Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; : e202401768, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818940

RESUMEN

Room temperature phosphorescence rarely occurs from pure organic molecules, especially in the solid-state. A strategy for the design of highly emissive organic phosphors is still hard to predict, thus impeding the development of new functional materials with the desired optical properties. Herein, we analyze a family of alkyl and aryl-substituted persulfurated benzenes, the latter representing a class of organic solid-state triplet emitters able to show very high emission quantum yield at room temperature. In this work, we correlate structural parameters with the photophysical properties observed in different experimental conditions (diluted solution, crystalline and amorphous phase at RT and low temperature). Our results, corroborated by a detailed computational analysis, indicate a close relationship between the luminescence properties and i) the nature of the substituents on the persulfurated core, ii) the adopted conformations in the solid state, both in crystalline and amorphous phases. These factors contribute to characterize the lowest-energy lying excited-state, its deactivation pathways, the phosphorescence lifetime and quantum yield. These findings provide a useful roadmap for the development of highly performing purely organic solid-state emitters based on the persulfurated benzene platform.

2.
Chemistry ; : e202400231, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289151

RESUMEN

We disclose the features of a category of reversible nucleophilic aromatic substitutions in view of their significance and generality in dynamic aromatic chemistry. Exchange of sulfur components surrounding arenes and heteroarenes may occur at 25 °C, in a process that one may call a "sulfur dance". These SN Ar systems present their own features, apart from common reversible reactions utilized in dynamic covalent chemistry (DCC). By varying conditions, covalent dynamics may operate to provide libraries of thiaarenes with some selectivity, or conversion of a hexa(thio)benzene asterisk into another one. The reversible nature of SN Ar is confirmed by three methods: a convergence of the products distribution in reversible SN Ar systems, a related product redistribution between two per(thio)benzenes by using a thiolate promoter, and from kinetic/thermodynamic data. A four-component dynamic covalent system further illustrates the thermodynamically-driven formation of a thiacalix[2]arene[2]pyrimidine by sulfur component exchanges. This work stimulates the implementation of reversible SN Ar in aromatic chemistry and in DCC.

3.
Photochem Photobiol Sci ; 23(3): 451-462, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38324165

RESUMEN

Donor-acceptor dyads based on BODIPYs have been recently employed to enhance the formation of triplet excited states with the process of spin-orbit charge transfer intersystem crossing (SOCT-ISC) which does not require introduction of transition metals or other heavy atoms into the molecule. In this work we compare two donor-acceptor dyads based on meso-naphthalenyl BODIPY by combining experimental and computational investigations. The photophysical and electrochemical characterization reveals a significant effect of alkylation of the BODIPY core, disfavoring the SOCT-ISC mechanism for the ethylated BODIPY dyad. This is complemented with a computational investigation carried out to rationalize the influence of ethyl substituents and solvent effects on the electronic structure and efficiency of triplet state population via charge recombination (CR) from the photoinduced electron transfer (PeT) generated charge-transfer (CT) state. Time dependent-density functional theory (TD-DFT) calculations including solvent effects and spin-orbit coupling (SOC) calculations uncover the combined role played by solvent and alkyl substitution on the lateral positions of BODIPY.

4.
Inorg Chem ; 63(10): 4595-4603, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38420685

RESUMEN

Herein, we present a novel ruthenium(II)-perylene dyad (RuPDI-Py) that combines the photophysical properties of pyrrolidine-substituted perylene diimide (PDI-Py) and the ruthenium(II) polypyridine complex [Ru(phen)3]2+. A comprehensive study of excited-state dynamics was carried out using time-resolved and steady-state methods in a dimethyl sulfoxide solution. The RuPDI-Py dyad demonstrated excitation wavelength-dependent photophysical behavior. Upon photoexcitation above 600 nm, the dyad exclusively exhibits the near-infrared (NIR) fluorescence of the 1PDI-Py state at 785 nm (τfl = 1.50 ns). In contrast, upon photoexcitation between 350 and 450 nm, the dyad also exhibits a photoinduced electron transfer from the {[Ru(phen)3]2+} moiety to PDI-Py, generating the charge-separated intermediate state {Ru(III)-(PDI-Py)•-} (4 µs). This state subsequently decays to the long-lived triplet excited state 3PDI-Py (36 µs), which is able to sensitize singlet oxygen (1O2). Overall, tuning 1O2 photoactivation or NIR fluorescence makes RuPDI-Py a promising candidate for using absorbed light energy to perform the desired functions in theranostic applications.

5.
Chemistry ; 29(61): e202301853, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37563909

RESUMEN

The tetrahedral shape-persistent molecule 14+ , containing four identical pyridyl pyridinium units connected via a sp3 hybridized carbon atom, has been investigated in detail by means of steady-state and time resolved spectroscopy. Remarkable photophysical properties are observed, particularly in comparison with protonated and methylated analogues (1H4 8+ , 1Me4 8+ ), which exhibit substantially shorter excited state lifetimes and lower emission quantum yields. Theoretical studies have rationalized the behavior of the tetrameric molecules relative to the monomers, with DFT and TD-DFT calculations corroborating steady-state (absorption and emission) and transient absorption spectra. The behavior of the monomeric compounds (each consisting in one of the four identical subunits of the tetramers, i. e., 2+ , 2H2+ and 2Me2+ ) considerably differs from that of the tetramers, indicating a strong electronic interaction between the subunits in the tetrameric species, likely promoted by the homoconjugation through the connecting sp3  C atom. 2+ is characterized by a peculiar S1 -S2 excited state inversion, whereas the short-lived emitting S1 state of 2H2+ and 2Me2+ exhibits a partial charge-transfer character, as substantiated by spectro-electrochemical studies. Among the six investigated systems, only 14+ is a sizeable luminophore (Φem =0.15), which is related to the peculiar features of its singlet state.

6.
J Org Chem ; 88(10): 6364-6373, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35820116

RESUMEN

Carbazolyl dicyanobenzene (CDCB) derivates exhibiting thermally activated delayed fluorescence (TADF) have shown themselves to be excellent photocatalysts over recent years, particularly 4CzIPN, although investigation into organic TADF compounds as photocatalysts outside of the CDCB group has been limited. Herein, we report an alternative donor-acceptor TADF structure, 9,9'-(sulfonylbis(pyrimidine-5,2-diyl))bis(3,6-di-tert-butyl-9H-carbazole), pDTCz-DPmS, for use as a photocatalyst (PC). A comparison of the electrochemical and photophysical properties of pDTCz-DPmS with 4CzIPN in a range of solvents identifies the former as a better ground state reducing agent and photoreductant, while both exhibit similar oxidation capabilities in the ground and excited state. The increased conjugation of pDTCz-DPmS relative to 4CzIPN presents a more intense CT band in the UV-vis absorption spectrum, aiding in the light absorption of this molecule. Prompt and delayed emission lifetimes are observed for pDTCz-DPmS, confirming the TADF nature, both of which are sufficiently long-lived to participate in productive photochemistry. These combined properties make pDTCz-DPmS useful in photocatalysis reactions, covering a range of photoredox oxidative and reductive quenching reactions, as well as those involving a dual Ni(II) cocatalyst, alongside energy transfer processes. The higher triplet energy and increased photostability of pDTCz-DPmS compared with 4CzIPN were found to be advantages of this organic PC.

7.
J Org Chem ; 88(10): 6390-6400, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-36383955

RESUMEN

The stability of a photocatalyst under irradiation is important in photoredox applications. In this work, we investigated the stability of a thermally activated delayed fluorescence (TADF) photocatalyst {3DPAFIPN [2,4,6-tris(diphenylamino)-5-fluoroisophthalonitrile]}, recently employed in photoredox-mediated processes, discovering that in the absence of quenchers the chromophore is unstable and is efficiently converted by irradiation with visible light into another species based on the carbazole-1,3-dicarbonitrile moiety. The new species obtained is itself a TADF emitter and finds useful applications in photoredox transformations. At the excited state, it is a strong reductant and was efficiently applied to cobalt-mediated allylation of aldehydes, whereas other TADFs (4CzIPN and 3DPAFIPN) failed to promote efficient photocatalytic cycles.

8.
Chemistry ; 28(46): e202200797, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35443101

RESUMEN

The synthesis of regioisomeric asterisks (5) and (6) incorporating a benzene core with six 1-naphthylthio or six 2-naphthylthio arms are reported in search for new materials with optoelectronic properties. The consequences on the extension of a π system surrounding a persulfurated benzene core provide a new avenue to study the structural, photophysical, and chemical properties of such family of all-organic phosphors. It also diverts the persulfuration mechanism after two radical cyclizations for making a [5]dithiohelicene by-product (7) and favors dynamic sulfur component exchange reactions surrounding the core. These exchanges convert asterisks (5) and (6), non-phosphorescent at 20 °C to the highly phosphorescent (4) (ϕ ∼100 %, solid state at 20 °C). For asterisks (5) and (6), the absence of the typical phosphorescence of the per(phenylthio)benzene core in the solid state at 20 °C and the presence of a weak naphthalene-based phosphorescence at 77 K is attributed to an energy transfer from the triplet state of the persulfurated benzene core to the outer naphthalene moieties, resulting in an antenna system.

9.
Photochem Photobiol Sci ; 21(5): 777-786, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35023042

RESUMEN

A new BODIPY derivative (o-I-BDP) containing an iodine atom in the ortho position of the meso-linked phenyl group was prepared. Photophysical and electrochemical properties of the molecule were compared to previously reported iodo BODIPY derivatives, as well as to the non-iodinated analog. While in the case of derivatives featuring iodine substituents in the BODIPY core, efficient population of the triplet state is accompanied by a substantial positive shift of the reduction potential compared to pristine BODIPY, o-I-BDP displays phosphorescence and simultaneously maintains the electrochemical properties of unsubstituted BODIPYs. A theoretical investigation was settled to analyze results and rationalize the influence of iodine position on electronic and photophysical properties, with the purpose of preparing a fully organic phosphorescent BODIPY derivative. TD-DFT and spin-orbit coupling calculations shed light on the subtle effects played by the introduction of iodine atom in different positions of BODIPY.


Asunto(s)
Yodo , Fármacos Fotosensibilizantes , Compuestos de Boro/química , Teoría Funcional de la Densidad , Yoduros , Fármacos Fotosensibilizantes/química
10.
Angew Chem Int Ed Engl ; 61(11): e202114981, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-34937125

RESUMEN

Here we report a practical, highly enantioselective photoredox allylation of aldehydes mediated by chiral nickel complexes with commercially available allyl acetate as the allylating agent. The methodology allows the clean stereoselective allylation of aldehydes in good to excellent yields and up to 93 % e.e. using a catalytic amount of NiCl2 (glyme) in the presence of the chiral aminoindanol-derived bis(oxazoline) as the chiral ligand. The photoredox system is constituted by the organic dye 3DPAFIPN and a Hantzsch's ester as the sacrificial reductant. The reaction proceeds under visible-light irradiation (blue LEDs, 456 nm) at 8-12 °C. Compared to other published procedures, no metal reductants (such as Zn or Mn), additives (e.g. CuI) or air-sensitive Ni(COD)2 are necessary for this reaction. Accurate DFT calculations and photophysical experiments have clarified the mechanistic picture of this stereoselective allylation reaction.

11.
Chemistry ; 27(65): 16250-16259, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34431140

RESUMEN

Tetraphenylmethane appended with four pyridylpyridinium units works as a scaffold to self-assemble four ruthenium porphyrins in a tetrahedral shape-persistent giant architecture. The resulting supramolecular structure has been characterised in the solid state by X-ray single crystal analysis and in solution by various techniques. Multinuclear NMR spectroscopy confirms the 1 : 4 stoichiometry with the formation of a highly symmetric structure. The self-assembly process can be monitored by changes of the redox potentials, as well as by modifications in the visible absorption spectrum of the ruthenium porphyrin and by a complete quenching of both the bright fluorescence of the tetracationic scaffold and the weak phosphorescence of the ruthenium porphyrin. An ultrafast photoinduced electron transfer is responsible for this quenching process. The lifetime of the resulting charge separated state (800 ps) is about four times longer in the giant supramolecular structure compared to the model 1 : 1 complex formed by the ruthenium porphyrin and a single pyridylpyridinium unit. Electron delocalization over the tetrameric pyridinium structure is likely to be responsible for this effect.

12.
Org Biomol Chem ; 19(16): 3527-3550, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33908565

RESUMEN

The use of organic dyes to promote organic reactions by photoredox catalysis is continuously expanding and was recently reviewed by Nicewicz. The synthesis of new dyes, their application in flow photoredox reactions, and their use in stereoselective and multicomponent transformations have considerably expanded the repertoire of application of organic dyes in photoredox mediated reactions. The low costs of these dyes, their tailored synthesis and availability in combination with the development of new concepts and careful catalytic cycle design (made possible by the application of fine theoretical investigations and deep understanding) are guiding the widespread application of organic dyes in the metallaphotoredox catalysis area. Developments and recent applications of different metal catalyzed processes mediated by organic dyes are covered by this review.

13.
Faraday Discuss ; 222(0): 8-9, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32490453

RESUMEN

This Faraday Discussion volume is unique in the hundred plus year history of the Faraday Discussion series, being produced at a time of unprecedented circumstances worldwide and without the preceding Faraday Discussion conference having taken place.


Asunto(s)
Infecciones por Coronavirus/diagnóstico , Mediciones Luminiscentes/métodos , Nanoestructuras/química , Neumonía Viral/diagnóstico , Silicio/química , COVID-19 , Humanos , Imagen Óptica , Pandemias , Porosidad
14.
Faraday Discuss ; 222(0): 108-121, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32101208

RESUMEN

When functionalised with amines, silicon nanocrystals (SiNCs) are known to have surface-state emission with loss of colour tunability, low quantum yield and short nanosecond lifetimes. These changes in optical properties are produced by direct amine bonding on the silicon surface. In this article, secondary amine functionalised SiNCs with bright, red (λmax = 750 nm) and long-lived emission (τ ca. 50 µs) are reported for the first time via a three-step synthetic approach. These SiNCs are colloidally stable in several polar solvents and can be further functionalised by reaction with carboxylic acid groups. We proved the feasibility of further functionalization with pyrene butyric acid: ca. 40 pyrene units per nanoparticle were attached via amide bond formation. The resulting hybrid system works as a light-harvesting antenna: excitation of pyrene units at 345 nm results in sensitised emission at 700 nm by the silicon core.

15.
Photochem Photobiol Sci ; 18(9): 2180-2190, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30816403

RESUMEN

The one-photon (1P) and two-photon (2P) absorption properties of three quadrupolar dyes, featuring thiophene as a donor and acceptors of varying strengths, are determined by a combination of experimental and computational methods employing the density functional theory (DFT). The emission shifts in different solvents are well reproduced by time-dependent DFT calculations with the linear response and state specific approaches in the framework of the polarizable continuum model. The calculations show that the energies of both 1P- and 2P-active states decrease with an increase of the strength of the acceptor. The 2P absorption cross-sections predicted by the response theory are accounted for by considering just one intermediate state (S1) in the sum-over-states formulation. For the chromophore featuring the stronger acceptor, the energetic positions of the 1P- and 2P-active states prevent the exploitation of the theoretically predicted very high 2P activity due to the competing 1P absorption into the S1 state.

16.
J Org Chem ; 88(10): 6281-6283, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37203156
17.
Phys Chem Chem Phys ; 20(12): 8071-8076, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29516066

RESUMEN

A mechanism based on the sequential absorption of two photons by the components of a redox couple has been recently proposed for catalysis of the energetically demanding reduction of aryl halides. Here, we analyze the suggested photochemical mechanism of this reaction, which employs perylenediimide (PDI) as a photocatalyst, on the basis of spectroscopic, electrochemical and electron paramagnetic resonance data. Our results indicate that the photoexcited PDI radical anion (*PDI˙-) cannot play the role of a photosensitizer in the aforementioned process. Instead, the reduction of 4'-bromoacetophenone likely involves *PDI˙- decomposition products. The extremely short lifetime of the photoexcited transient species, as *PDI˙-, is a major general limitation for photocatalytic schemes based on sequential two-photon excitation. In order to better understand the potential of such schemes, we discuss them in the context of the Z-scheme in natural photosynthesis.

18.
Angew Chem Int Ed Engl ; 57(19): 5454-5458, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29543370

RESUMEN

The herein reported visible-light-activated catalytic asymmetric [3+2] photocycloadditions between cyclopropanes and alkenes or alkynes provide access to chiral cyclopentanes and cyclopentenes, respectively, in 63-99 % yields and with excellent enantioselectivities of up to >99 % ee. The reactions are catalyzed by a single bis-cyclometalated chiral-at-metal rhodium complex (2-8 mol %) which after coordination to the cyclopropane generates the visible-light-absorbing complex, lowers the reduction potential of the cyclopropane, and provides the asymmetric induction and overall stereocontrol. Enabled by a mild single-electron-transfer reduction of directly photoexcited catalyst/substrate complexes, the presented transformations expand the scope of catalytic asymmetric photocycloadditions to simple mono-acceptor-substituted cyclopropanes affording previously inaccessible chiral cyclopentane and cyclopentene derivatives.

19.
Chemistry ; 23(26): 6380-6390, 2017 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-28263437

RESUMEN

A shape-persistent molecule, featuring four bipyridinium units, has been synthesized that upon reduction undergoes intermolecular pimerization because of the rigid architecture of the molecule. The pimerization process has been investigated by a variety of techniques, such as absorption measurements, EPR spectroscopy, as well as gamma and pulse radiolysis, and compared with the behavior of a model compound. Computational studies have also been performed to support the experimental data. The most interesting feature of the tetramer is that pimerization occurs only above a threshold concentration of monoreduced species, on the contrary to the model compound. Furthermore, there is an increase of the apparent pimerization constant by increasing the concentration of reduced bipyridinium units. These results have been interpreted by the fact that pimerization is favored in the tetrahedrally shaped molecule because of a cooperative mechanism. Each multiply reduced molecule can indeed undergo multiple intermolecular interactions that enhance the stabilization of the system, also leading to hierarchical supramolecular growth. The resulting supramolecular system formed by such intermolecular pimerization should exhibit a diamond-like structure, as suggested by a simplified modeling approach. The intermolecular nature of the pimerization process occurring in the tetramer has been demonstrated by measuring the corresponding bimolecular rate constant by pulsed radiolysis experiments.

20.
Chemistry ; 23(10): 2363-2378, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-27897357

RESUMEN

The synthesis of O-doped polyaromatic hydro- carbons in which two polycyclic aromatic hydrocarbon sub units are bridged through one or two O atoms has been achieved. This includes high-yield ring-closure key steps that, depending on the reaction conditions, result in the formation of furanyl or pyranopyranyl linkages through intramolecular C-O bond formation. Comprehensive photophysical measurements in solution showed that these compounds have exceptionally high emission yields and tunable absorption properties throughout the UV/Vis spectral region. Electrochemical investigations showed that in all cases O annulation increases the electron-donor capabilities by raising the HOMO energy level, whereas the LUMO energy level is less affected. Moreover, third-order nonlinear optical (NLO) measurements on solutions or thin films containing the dyes showed very good values of the second hyperpolarizability. Importantly, poly(methyl methacrylate) films containing the pyranopyranyl derivatives exhibited weak linear absorption and NLO absorption compared to the nonlinearity and NLO refraction, respectively, and thus revealed them to be exceptional organic materials for photonic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA