabolismo , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adenoma/diagnóstico , Adenoma/metabolismo , Adenoma/patología , Western Blotting , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Femenino , Humanos , Inmunohistoquímica , Mucosa Intestinal/metabolismo , Masculino , Persona de Mediana Edad , Células de Paneth/metabolismo , Células de Paneth/patología , Tasa de Supervivencia , Análisis de Matrices Tisulares , Respuesta de Proteína Desplegada
20.
Vaccines (Basel) ; 10(5)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35632435

RESUMEN

Immune checkpoint inhibitors (ICIs) and platinum-based chemotherapy (CT) are effective therapeutic agents for the palliative treatment of metastatic non-small-cell lung cancer (NSCLC); the aim of our study was to investigate the acute and chronic renal toxicities in this setting. We collected data on 292 patients who received cisplatin (35%), carboplatin-based regimens (25%), or ICI monotherapy (40%). The primary and secondary outcomes were compared to the acute kidney injury (AKI) rate and the mean estimated GFR (eGFR) decay between groups, respectively, over a mean follow-up duration of 15 weeks. We observed 26 AKI events (8.9%), mostly stage I AKI (80.7%); 15% were stage II AKI, 3.8% were stage III, and none required renal replacement therapy or ICU admission. The AKI rates were 10.9%, 6.8%, and 8.9% for the cisplatin, carboplatin, and ICI groups, respectively, and no significant differences were observed between the groups (p = 0.3). A global mean eGFR decay of 2.2 mL/min was observed, while for the cisplatin, carboplatin, and ICI groups, the eGFR decay values were 2.3 mL/min, 1.1 mL/min, and 3.5 mL/min, respectively. No significant differences were observed between the groups. Cisplatin/carboplatin-based CT and ICIs resulted in a similar incidence of AKI and eGFR decay, suggesting the safety of their cautious use, even in CKD patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA