Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Faraday Discuss ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836410

RESUMEN

The use of enzymes to generate hydrogen, instead of using rare metal catalysts, is an exciting area of study in modern biochemistry and biotechnology, as well as biocatalysis driven by sustainable hydrogen. Thus far, the oxygen sensitivity of the fastest hydrogen-producing/exploiting enzymes, [FeFe]hydrogenases, has hindered their practical application, thereby restricting innovations mainly to their [NiFe]-based, albeit slower, counterparts. Recent exploration of the biodiversity of clostridial hydrogen-producing enzymes has yielded the isolation of representatives from a relatively understudied group. These enzymes possess an inherent defense mechanism against oxygen-induced damage. This discovery unveils fresh opportunities for applications such as electrode interfacing, biofuel cells, immobilization, and entrapment for enhanced stability in practical uses. Furthermore, it suggests potential combinations with cascade reactions for CO2 conversion or cofactor regeneration, like NADPH, facilitating product separation in biotechnological processes. This work provides an overview of this new class of biocatalysts, incorporating unpublished protein engineering strategies to further investigate the dynamic mechanism of oxygen protection and to address crucial details remaining elusive such as still unidentified switching hot-spots and their effects. Variants with improved kcat as well as chimeric versions with promising features to attain gain-of-function variants and applications in various biotechnological processes are also presented.

2.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38069023

RESUMEN

BACKGROUND: Mitotane is the only drug approved for the treatment of adrenocortical carcinoma (ACC). Although it has been used for many years, its mechanism of action remains elusive. H295R cells are, in ACC, an essential tool to evaluate drug mechanisms, although they often lead to conflicting results. METHODS: Using different in vitro biomolecular technologies and biochemical/biophysical experiments, we evaluated how the presence of "confounding factors" in culture media and patient sera could reduce the pharmacological effect of mitotane and its metabolites. RESULTS: We discovered that albumin, the most abundant protein in the blood, was able to bind mitotane. This interaction altered the effect of the drug by blocking its biological activity. This blocking effect was independent of the albumin source or methodology used and altered the assessment of drug sensitivity of the cell lines. CONCLUSIONS: In conclusion, we have for the first time demonstrated that albumin does not only act as an inert drug carrier when mitotane or its metabolites are present. Indeed, our experiments clearly indicated that both albumin and human serum were able to suppress the pharmacological effect of mitotane in vitro. These experiments could represent a first step towards the individualization of mitotane treatment in this rare tumor.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , Humanos , Neoplasias de la Corteza Suprarrenal/metabolismo , Carcinoma Corticosuprarrenal/patología , Albúminas , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Mitotano/farmacología , Mitotano/uso terapéutico , Mitotano/metabolismo
3.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408976

RESUMEN

The cytochrome P450 superfamily are heme-thiolate enzymes able to carry out monooxygenase reactions. Several studies have demonstrated the feasibility of using a soluble bacterial reductase from Bacillus megaterium, BMR, as an artificial electron transfer partner fused to the human P450 domain in a single polypeptide chain in an approach known as 'molecular Lego'. The 3A4-BMR chimera has been deeply characterized biochemically for its activity, coupling efficiency, and flexibility by many different biophysical techniques leading to the conclusion that an extension of five glycines in the loop that connects the two domains improves all the catalytic parameters due to improved flexibility of the system. In this work, we extend the characterization of 3A4-BMR chimeras using differential scanning calorimetry to evaluate stabilizing role of BMR. We apply the 'molecular Lego' approach also to CYP19A1 (aromatase) and the data show that the activity of the chimeras is very low (<0.003 min−1) for all the constructs tested with a different linker loop length: ARO-BMR, ARO-BMR-3GLY, and ARO-BMR-5GLY. Nevertheless, the fusion to BMR shows a remarkable effect on thermal stability studied by differential scanning calorimetry as indicated by the increase in Tonset by 10 °C and the presence of a cooperative unfolding process driven by the BMR protein domain. Previously characterized 3A4-BMR constructs show the same behavior of ARO-BMR constructs in terms of thermal stabilization but a higher activity as a function of the loop length. A comparison of the ARO-BMR system to 3A4-BMR indicates that the design of each P450-BMR chimera should be carefully evaluated not only in terms of electron transfer, but also for the biophysical constraints that cannot always be overcome by chimerization.


Asunto(s)
Bacillus megaterium , Hemo , Proteínas Bacterianas/metabolismo , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Hemo/metabolismo , Humanos , NADPH-Ferrihemoproteína Reductasa/metabolismo , Proteínas Recombinantes de Fusión/genética
4.
Arch Biochem Biophys ; 697: 108663, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33152328

RESUMEN

Human flavin-containing monooxygenase 3 (FMO3) is a membrane-bound, phase I drug metabolizing enzyme. It is highly polymorphic with some of its variants demonstrating differences in rates of turnover of its substrates: xenobiotics including drugs as well as dietary compounds. In order to measure its in vitro activity and compare any differences between the wild type enzyme and its polymorphic variants, we undertook a systematic study using different engineered proteins, heterologously expressed in bacteria, purified and catalytically characterized with 3 different substrates. These included the full-length as well as the more soluble C-terminal truncated versions of the common polymorphic variants (E158K, V257M and E308G) of FMO3 in addition to the full-length and truncated wild-type proteins. In vitro activity assays were performed with benzydamine, tamoxifen and sulindac sulfide, whose products were measured by HPLC. Differences in catalytic properties between the wild-type FMO3 and its common polymorphic variants were similar to those observed with the truncated, more soluble versions of the enzymes. Interestingly, the truncated enzymes were better catalysts than the full-length proteins. The data obtained point to the feasibility of using the more soluble forms of this enzyme for in vitro drug assays as well as future biotechnological applications possibly in high throughput systems such as bioelectrochemical platforms and biosensors.


Asunto(s)
Oxígeno/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Polimorfismo Genético , Humanos , Modelos Moleculares , Oxidación-Reducción , Oxigenasas/química , Conformación Proteica
5.
Microb Cell Fact ; 19(1): 74, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32197603

RESUMEN

BACKGROUND: In the course of drug discovery and development process, sufficient reference standards of drug metabolites are required, especially for preclinical/clinical or new therapeutic drugs. Whole-cell synthesis of drug metabolites is of great interest due to its low cost, low environmental impact and specificity of the enzymatic reaction compared to chemical synthesis. Here, Escherichia coli (E. coli) JM109 cells over-expressing the recombinant human FMO3 (flavin-containing monooxygenase isoform 3) were used for the conversions of clomiphene, dasatinib, GSK5182 and tozasertib to their corresponding N-oxide metabolites. RESULTS: The effects of NADPH regeneration, organic solvents as well as C-terminal truncations of human FMO3 were investigated. Under the optimized conditions, in excess of 200 mg/L of N-oxide metabolite of each of the four drugs could be produced by whole-cell catalysis within 24 h. Of these, more than 90% yield conversions were obtained for the N-oxidation of clomiphene and dasatinib. In addition, FMO3 shows high regio-selectivity in metabolizing GSK5182 where only the (Z) isomer is monooxygenated. CONCLUSIONS: The study shows the successful use of human FMO3-based whole-cell as a biocatalyst for the efficient synthesis of drug metabolites including regio-selective reactions involving GSK5182, a new candidate against type 2 diabetes mellitus.


Asunto(s)
Escherichia coli/metabolismo , Hipoglucemiantes/metabolismo , Oxigenasas/metabolismo , Clomifeno/metabolismo , Dasatinib/metabolismo , Escherichia coli/genética , Humanos , Microorganismos Modificados Genéticamente/metabolismo , Oxigenasas/genética , Piperazinas/metabolismo , Tamoxifeno/análogos & derivados , Tamoxifeno/metabolismo
6.
Biotechnol Appl Biochem ; 67(5): 751-759, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32860433

RESUMEN

Dye-decolorizing peroxidases (DyP) were originally discovered in fungi for their ability to decolorize several different industrial dyes. DyPs catalyze the oxidation of a variety of substrates such as phenolic and nonphenolic aromatic compounds. Catalysis occurs in the active site or on the surface of the enzyme depending on the size of the substrate and on the existence of radical transfer pathways available in the enzyme. DyPs show the typical features of heme-containing enzymes with a Soret peak at 404-408 nm. They bind hydrogen peroxide that leads to the formation of the so-called Compound I, the key intermediate for catalysis. This then decays into Compound II yielding back Fe(III) at its resting state. Each catalytic cycle uses two electrons from suitable electron donors and generates two product molecules. DyPs are classified as a separate class of peroxidases. As all peroxidases they encompass a conserved histidine that acts as the fifth heme ligand, however all primary DyP sequences contain a conserved GxxDG motif and a distal arginine that is their characteristic. Given their ability to attack monomeric and dimeric lignin model compounds as well as polymeric lignocellulose, DyPs are a promising class of biocatalysts for lignin degradation that not only represents a source of valuable fine chemicals, but it also constitutes a fundamental step in biofuels production. Research efforts are envisioned for the improvement of the activity of DyPs against lignin, through directed evolution, ration protein design, or one-pot combination with other enzymes to reach satisfactory conversion levels for industrial applications.


Asunto(s)
Bacterias/enzimología , Colorantes/metabolismo , Hongos/enzimología , Lignina/metabolismo , Peroxidasas/metabolismo , Bacterias/metabolismo , Biocatálisis , Biocombustibles/análisis , Biocombustibles/microbiología , Biotecnología/métodos , Dominio Catalítico , Colorantes/química , Hongos/metabolismo , Lignina/química , Modelos Moleculares , Peroxidasas/química
7.
Biochim Biophys Acta Proteins Proteom ; 1866(1): 116-125, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28734977

RESUMEN

Chimerogenesis involving cytochromes P450 is a successful approach to generate catalytically self-sufficient enzymes. However, the connection between the different functional modules should allow a certain degree of flexibility in order to obtain functional and catalytically efficient proteins. We previously applied the molecular Lego approach to develop a chimeric P450 3A4 enzyme linked to the reductase domain of P450 BM3 (BMR). Three constructs were designed with the connecting loop containing no glycine, 3 glycine or 5 glycine residues and showed a different catalytic activity and coupling efficiency. Here we investigate how the linker affects the ability of P450 3A4 to bind substrates and inhibitors. We measure the electron transfer rates and the catalytic properties of the enzyme also in the presence of ketoconazole as inhibitor. The data show that the construct 3A4-5GLY-BMR with the longest loop better retains the binding ability and cooperativity for testosterone, compared to P450 3A4. In both 3A4-3GLY-BMR and 3A4-5GLY-BMR, the substrate induces an increase in the first electron transfer rate and a shorter lag phase related to a domain rearrangements, when compared to the construct without Gly. These data are consistent with docking results and secondary structure predictions showing a propensity to form helical structures in the loop of the 3A4-BMR and 3A4-3GLY-BMR. All three chimeras retain the ability to bind the inhibitor ketoconazole and show an IC50 comparable with those reported for the wild type protein. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.


Asunto(s)
Bacillus megaterium/genética , Proteínas Bacterianas/química , Inhibidores del Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/química , Cetoconazol/química , NADPH-Ferrihemoproteína Reductasa/química , Proteínas Recombinantes de Fusión/química , Bacillus megaterium/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/metabolismo , Expresión Génica , Humanos , Cetoconazol/metabolismo , Cinética , Ligandos , Simulación del Acoplamiento Molecular , NADPH-Ferrihemoproteína Reductasa/antagonistas & inhibidores , NADPH-Ferrihemoproteína Reductasa/genética , NADPH-Ferrihemoproteína Reductasa/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Ingeniería de Proteínas , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Testosterona/química , Testosterona/metabolismo
8.
Biotechnol Appl Biochem ; 65(1): 46-53, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28926141

RESUMEN

Aromatase catalyzes the biosynthesis of estrogens from androgens. Owing to the physiological importance of this conversion of lipophilic substrates, the interaction with the lipid bilayer for this cytochrome P450 is crucial for its dynamics that must allow an easy access to substrates and inhibitors. Here, the aromatase-anastrozole interaction is studied by combining computational methods to identify possible access/egress routes with the protein inserted in the membrane and experimental tools aimed at the investigation of the effect of the inhibitor on the protein conformation. By means of molecular dynamics simulations of the protein inserted in the membrane, two channels, not detected in the starting crystal structure, are found after a 20-nSec simulation. Trypsin digestion on the recombinant protein shows that the enzyme is strongly protected by the presence of the substrate and even more by the inhibitor. DSC experiments show an increase in the melting temperature of the protein in complex with the substrate (49.3 °C) and the inhibitor (58.7 °C) compared to the ligand-free enzyme (45.9 °C), consistent with a decrease of flexibility of the protein. The inhibitor anastrozole enters the active site of the protein through a channel different from that used from the substrate and promotes a conformational change that stiffens the protein conformation and decreases the protein-protein interaction between different aromatase molecules.


Asunto(s)
Aromatasa/química , Simulación de Dinámica Molecular , Nitrilos/química , Triazoles/química , Anastrozol , Aromatasa/metabolismo , Humanos , Ligandos , Nitrilos/metabolismo , Estructura Cuaternaria de Proteína , Triazoles/metabolismo
9.
Biochim Biophys Acta ; 1864(9): 1177-1187, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27344049

RESUMEN

BACKGROUND: Ar-BVMO is a recently discovered Baeyer-Villiger monooxygenase from the genome of Acinetobacter radioresistens S13 closely related to medically relevant ethionamide monooxygenase EtaA (prodrug activator) and capable of inactivating the imipenem antibiotic. METHODS: The co-substrate preference as well as steady-state and rapid kinetics studies of the recombinant purified protein were carried out using stopped-flow spectroscopy under anaerobic and aerobic conditions. Kd values were measured by isothermal calorimetry. Enzymatic activity was determined by measuring the amount of product formed using high pressure liquid chromatography or gas chromatography. Site-directed mutagenesis experiments were performed to decipher the role of the active site arginine-292. RESULTS: Ar-BVMO was found to oxidize ethionamide as well as linear ketones. Mechanistic studies on the wild type enzyme using stopped-flow spectroscopy allowed for the detection of the characteristic oxygenating C4a-(hydro)peroxyflavin intermediate, which decayed rapidly in the presence of the substrate. Replacement of arginine 292 in Ar-BVMO by glycine or alanine resulted in greatly reduced or no Baeyer-Villiger activity, respectively, demonstrating the crucial role of this residue in catalysis of ketone substrates. However, both the R292A and R292G mutants are capable of carrying out N- and S-oxidation reactions. CONCLUSIONS: Substrate profiling of Ar-BVMO confirms its close relationship to EtaA; ethionamide is one of its substrates. The active site Arginine 292 is required for its Baeyer-Villiger activity but not for heteroatom oxidation. GENERAL SIGNIFICANCE: A single mutation converts Ar-BVMO to a unique S- or N-monooxygenase, a useful biocatalyst for the production of oxidized metabolites of human drug metabolizing enzymes.


Asunto(s)
Acinetobacter/enzimología , Proteínas Bacterianas/química , Etionamida/química , Flavinas/química , Cetonas/química , Oxigenasas de Función Mixta/química , Microbiología del Suelo , Acinetobacter/genética , Alanina/química , Alanina/metabolismo , Secuencia de Aminoácidos , Arginina/química , Arginina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominio Catalítico , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Etionamida/metabolismo , Flavinas/metabolismo , Expresión Génica , Glicina/química , Glicina/metabolismo , Cetonas/metabolismo , Cinética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
10.
Anal Biochem ; 522: 46-52, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28137602

RESUMEN

Human hepatic flavin-containing monooxygenase 3 is a phase I drug-metabolizing enzyme that is responsible for the oxidation of a variety of drugs and xenobiotics. This work reports on a high throughput rapid colorimetric assay for the screening of substrates or inhibitors of this enzyme. The method is based on the competition of two substrates for access to the active site of hFMO3 whereby the enzymatic product of the first drug converts nitro-5-thiobenzoate (TNB, yellow) to 5,5'-dithiobis (2-nitrobenzoate) (DTNB, colourless). Upon addition of a competing substrate, the amount of detected DNTB is decreased. The assay is validated testing three known substrates of hFMO3, namely benzydamine, tozasertib and tamoxifen. The latter drugs resulted in 41%-55% inhibition. In addition, two other drugs also classified as doping drugs, selegiline and clomiphene, were selected based on their chemical structure similarity to known substrates of hFMO3. These drugs showed 21% and 60% inhibition in the colorimetric assay and therefore were proven to be hFMO3 substrates. LC-MS was used to confirm their N-oxide products. Further characterisation of these newly identified hFMO3 substrates was performed determining their Km and kcat values that resulted to be 314 µM and 1.4 min-1 for selegiline and, 18 µM and 0.1 min-1 for clomiphene. This method paves the way for a rapid automated high throughput screening of nitrogen-containing compounds as substrates/inhibitors of hFMO3.


Asunto(s)
Benzoatos/química , Bencidamina/química , Ácido Ditionitrobenzoico/química , Oxigenasas/química , Piperazinas/química , Polietilenglicoles/química , Tamoxifeno/química , Colorimetría/métodos , Humanos
11.
Antimicrob Agents Chemother ; 60(1): 64-74, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26459905

RESUMEN

Antimicrobial resistance is a global issue currently resulting in the deaths of hundreds of thousands of people a year worldwide. Data present in the literature illustrate the emergence of many bacterial species that display resistance to known antibiotics; Acinetobacter spp. are a good example of this. We report here that Acinetobacter radioresistens has a Baeyer-Villiger monooxygenase (Ar-BVMO) with 100% amino acid sequence identity to the ethionamide monooxygenase of multidrug-resistant (MDR) Acinetobacter baumannii. Both enzymes are only distantly phylogenetically related to other canonical bacterial BVMO proteins. Ar-BVMO not only is capable of oxidizing two anticancer drugs metabolized by human FMO3, danusertib and tozasertib, but also can oxidize other synthetic drugs, such as imipenem. The latter is a member of the carbapenems, a clinically important antibiotic family used in the treatment of MDR bacterial infections. Susceptibility tests performed by the Kirby-Bauer disk diffusion method demonstrate that imipenem-sensitive Escherichia coli BL21 cells overexpressing Ar-BVMO become resistant to this antibiotic. An agar disk diffusion assay proved that when imipenem reacts with Ar-BVMO, it loses its antibiotic property. Moreover, an NADPH consumption assay with the purified Ar-BVMO demonstrates that this antibiotic is indeed a substrate, and its product is identified by liquid chromatography-mass spectrometry to be a Baeyer-Villiger (BV) oxidation product of the carbonyl moiety of the ß-lactam ring. This is the first report of an antibiotic-inactivating BVMO enzyme that, while mediating its usual BV oxidation, also operates by an unprecedented mechanism of carbapenem resistance.


Asunto(s)
Acinetobacter/enzimología , Antibacterianos/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Imipenem/metabolismo , Acinetobacter/clasificación , Acinetobacter/efectos de los fármacos , Acinetobacter/genética , Antibacterianos/farmacología , Antineoplásicos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Benzamidas/metabolismo , Biotransformación , Clonación Molecular , Pruebas Antimicrobianas de Difusión por Disco , Escherichia coli/clasificación , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Expresión Génica , Imipenem/farmacología , Ingeniería Metabólica , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , NADP/metabolismo , Oxidación-Reducción , Filogenia , Piperazinas/metabolismo , Pirazoles/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Arch Biochem Biophys ; 602: 106-115, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26718083

RESUMEN

This paper reports the structure of the double mutant Asp251Gly/Gln307His (named A2) generated by random mutagenesis, able to produce 4'-hydroxydiclofenac, 2-hydroxyibuprofen and 4-hydroxytolbutamide from diclofenac, ibuprofen and tolbutamide, respectively. The 3D structure of the substrate-free mutant shows a conformation similar to the closed one found in the substrate-bound wild type enzyme, but with a higher degree of disorder in the region of the G-helix and F-G loop. This is due to the mutation Asp251Gly that breaks the salt bridge between Aps251 on I-helix and Lys224 on G-helix, allowing the G-helix to move away from I-helix and conferring a higher degree of flexibility to this element. This subtle structural change is accompanied by long-range structural rearrangements of the active site with the rotation of Phe87 and a reorganization of catalytically important water molecules. The impact of these structural features on thermal stability, reduction potential and electron transfer is investigated. The data demonstrate that a single mutation far from the active site triggers an increase in protein flexibility in a key region, shifting the conformational equilibrium toward the closed form that is ready to accept electrons and enter the P450 catalytic cycle as soon as a substrate is accepted.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/ultraestructura , Diclofenaco/química , Ibuprofeno/química , Simulación del Acoplamiento Molecular/métodos , NADPH-Ferrihemoproteína Reductasa/química , NADPH-Ferrihemoproteína Reductasa/ultraestructura , Tolbutamida/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Simulación por Computador , Sistema Enzimático del Citocromo P-450/genética , Activación Enzimática , Datos de Secuencia Molecular , Mutación/genética , NADPH-Ferrihemoproteína Reductasa/genética , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
13.
Biomacromolecules ; 17(1): 324-35, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26642374

RESUMEN

Multilayer lipid membranes perform many important functions in biology, such as electrical isolation (myelination of axons), increased surface area for biocatalytic purposes (thylakoid grana and mitochondrial cristae), and sequential processing (golgi cisternae). Here we develop a simple layer-by-layer methodology to form lipid multilayers via vesicle rupture onto existing supported lipid bilayers (SLBs) using poly l-lysine (PLL) as an electrostatic polymer linker. The assembly process was monitored at the macroscale by quartz crystal microbalance with dissipation (QCM-D) and the nanoscale by atomic force microscopy (AFM) for up to six lipid bilayers. By varying buffer pH and PLL chain length, we show that longer chains (≥300 kDa) at pH 9.0 form thicker polymer supported multilayers, while at low pH and shorter length PLL, we create close packed layers (average lipid bilayers separations of 2.8 and 0.8 nm, respectively). Fluorescence recovery after photobleaching (FRAP) and AFM were used to show that the diffusion of lipid and three different membrane proteins in the multilayered membranes has little dependence on lipid stack number or separation between membranes. These approaches provide a straightforward route to creating the complex membrane structures that are found throughout nature, allowing possible applications in areas such as energy production and biosensing while developing our understanding of the biological processes at play.


Asunto(s)
Membrana Dobles de Lípidos/química , Liposomas/síntesis química , Membranas/química , Polilisina/química , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Polímeros/síntesis química , Tecnicas de Microbalanza del Cristal de Cuarzo , Electricidad Estática , Propiedades de Superficie
15.
Biotechnol J ; 19(5): e2300664, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38719620

RESUMEN

CYP116B5 is a class VII P450 in which the heme domain is linked to a FMN and 2Fe2S-binding reductase. Our laboratory has proved that the CYP116B5 heme domain (CYP116B5-hd) is capable of catalyzing the oxidation of substrates using H2O2. Recently, the Molecular Lego approach was applied to join the heme domain of CYP116B5 to sarcosine oxidase (SOX), which provides H2O2 in-situ by the sarcosine oxidation. In this work, the chimeric self-sufficient fusion enzyme CYP116B5-SOX was heterologously expressed, purified, and characterized for its functionality by absorbance and fluorescence spectroscopy. Differential scanning calorimetry (DSC) experiments revealed a TM of 48.4 ± 0.04 and 58.3 ± 0.02°C and a enthalpy value of 175,500 ± 1850 and 120,500 ± 1350 cal mol-1 for the CYP116B5 and SOX domains respectively. The fusion enzyme showed an outstanding chemical stability in presence of up to 200 mM sarcosine or 5 mM H2O2 (4.4 ± 0.8 and 11.0 ± 2.6% heme leakage respectively). Thanks to the in-situ H2O2 generation, an improved kcat/KM for the p-nitrophenol conversion was observed (kcat of 20.1 ± 0.6 min-1 and KM of 0.23 ± 0.03 mM), corresponding to 4 times the kcat/KM of the CYP116B5-hd. The aim of this work is the development of an engineered biocatalyst to be exploited in bioremediation. In order to tackle this challenge, an E. coli strain expressing CYP116B5-SOX was employed to exploit this biocatalyst for the oxidation of the wastewater contaminating-drug tamoxifen. Data show a 12-fold increase in tamoxifen N-oxide production-herein detected for the first time as CYP116B5 metabolite-compared to the direct H2O2 supply, equal to the 25% of the total drug conversion.


Asunto(s)
Biodegradación Ambiental , Sistema Enzimático del Citocromo P-450 , Escherichia coli , Peróxido de Hidrógeno , Sarcosina-Oxidasa , Peróxido de Hidrógeno/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Sarcosina-Oxidasa/metabolismo , Sarcosina-Oxidasa/genética , Sarcosina-Oxidasa/química , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/química , Oxidación-Reducción , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/química , Sarcosina/metabolismo , Sarcosina/análogos & derivados
16.
Biotechnol J ; 19(4): e2300567, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581100

RESUMEN

An attractive application of hydrogenases, combined with the availability of cheap and renewable hydrogen (i.e., from solar and wind powered electrolysis or from recycled wastes), is the production of high-value electron-rich intermediates such as reduced nicotinamide adenine dinucleotides. Here, the capability of a very robust and oxygen-resilient [FeFe]-hydrogenase (CbA5H) from Clostridium beijerinckii SM10, previously identified in our group, combined with a reductase (BMR) from Bacillus megaterium (now reclassified as Priestia megaterium) was tested. The system shows a good stability and it was demonstrated to reach up to 28 ± 2 nmol NADPH regenerated s-1 mg of hydrogenase-1 (i.e., 1.68 ± 0.12 U mg-1, TOF: 126 ± 9 min-1) and 0.46 ± 0.04 nmol NADH regenerated s-1 mg of hydrogenase-1 (i.e., 0.028 ± 0.002 U mg-1, TOF: 2.1 ± 0.2 min-1), meaning up to 74 mg of NADPH and 1.23 mg of NADH produced per hour by a system involving 1 mg of CbA5H. The TOF is comparable with similar systems based on hydrogen as regenerating molecule for NADPH, but the system is first of its kind as for the [FeFe]-hydrogenase and the non-physiological partners used. As a proof of concept a cascade reaction involving CbA5H, BMR and a mutant BVMO from Acinetobacter radioresistens able to oxidize indole is presented. The data show how the cascade can be exploited for indigo production and multiple reaction cycles can be sustained using the regenerated NADPH.


Asunto(s)
Hidrogenasas , Hidrogenasas/química , NAD , Hidrógeno/química , NADP , Oxidorreductasas
17.
Int J Mol Sci ; 14(2): 2707-16, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23358255

RESUMEN

Aurora kinases were recently identified as a potential target in anticancer therapy and, amongst their available inhibitors, Tozasertib (VX-680) and Danusertib (PHA-739358) have been indicated as possible substrates of human flavin-containing monooxygenase 3 (hFMO3). Here we report the in vitro rate of oxidation of these drugs by wild-type hFMO3 and its polymorphic variant V257M. The conversion of Tozasertib and Danusertib to their corresponding metabolites, identified by LC-MS, by the purified wild-type and V257M hFMO3 show significant differences. In the case of Tozasertib, the V257M variant shows a catalytic efficiency, expressed as k(cat)/K(m), similar to the wild-type: 0.39 ± 0.06 min-1µM-1 for V257M compared to 0.33 ± 0.04 min-1µM-1 for the wild type. On the other hand, in the case of Danusertib, V257M shows a 3.4× decrease in catalytic efficiency with k(cat)/K(m) values of 0.05 ± 0.01 min-1µM-1 for V257M and 0.17 ± 0.03 min-1µM-1 for the wild type. These data reveal how a simple V257M substitution ascribed to a single nucleotide polymorphism affects the N-oxidation of relevant anticancer drugs, with important outcome in their therapeutic effects. These findings demonstrate that codon 257 is important for activity of the hFMO3 gene and the codon change V to M has an effect on the catalytic efficiency of this enzyme.

18.
Biotechnol J ; 18(5): e2200622, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36866427

RESUMEN

Self-sufficient cytochromes P450 of the sub-family CYP116B have gained great attention in biotechnology due to their ability to catalyze challenging reactions toward a wide range of organic compounds. However, these P450s are often unstable in solution and their activity is limited to a short reaction time. Previously it has been shown that the isolated heme domain of CYP116B5 can work as a peroxygenase with H2 O2 without the addition of NAD(P)H. In this work, protein engineering was used to generate a chimeric enzyme (CYP116B5-SOX), in which the native reductase domain is replaced by a monomeric sarcosine oxidase (MSOX) capable of producing H2 O2 . The full-length enzyme (CYP116B5-fl) is characterized for the first time, allowing a detailed comparison to the heme domain (CYP116B5-hd) and CYP116B5-SOX. The catalytic activity of the three forms of the enzyme was studied using p-nitrophenol as substrate, and adding NADPH (CYP116B5-fl), H2 O2 (CYP116B5-hd), and sarcosine (CYP116B5-SOX) as source of electrons. CYP116B5-SOX performs better than CYP116B5-fl and CYP116B5-hd showing 10- and 3-folds higher activity, in terms of p-nitrocatechol produced per mg of enzyme per minute. CYP116B5-SOX represents an optimal model to exploit CYP116B5 and the same protein engineering approach could be used for P450s of the same class.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Ingeniería de Proteínas , Sistema Enzimático del Citocromo P-450/metabolismo , Catálisis , Hemo/química , Hemo/metabolismo
19.
Bioelectrochemistry ; 150: 108327, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36446195

RESUMEN

It is highly advantageous to devise an in vitro platform that can predict the complexity of an in vivo system. The first step of this process is the identification of a xenobiotic whose monooxygenation is carried out by two sequential enzymatic reactions. Pesticides are a good model for this type of tandem reactions since in specific cases they are initially metabolised by human flavin-containing monooxygenase 1 (hFMO1), followed by cytochrome P450 (CYP). To assess the feasibility of such an in vitro platform, hFMO1 is immobilised on glassy carbon electrodes modified with graphene oxide (GO) and cationic surfactant didecyldimethylammonium bromide (DDAB). UV-vis, contact angle and AFM measurements support the effective decoration of the GO sheets by DDAB which appear as 3 nm thick structures. hFMO1 activity on the bioelectrode versus three pesticides; fenthion, methiocarb and phorate, lead to the expected sulfoxide products with KM values of 29.5 ± 5.1, 38.4 ± 7.5, 29.6 ± 4.1 µM, respectively. Moreover, phorate is subsequently tested in a tandem system with hFMO1 and CYP3A4 resulting in both phorate sulfoxide as well as phoratoxon sulfoxide. The data demonstrate the feasibility of using bioelectrochemical platforms to mimic the complex metabolic reactions of xenobiotics within the human body.


Asunto(s)
Plaguicidas , Forato , Humanos , Forato/metabolismo , Citocromo P-450 CYP3A , Sulfóxidos/metabolismo
20.
Protein Sci ; 31(12): e4501, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36334042

RESUMEN

Sphingomonas paucimobilis' P450SPα (CYP152B1) is a good candidate as industrial biocatalyst. This enzyme is able to use hydrogen peroxide as unique cofactor to catalyze the fatty acids conversion to α-hydroxy fatty acids, thus avoiding the use of expensive electron-donor(s) and redox partner(s). Nevertheless, the toxicity of exogenous H2 O2 toward proteins and cells often results in the failure of the reaction scale-up when it is directly added as co-substrate. In order to bypass this problem, we designed a H2 O2 self-producing enzyme by fusing the P450SPα to the monomeric sarcosine oxidase (MSOX), as H2 O2 donor system, in a unique polypeptide chain, obtaining the P450SPα -polyG-MSOX fusion protein. The purified P450SPα -polyG-MSOX protein displayed high purity (A417 /A280  = 0.6) and H2 O2 -tolerance (kdecay  = 0.0021 ± 0.000055 min-1 ; ΔA417  = 0.018 ± 0.001) as well as good thermal stability (Tm : 59.3 ± 0.3°C and 63.2 ± 0.02°C for P450SPα and MSOX domains, respectively). The data show how the catalytic interplay between the two domains can be finely regulated by using 500 mM sarcosine as sacrificial substrate to generate H2 O2 . Indeed, the fusion protein resulted in a high conversion yield toward fat waste biomass-representative fatty acids, that is, lauric acid (TON = 6,800 compared to the isolated P450SPα TON = 2,307); myristic acid (TON = 6,750); and palmitic acid (TON = 1,962).


Asunto(s)
Ácidos Grasos , Oxigenasas de Función Mixta , Oxigenasas de Función Mixta/metabolismo , Sarcosina-Oxidasa/química , Sarcosina-Oxidasa/metabolismo , Oxidación-Reducción , Peróxido de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA