Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mod Pathol ; 37(5): 100464, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447752

RESUMEN

Extraskeletal myxoid chondrosarcoma (EMC) is an uncommon mesenchymal neoplasm characteristically composed of uniform-appearing round to spindle-shaped cells with eosinophilic cytoplasm and abundant myxoid extracellular matrix. Although the majority of cases harbor a pathognomonic t(9;22) translocation that fuses EWSR1 with the orphan nuclear receptor NR4A3, there are less common variants that partner NR4A3 with TAF15, TCF12, or TFG. By immunohistochemistry, EMC has features of both cartilaginous and neuroendocrine differentiation, as evidenced by inconsistent expression of S100 protein and synaptophysin or INSM1, respectively, in a subset of cases. Given the limitations of available immunohistochemical stains for the diagnosis of EMC, we analyzed genome-wide gene expression microarray data to identify candidate biomarkers based on differential expression in EMC in comparison with other mesenchymal neoplasms. This analysis pointed to CHRNA6 as the gene with the highest relative expression in EMC (96-fold; P = 8.2 × 10-26) and the only gene with >50-fold increased expression in EMC compared with other tumors. Using RNA chromogenic in situ hybridization, we observed strong and diffuse expression of CHRNA6 in 25 cases of EMC, including both EWSR1-rearranged and TAF15-rearranged variants. All examined cases of histologic mimics were negative for CHRNA6 overexpression; however, limited CHRNA6 expression, not reaching a threshold of >5 puncta or 1 aggregate of chromogen in >25% of cells, was observed in 69 of 685 mimics (10.1%), spanning an array of mesenchymal tumors. Taken together, these findings suggest that, with careful interpretation and the use of appropriate thresholds, CHRNA6 RNA chromogenic in situ hybridization is a potentially useful ancillary histologic tool for the diagnosis of EMC.


Asunto(s)
Biomarcadores de Tumor , Condrosarcoma , Hibridación in Situ , Neoplasias de los Tejidos Conjuntivo y Blando , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Condrosarcoma/genética , Condrosarcoma/patología , Condrosarcoma/diagnóstico , Condrosarcoma/metabolismo , Neoplasias de los Tejidos Conjuntivo y Blando/genética , Neoplasias de los Tejidos Conjuntivo y Blando/patología , Neoplasias de los Tejidos Conjuntivo y Blando/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Anciano , Hibridación in Situ/métodos , Adulto , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Neoplasias de Tejido Conjuntivo/genética , Neoplasias de Tejido Conjuntivo/patología , Neoplasias de Tejido Conjuntivo/diagnóstico , Anciano de 80 o más Años , Inmunohistoquímica
2.
Chemistry ; 29(9): e202202578, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36382594

RESUMEN

Four bis[2-{pyrazol-1-yl}-6-{pyrazol-3-yl}pyridine] ligands have been synthesized, with butane-1,4-diyl (L1 ), pyrid-2,6-diyl (L2 ), benzene-1,2-dimethylenyl (L3 ) and propane-1,3-diyl (L4 ) linkers between the tridentate metal-binding domains. L1 and L2 form [Fe2 (µ-L)2 ]X4 (X- =BF4 - or ClO4 - ) helicate complexes when treated with the appropriate iron(II) precursor. Solvate crystals of [Fe2 (µ-L1 )2 ][BF4 ]4 exhibit three different helicate conformations, which differ in the torsions of their butanediyl linker groups. The solvates exhibit gradual thermal spin-crossover, with examples of stepwise switching and partial spin-crossover to a low-temperature mixed-spin form. Salts of [Fe2 (µ-L2 )2 ]4+ are high-spin, which reflects their highly twisted iron coordination geometry. The composition and dynamics of assembly structures formed by iron(II) with L1 -L3 vary with the ligand linker group, by mass spectrometry and 1 H NMR spectroscopy. Gas-phase DFT calculations imply the butanediyl linker conformation in [Fe2 (µ-L1 )2 ]4+ influences its spin state properties, but show anomalies attributed to intramolecular electrostatic repulsion between the iron atoms.

3.
Chemistry ; 27(6): 2082-2092, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33073890

RESUMEN

4-(tert-Butylsulfanyl)-2,6-di(pyrazol-1-yl)pyridine (L) was obtained in low yield from a one-pot reaction of 2,4,6-trifluoropyridine with 2-methylpropane-2-thiolate and sodium pyrazolate in a 1:1:2 ratio. The materials [FeL2 ][BF4 ]2 ⋅solv (1[BF4 ]2 ⋅solv) and [FeL2 ][ClO4 ]2 ⋅solv (1[ClO4 ]2 ⋅solv; solv=MeNO2 , MeCN or Me2 CO) exhibit a variety of structures and spin-state behaviors including thermal spin-crossover (SCO). Solvent loss on heating 1[BF4 ]2 ⋅x MeNO2 (x≈2.3) occurs in two steps. The intermediate phase exhibits hysteretic SCO around 250 K, involving a "reverse-SCO" step in its warming cycle at a scan rate of 5 K min-1 . The reverse-SCO is not observed in a slower 1 K min-1 measurement, however, confirming its kinetic nature. The final product [FeL2 ][BF4 ]2 ⋅0.75 MeNO2 was crystallographically characterized, and shows abrupt but incomplete SCO at 172 K which correlates with disorder of an L ligand. The asymmetric unit of 1[BF4 ]2 ⋅y Me2 CO (y≈1.6) contains five unique complex molecules, four of which undergo gradual SCO in at least two discrete steps. Low-spin 1[ClO4 ]2 ⋅0.5 Me2 CO is not isostructural with its BF4 - congener, and undergoes single-crystal-to-single-crystal solvent loss with a tripling of the crystallographic unit cell volume, while retaining the P 1 ‾ space group. Three other solvate salts undergo gradual thermal SCO. Two of these are isomorphous at room temperature, but transform to different low-temperature phases when the materials are fully low-spin.

4.
Inorg Chem ; 60(19): 14988-15000, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34547208

RESUMEN

Iron(II) complex salts of 2,6-di(1,2,3-triazol-1-yl)pyridine (L1) are unexpectedly unstable in undried solvent. This is explained by the isolation of [Fe(L1)4(H2O)2][ClO4]2 and [Fe(NCS)2(L1)2(H2O)2]·L1, containing L1 bound as a monodentate ligand rather than in the expected tridentate fashion. These complexes associate into 44 grid structures through O-H···N hydrogen bonding; a solvate of a related 44 coordination framework, catena-[Cu(µ-L1)2(H2O)2][BF4]2, is also presented. The isomeric ligands 2,6-di(1,2,3-triazol-2-yl)pyridine (L2) and 2,6-di(1H-1,2,3-triazol-4-yl)pyridine (L3) bind to iron(II) in a more typical tridentate fashion. Solvates of [Fe(L3)2][ClO4]2 are low-spin and diamagnetic in the solid state and in solution, while [Fe(L2)2][ClO4]2 and [Co(L3)2][BF4]2 are fully high-spin. Treatment of L3 with methyl iodide affords 2,6-di(2-methyl-1,2,3-triazol-4-yl)pyridine (L4) and 2-(1-methyl-1,2,3-triazol-4-yl)-6-(2-methyl-1,2,3-triazol-4-yl)pyridine (L5). While salts of [Fe(L5)2]2+ are low-spin in the solid state, [Fe(L4)2][ClO4]2·H2O is high-spin, and [Fe(L4)2][ClO4]2·3MeNO2 exhibits a hysteretic spin transition to 50% completeness at T1/2 = 128 K (ΔT1/2 = 6 K). This transition proceeds via a symmetry-breaking phase transition to an unusual low-temperature phase containing three unique cation sites with high-spin, low-spin, and 1:1 mixed-spin populations. The unusual distribution of the spin states in the low-temperature phase reflects "spin-state frustration" of the mixed-spin cation site by an equal number of high-spin and low-spin nearest neighbors. Gas-phase density functional theory calculations reproduce the spin-state preferences of these and some related complexes. These highlight the interplay between the σ-basicity and π-acidity of the heterocyclic donors in this ligand type, which have opposing influences on the molecular ligand field. The Brønsted basicities of L1-L3 are very sensitive to the linkage isomerism of their triazolyl donors, which explains why their iron complex spin states show more variation than the better-known iron(II)/2,6-dipyrazolylpyridine system.

5.
Inorg Chem ; 60(18): 14336-14348, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34472842

RESUMEN

This report investigates homoleptic iron(II) complexes of thiazolinyl analogues of chiral PyBox tridentate ligands: 2,6-bis(4-phenyl-4,5-dihydrothiazol-2-yl)pyridine (L1Ph), 2,6-bis(4-isopropyl-4,5-dihydrothiazol-2-yl)pyridine (L1iPr), and 2,6-bis(4-tert-butyl-4,5-dihydrothiazol-2-yl)pyridine (L1t-Bu). Crystallographic data imply the larger and more flexible thiazolinyl rings reduce steric clashes between the R substituents in homochiral [Fe((R)-L1R)2]2+ or [Fe((S)-L1R)2]2+ (R = Ph, iPr, or t-Bu), compared to their PyBox (L2R) analogues. Conversely, the larger heterocyclic S atoms are in close contact with the R substituents in heterochiral [Fe((R)-L1Ph)((S)-L1Ph)]2+, giving it a more sterically hindered ligand environment than that in [Fe((R)-L2Ph)((S)-L2Ph)]2+ (L2Ph = 2,6-bis(4-phenyl-4,5-dihydrooxazol-2-yl)pyridine). Preformed [Fe((R)-L1Ph)((S)-L1Ph)]2+ and [Fe((R)-L1iPr)((S)-L1iPr)]2+ do not racemize by ligand redistribution in CD3CN solution, but homochiral [Fe(L1iPr)2]2+ and [Fe(L1t-Bu)2]2+ both undergo partial ligand displacement in that solvent. Homochiral [Fe(L1Ph)2]2+ and [Fe(L1iPr)2]2+ exhibit spin-crossover equilibria in CD3CN, centered at 344 ± 6 K and 277 ± 1 K respectively, while their heterochiral congeners are essentially low-spin within the liquid range of the solvent. These data imply that the diastereomers of [Fe(L1Ph)2]2+ and [Fe(L1iPr)2]2+ show a greater difference in their spin-state behaviors than was previous found for [Fe(L2Ph)2]2+. Gas-phase DFT calculations (B86PW91/def2-SVP) of the [Fe(L1R)2]2+ and [Fe(L2R)2]2+ complexes reproduce most of the observed trends, but they overstabilize the high-spin state of SCO-active [Fe(L1iPr)2]2+ by ca. 1.5 kcal mol-1. This might reflect the influence of intramolecular dispersion interactions on the spin states of these compounds. Attempts to model this with the dispersion-corrected functionals B97-D2 or PBE-D3 were less successful than our original protocol, confirming that the spin states of sterically hindered molecules are a challenging computational problem.

6.
Nature ; 524(7563): 69-73, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26245580

RESUMEN

Only three elements are ferromagnetic at room temperature: the transition metals iron, cobalt and nickel. The Stoner criterion explains why iron is ferromagnetic but manganese, for example, is not, even though both elements have an unfilled 3d shell and are adjacent in the periodic table: according to this criterion, the product of the density of states and the exchange integral must be greater than unity for spontaneous spin ordering to emerge. Here we demonstrate that it is possible to alter the electronic states of non-ferromagnetic materials, such as diamagnetic copper and paramagnetic manganese, to overcome the Stoner criterion and make them ferromagnetic at room temperature. This effect is achieved via interfaces between metallic thin films and C60 molecular layers. The emergent ferromagnetic state exists over several layers of the metal before being quenched at large sample thicknesses by the material's bulk properties. Although the induced magnetization is easily measurable by magnetometry, low-energy muon spin spectroscopy provides insight into its distribution by studying the depolarization process of low-energy muons implanted in the sample. This technique indicates localized spin-ordered states at, and close to, the metal-molecule interface. Density functional theory simulations suggest a mechanism based on magnetic hardening of the metal atoms, owing to electron transfer. This mechanism might allow for the exploitation of molecular coupling to design magnetic metamaterials using abundant, non-toxic components such as organic semiconductors. Charge transfer at molecular interfaces may thus be used to control spin polarization or magnetization, with consequences for the design of devices for electronic, power or computing applications (see, for example, refs 6 and 7).

7.
Inorg Chem ; 59(13): 8657-8662, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32525669

RESUMEN

A series of six-coordinate [Cu(L)L1][BF4]2 (L1 = 2,6-bis{1-oxyl-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-2-yl}pyridine) complexes are reported. Ferromagnetic coupling between the Cu and L1 ligand spins is enhanced by an L coligand with distal methyl substituents, which is attributed to a sterically induced suppression of its Jahn-Teller distortion.

8.
Proc Natl Acad Sci U S A ; 114(22): 5583-5588, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28507160

RESUMEN

Charge transfer at metallo-molecular interfaces may be used to design multifunctional hybrids with an emergent magnetization that may offer an eco-friendly and tunable alternative to conventional magnets and devices. Here, we investigate the origin of the magnetism arising at these interfaces by using different techniques to probe 3d and 5d metal films such as Sc, Mn, Cu, and Pt in contact with fullerenes and rf-sputtered carbon layers. These systems exhibit small anisotropy and coercivity together with a high Curie point. Low-energy muon spin spectroscopy in Cu and Sc-C60 multilayers show a quick spin depolarization and oscillations attributed to nonuniform local magnetic fields close to the metallo-carbon interface. The hybridization state of the carbon layers plays a crucial role, and we observe an increased magnetization as sp3 orbitals are annealed into sp2-π graphitic states in sputtered carbon/copper multilayers. X-ray magnetic circular dichroism (XMCD) measurements at the carbon K edge of C60 layers in contact with Sc films show spin polarization in the lowest unoccupied molecular orbital (LUMO) and higher π*-molecular levels, whereas the dichroism in the σ*-resonances is small or nonexistent. These results support the idea of an interaction mediated via charge transfer from the metal and dz-π hybridization. Thin-film carbon-based magnets may allow for the manipulation of spin ordering at metallic surfaces using electrooptical signals, with potential applications in computing, sensors, and other multifunctional magnetic devices.

9.
J Am Chem Soc ; 141(47): 18759-18770, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31687818

RESUMEN

Treatment of Fe[BF4]2·6H2O with 4,6-di(pyrazol-1-yl)-1H-pyrimid-2-one (HL1) or 4,6-di(4-methylpyrazol-1-yl)-1H-pyrimid-2-one (HL2) affords solvated crystals of [{FeIII(OH2)6}⊂FeII8(µ-L)12][BF4]7 (1, HL = HL1; 2, HL = HL2). The centrosymmetric complexes contain a cubic arrangement of iron(II) centers, with bis-bidentate [L]- ligands bridging the edges of the cube. The encapsulated [Fe(OH2)6]3+ moiety templates the assembly through 12 O-H···O hydrogen bonds to the [L]- hydroxylate groups. All four unique iron(II) ions in the cages are crystallographically high-spin at 250 K, but they undergo a gradual high → low spin-crossover on cooling, which is predominantly centered on one iron(II) site and its symmetry-related congener. This was confirmed by magnetic susceptibility data, light-induced excited spin state trapping (LIESST) effect measurements, and, for 1, Mössbauer spectroscopy and diffuse reflectance data. The clusters are stable in MeCN solution, and 1 remains high-spin above 240 K in that solvent. The cubane assembly was not obtained from reactions using other iron(II) salts or 4,6-di(pyrazol-1-yl)pyrimidine ligands, highlighting the importance of hydrogen bonding in templating the cubane assembly.

10.
Chemistry ; 24(20): 5055-5059, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29111607

RESUMEN

Crystalline [FeL2 ][BF4 ]2 ⋅Me2 CO (L=N-[2,6-di{pyrazol-1-yl}pyrid-4-yl]acetamide) is high-spin at room temperature, and undergoes an abrupt, hysteretic spin-crossover at T1/2 =137 K (ΔT1/2 =14 K) that proceeds to about 50 % completeness. This is associated with a crystallographic phase transition, from phase 1 (P21 /c, Z=4) to phase 2 (P21 , Z=48). The cations associate into chains in the crystal through weak intermolecular π⋅⋅⋅π interactions. Phase 2 contains a mixture of high-spin and low-spin molecules, which are grouped into triads along these chains. The perchlorate salt [FeL2 ][ClO4 ]2 ⋅Me2 CO also adopts phase 1 at room temperature but undergoes a different phase transition near 135 K to phase 3 (P21 /c, Z=8) without a change in spin state.

11.
Inorg Chem ; 57(21): 13761-13771, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30351089

RESUMEN

Two series of 4-(alkoxyphenyl) 2,6-bis{pyrazol-1-yl}pyridine-4-carboxyate (L3R) or alkyl 2,6-bis{pyrazol-1-yl}pyridine-4-carboxyate (L4R) esters have been synthesized and complexed to iron(II), where R = C nH2 n+1 ( n = 6, 12, 14, 16, 18); two other derivatives related to L3R are also reported. While the solid [Fe(L4R)2][BF4]2 compounds are isostructural by powder diffraction and show similar spin state behaviors, the [Fe(L3R)2][BF4]2 series shows more varied structures and magnetic properties. This was confirmed by solvated crystal structures of [Fe(L3R)2][BF4]2 with n = 6, 14, 16, which all adopt the P1̅ space group but show significantly different side-chain conformations and/or crystal packing. The solid complexes are mostly low spin at room temperature, with many exhibiting the onset of thermal spin crossover (SCO) upon warming. Heating the complexes with n ≥ 14 significantly above their SCO temperature transforms them irreversibly into a predominantly high spin state, which is accompanied by structure changes and loss of crystallinity by powder diffraction. These transformations do not coincide with lattice solvent loss and may reflect melting and refreezing of their alkyl chain conformations during the thermal cycle. Four of the complexes exhibit SCO in CD3CN solution with T1/2 = 273-277 K, which is apparently unaffected by their alkyl chain substituents.

12.
Int J Mol Sci ; 19(8)2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30096801

RESUMEN

Gold nanoparticles-enabled intracellular surface-enhanced Raman spectroscopy (SERS) provides a sensitive and promising technique for single cell analysis. Compared with spherical gold nanoparticles, gold nanoflowers, i.e., flower-shaped gold nanostructures, can produce a stronger SERS signal. Current exploration of gold nanoflowers for intracellular SERS has been considerably limited by the difficulties in preparation, as well as background signal and cytotoxicity arising from the surfactant capping layer. Recently, we have developed a facile and surfactant-free method for fabricating hollow-channel gold nanoflowers (HAuNFs) with great single-particle SERS activity. In this paper, we investigate the cellular uptake and cytotoxicity of our HAuNFs using a RAW 264.7 macrophage cell line, and have observed effective cellular internalization and low cytotoxicity. We have further engineered our HAuNFs into SERS-active tags, and demonstrated the functionality of the obtained tags as trimodal nanoprobes for dark-field and fluorescence microscopy imaging, together with intracellular SERS.


Asunto(s)
Citoplasma/química , Nanopartículas del Metal/química , Nanoestructuras/química , Análisis de la Célula Individual , Citoplasma/metabolismo , Oro/química , Espectrometría Raman , Resonancia por Plasmón de Superficie , Propiedades de Superficie
13.
Chemistry ; 23(38): 9067-9075, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28387453

RESUMEN

The following iron(II) complexes of 2,6-bis(oxazolinyl)pyridine (PyBox; LH ) derivatives are reported: [Fe(LH )2 ][ClO4 ]2 (1); [Fe((R)-LMe )2 ][ClO4 ]2 ((R)-2; LMe =2,6-bis{4-methyloxazolinyl}pyridine); [Fe((R)-LPh )2 ][ClO4 ]2 ((R)-3) and [Fe((R)-LPh )((S)-LPh )][ClO4 ]2 ((RS)-3; LPh =2,6-bis{4-phenyloxazolinyl}pyridine); and [Fe((R)-LiPr )2 ][ClO4 ]2 ((R)-4) and [Fe((R)-LiPr )((S)-LiPr )][ClO4 ]2 ((RS)-4; LiPr =2,6-bis{4-isopropyloxazolinyl}pyridine). Solid (R)-3⋅MeNO2 exhibits an unusual very gradual, but discontinuous thermal spin-crossover with an approximate T1/2 of 350 K. The discontinuity around 240 K lies well below T1/2 , and is unconnected to a crystallographic phase change occurring at 170 K. Rather, it can be correlated with a gradual ordering of the ligand conformation as the temperature is raised. The other solid compounds either exhibit spin-crossover above room temperature (1 and (RS)-3), or remain high-spin between 5-300 K [(R)-2, (R)-4 and (RS)-4]. Homochiral (R)-3 and (R)-4 exhibit more twisted ligand conformations and coordination geometries than their heterochiral isomers, which can be attributed to steric clashes between ligand substituents [(R)-3]; or, between the isopropyl substituents of one ligand and the backbone of the other ((R)-4). In solution, (RS)-3 retains its structural integrity but (RS)-4 undergoes significant racemization through ligand redistribution by 1 H NMR. (R)-4 and (RS)-4 remain high-spin in solution, whereas the other compounds all undergo spin-crossover equilibria. Importantly, T1/2 for (R)-3 (244 K) is 34 K lower than for (RS)-3 (278 K) in CD3 CN, which is the first demonstration of chiral discrimination between metal ion spin states in a molecular complex.

14.
Inorg Chem ; 56(6): 3144-3148, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28244751

RESUMEN

The Fe[BF4]2 complex of the Schiff base podand tris[4-(thiazol-4-yl)-3-aza-3-butenyl]amine exhibits gradual thermal spin-crossover with T1/2 ≈ 208 K in the solid state. A weak discontinuity in the magnetic susceptibility curve at 190 K is associated with a reentrant symmetry-breaking transition involving a trebling of the unit cell volume (from P21/c, Z = 4, to P21, Z = 12). The intermediate phase contains six independent cations in puckered layers of low-spin, and high-spin or mixed-spin, molecules with an overall 30% high-spin population at 175 K.

15.
Chemistry ; 22(5): 1789-99, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26691772

RESUMEN

The complex [FeL2][BF4]2 (1; L=4-(isopropylsulfanyl)-2,6-di(pyrazol-1-yl)pyridine) forms solvate crystals 1⋅solv (solv=MeNO2, MeCN, EtCN, or Me2 CO). Most of these materials lose their solvent sluggishly on heating. However, heating 1⋅MeNO2 at 450 K, or storing 1⋅EtCN under ambient conditions, leads to single-crystal to single-crystal exchange of the organic solvent for atmospheric moisture, forming 1⋅H2O. Solvent-free 1 (1⋅sf) can be generated in situ by annealing 1⋅H2O at 370 K in the diffractometer or magnetometer. The different forms of 1 are isostructural (P21 /c, Z=4) and most of them exhibit spin-crossover (SCO) at 141 ≤ T1/2 ≤ 212 K, depending on their solvent content. The exception is the EtCN solvate, whose pristine crystals remain high-spin between 3-300 K. The cooperativity of the spin-transitions depends on the solvent, ranging from gradual and incomplete when solv=acetone to abrupt with 17 K hysteresis when solv=MeCN. Our previously proposed relationship between molecular structure and SCO explains some of these observations, but there is no single structural feature that correlates with SCO in all the 1⋅solv materials. However, changes to the unit cell dimensions during SCO differ significantly between the solvates, and correlate with the SCO cooperativity. In particular, the percentage change in unit cell volume during SCO for the most cooperative material, 1⋅MeCN, is 10 times smaller than for the other 1⋅solv crystals.

16.
Anal Bioanal Chem ; 408(24): 6589-98, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27438717

RESUMEN

Chemical composition, size and structure of the nanoparticle are required to describe nanoceria. Nanoparticles of similar size and Ce(III) content might exhibit different chemical behaviour due to their differences in structure. A simple and direct procedure based on affordable techniques for all the laboratories is presented in this paper. The combination of Raman and UV-vis spectroscopy and particle impact coulometry (PIC) allows the characterization of nanoceria of small size from 4 to 65 nm at a concentration from micromolar to nanomolar, a concentration range suitable for the analysis of lab-prepared or commercial nanoparticle suspensions, but too high for most analytical purposes aimed at nanoparticle monitoring. While the PIC limits of size detection are too high to observe small nanoparticles unless catalytic amplification is used, the method provides a simple means to study aggregation of nanoparticles in the media they are needed to be dispersed for each application. Raman spectroscopy provided information about structure of the nanoparticle, and UV-vis about their chemical behaviour against some common reducing and oxidizing agents. Graphical Abstract To characterize nanoceria it is necessary to provide information about the shape, size and structure of the nanoparticles as well as the chemical composition.

17.
Nano Lett ; 15(1): 45-50, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25531537

RESUMEN

Nanostructured materials often have properties widely different from bulk, imposed by quantum limits to a physical property of the material. This includes, for example, superparamagnetism and quantized conductance, but original properties such as magnetoresistance in nonmagnetic molecular structures may also emerge. In this Letter, we report on the atomic manipulation of platinum nanocontacts in order to induce magnetoresistance. Platinum is a paramagnetic 5d metal, but atomic chains of this material have been predicted to be magnetically ordered with a large anisotropy. Remarkably, we find that a gas flow stabilizes Pt atomic structures in a break junction experiment, where we observe extraordinary resistance changes over 30,000% in a temperature range up to 77 K. Simulations indicate that this behavior may stem from a previously unknown magnetically ordered, low-energy state in platinum oxide atomic chains. This is supported by measurements in Pt/PtOx superlattices revealing the presence of a ferromagnetic moment. These properties open new paths of research for atomic scale "dirty" magnetic sensors and quantum devices.

18.
Chemistry ; 21(12): 4805-16, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25641549

RESUMEN

Crystalline [Fe(bppSMe)2][BF4]2 (1; bppSMe = 4-(methylsulfanyl)-2,6-di(pyrazol-1-yl)pyridine) undergoes an abrupt spin-crossover (SCO) event at 265±5 K. The crystals also undergo a separate phase transition near 205 K, involving a contraction of the unit-cell a axis to one-third of its original value (high-temperature phase 1; Pbcn, Z = 12; low-temperature phase 2; Pbcn, Z = 4). The SCO-active phase 1 contains two unique molecular environments, one of which appears to undergo SCO more gradually than the other. In contrast, powder samples of 1 retain phase 1 between 140-300 K, although their SCO behaviour is essentially identical to the single crystals. The compounds [Fe(bppBr)2][BF4]2 (2; bppBr = 4-bromo-2,6-di(pyrazol-1-yl)pyridine) and [Fe(bppI)2][BF4]2 (3; bppI = 4-iodo-2,6-di(pyrazol-1-yl)-pyridine) exhibit more gradual SCO near room temperature, and adopt phase 2 in both spin states. Comparison of 1-3 reveals that the more cooperative spin transition in 1, and its separate crystallographic phase transition, can both be attributed to an intermolecular steric interaction involving the methylsulfanyl substituents. All three compounds exhibit the light-induced excited-spin-state trapping (LIESST) effect with T(LIESST = 70-80 K), but show complicated LIESST relaxation kinetics involving both weakly cooperative (exponential) and strongly cooperative (sigmoidal) components.

19.
Inorg Chem ; 54(2): 682-93, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25563430

RESUMEN

Reaction of 2,6-difluoropyridine with 2 equiv of indazole and NaH at room temperature affords a mixture of 2,6-bis(indazol-1-yl)pyridine (1-bip), 2-(indazol-1-yl)-6-(indazol-2-yl)pyridine (1,2-bip), and 2,6-bis(indazol-2-yl)pyridine (2-bip), which can be separated by solvent extraction. A two-step procedure using the same conditions also affords both 2-(indazol-1-yl)-6-(pyrazol-1-yl)pyridine (1-ipp) and 2-(indazol-2-yl)-6-(pyrazol-1-yl)pyridine (2-ipp). These are all annelated analogues of 2,6-di(pyrazol-1-yl)pyridine, an important ligand for spin-crossover complexes. Iron(II) complexes [Fe(1-bip)2](2+), [Fe(1,2-bip)2](2+), and [Fe(1-ipp)2](2+) are low-spin at room temperature, reflecting sterically imposed conformational rigidity of the 1-indazolyl ligands. In contrast, the 2-indazolyl complexes [Fe(2-bip)2](2+) and [Fe(2-ipp)2](2+) are high-spin in solution at room temperature, whereas salts of [Fe(2-bip)2](2+) exhibit thermal spin transitions in the solid state. Notably, [Fe(2-bip)2][BF4]2·2MeNO2 adopts a terpyridine embrace lattice structure and undergoes a spin transition near room temperature after annealing, resulting in thermal hysteresis that is wider than previously observed for this structure type (T1/2 = 266 K, ΔT = 16-20 K). This reflects enhanced mechanical coupling between the cations in the lattice through interdigitation of their ligand arms, which supports a previously proposed structure/function relationship for spin-crossover materials with this form of crystal packing. All of the compounds in this work exhibit blue fluorescence in solution under ambient conditions. In most cases, the ligand-based emission maxima are slightly red shifted upon complexation, but there is no detectable correlation between the emission maximum and the spin state of the iron centers.

20.
Inorg Chem ; 54(13): 6319-30, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26351707

RESUMEN

The synthesis of 4-methyl-2,6-di(pyrazol-1-yl)pyridine (L) and four salts of [FeL2]X2 (X­ = BF(4)(­), 1; X­ = ClO(4)(­), 2; X­ = PF(6)(­), 3; X­ = CF3SO(3)(­), 4) are reported. Powder samples of 1 and 2 both exhibit abrupt, hysteretic spin-state transitions on cooling, with T(1/2)↓ = 204 and T(1/2)↑ = 209 K (1), and T(1/2)↓ = 175 and T(1/2)↑ = 193 K (2). The 18 K thermal hysteresis loop for 2 is unusually wide for a complex of this type. Single crystal structures of 2 show it to exhibit a Jahn­Teller-distorted six-coordinate geometry in its high-spin state, which would normally inhibit spin-crossover. Bulk samples of 1 and 2 are isostructural by X-ray powder diffraction, and undergo a crystallographic phase change during their spin-transitions. At temperatures below T(1/2), exposing both compounds to 10(­5) Torr pressure inside the powder diffractometer causes a reversible transformation back to the high-temperature crystal phase. Consideration of thermodynamic data implies this cannot be accompanied by a low → high spin-state change, however. Both compounds also exhibit the LIESST effect, with 2 exhibiting an unusually high T(LIESST) of 112 K. The salts 3 and 4 are respectively high-spin and low-spin between 3 and 300 K, with crystalline 3 exhibiting a more pronounced version of the same Jahn­Teller distortion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA