Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Biochem Funct ; 40(7): 706-717, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35981137

RESUMEN

The chromosomal translocation t(4;11)(q21;q23), a hallmark of an aggressive form of acute lymphoblastic leukemia (ALL), encodes mixed-lineage leukemia (MLL)-AF4 oncogenic chimera that triggers aberrant transcription of genes involved in lymphocyte differentiation, including HOXA9 and MEIS1. The scaffold protein 14-3-3θ, which promotes the binding of MLL-AF4 to the HOXA9 promoter, is a target of MiR-27a, a tumor suppressor in different human leukemia cell types. We herein study the role of MiR-27a in the pathogenesis of t(4;11) ALL. Reverse transcription quantitative PCR (qPCR) reveals that MiR-27a and 14-3-3θ expression is inversely correlated in t(4;11) ALL cell lines; interestingly, MiR-27a relative expression is significantly lower in patients affected by t(4;11) ALL than in patients affected by the less severe t(12;21) leukemia. In t(4;11) leukemia cells, ectopic expression of MiR-27a decreases protein level of 14-3-3θ and of the key transcription factor RUNX1. We show for the first time that MiR-27a also targets AF4 and MLL-AF4; in agreement, MiR-27a overexpression strongly reduces AF4 and MLL-AF4 protein levels in RS4;11 cells. Consequent to AF4 and MLL-AF4 downregulation, MiR-27a overexpression negatively affects transcription of HOXA9 and MEIS1 in different t(4;11) leukemia cell lines. In agreement, we show through chromatin immunoprecipitation experiments that MiR-27a overexpression impairs the binding of MLL-AF4 to the HOXA9 promoter. Lastly, we found that MiR-27a overexpression decreases viability, proliferation, and clonogenicity of t(4;11) cells, whereas it enhances their apoptotic rate. Overall, our study identifies the first microRNAthat strikes in one hit four crucial drivers of blast transformation in t(4;11) leukemia. Therefore, MiR-27a emerges as a new promising therapeutic target for this aggressive and poorly curable form of leukemia.


Asunto(s)
MicroARNs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Humanos , Activación de Linfocitos , MicroARNs/genética , MicroARNs/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología
2.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35269564

RESUMEN

Omics-based technologies have been largely adopted during this unprecedented global COVID-19 pandemic, allowing the scientific community to perform research on a large scale to understand the pathobiology of the SARS-CoV-2 infection and its replication into human cells. The application of omics techniques has been addressed to every level of application, from the detection of mutations, methods of diagnosis or monitoring, drug target discovery, and vaccine generation, to the basic definition of the pathophysiological processes and the biochemical mechanisms behind the infection and spread of SARS-CoV-2. Thus, the term COVIDomics wants to include those efforts provided by omics-scale investigations with application to the current COVID-19 research. This review summarizes the diverse pieces of knowledge acquired with the application of COVIDomics techniques, with the main focus on proteomics and metabolomics studies, in order to capture a common signature in terms of proteins, metabolites, and pathways dysregulated in COVID-19 disease. Exploring the multiomics perspective and the concurrent data integration may provide new suitable therapeutic solutions to combat the COVID-19 pandemic.


Asunto(s)
COVID-19/metabolismo , Metabolómica/métodos , Proteoma/metabolismo , Proteómica/métodos , COVID-19/epidemiología , COVID-19/virología , Cromatografía Liquida/métodos , Interacciones Huésped-Patógeno , Humanos , Pandemias , SARS-CoV-2/fisiología , Espectrometría de Masas en Tándem/métodos
3.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36012682

RESUMEN

Bardet-Biedl syndrome (BBS) is a rare autosomal recessive ciliopathy resulting in multiple organ dysfunctions, including chronic kidney disease (CKD). Despite the recent progress in the 'ciliopathy' field, there is still little information on the mechanisms underlying renal disease. To elucidate these pathomechanisms, we conducted a translational study, including (i) the characterization of the urine metabolomic pattern of BBS patients and controls in a pilot and confirmation study and (ii) the proteomic analysis of the BBS10 interactome, one of the major mutated BBS genes in patients, in a renal-epithelial-derived cell culture model. The urine metabolomic fingerprinting of BBS patients differed from controls in both pilot and confirmation studies, demonstrating an increased urinary excretion of several monocarboxylates, including lactic acid (LA), at both early and late CKD stages. Increased urine LA was detected in the absence of both increased plasmatic LA levels and generalized proximal tubular dysfunction, suggesting a possible renal-specific defective handling. The inner medulla renal epithelial (IMCD3) cell line, where Bbs10 was stably invalidated, displayed an increased proliferative rate, increased ATP production, and an up-regulation of aerobic glycolysis. A mass spectrometry-based analysis detected several putative BBS10 interactors in vitro, indicating a potential role of BBS10 in several biological processes, including renal metabolism, RNA processing, and cell proliferation. The present study suggests that the urine metabolomic pattern of BBS patients may reflect intra-renal metabolic aberrations. The analysis of BBS10 interactors unveils possible novel functions, including cell metabolism.


Asunto(s)
Síndrome de Bardet-Biedl , Chaperoninas , Insuficiencia Renal Crónica , Síndrome de Bardet-Biedl/genética , Chaperoninas/genética , Humanos , Mutación , Proteómica
4.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924850

RESUMEN

The chromosomal translocation t(4;11) marks an infant acute lymphoblastic leukemia associated with dismal prognosis. This rearrangement leads to the synthesis of the MLL-AF4 chimera, which exerts its oncogenic activity by upregulating transcription of genes involved in hematopoietic differentiation. Crucial for chimera's aberrant activity is the recruitment of the AF4/ENL/P-TEFb protein complex. Interestingly, a molecular interactor of AF4 is fibroblast growth factor receptor 2 (FGFR2). We herein analyze the role of FGFR2 in the context of leukemia using t(4;11) leukemia cell lines. We revealed the interaction between MLL-AF4 and FGFR2 by immunoprecipitation, western blot, and immunofluorescence experiments; we also tested the effects of FGFR2 knockdown, FGFR2 inhibition, and FGFR2 stimulation on the expression of the main MLL-AF4 target genes, i.e., HOXA9 and MEIS1. Our results show that FGFR2 and MLL-AF4 interact in the nucleus of leukemia cells and that FGFR2 knockdown, which is associated with decreased expression of HOXA9 and MEIS1, impairs the binding of MLL-AF4 to the HOXA9 promoter. We also show that stimulation of leukemia cells with FGF2 increases nuclear level of FGFR2 in its phosphorylated form, as well as HOXA9 and MEIS1 expression. In contrast, preincubation with the ATP-mimetic inhibitor PD173074, before FGF2 stimulation, reduced FGFR2 nuclear amount and HOXA9 and MEIS1 transcript level, thereby indicating that MLL-AF4 aberrant activity depends on the nuclear availability of FGFR2. Overall, our study identifies FGFR2 as a new and promising therapeutic target in t(4;11) leukemia.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Línea Celular Tumoral , Factor 2 de Crecimiento de Fibroblastos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Translocación Genética
5.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34502454

RESUMEN

COVID-19 is a global threat that has spread since the end of 2019, causing severe clinical sequelae and deaths, in the context of a world pandemic. The infection of the highly pathogenetic and infectious SARS-CoV-2 coronavirus has been proven to exert systemic effects impacting the metabolism. Yet, the metabolic pathways involved in the pathophysiology and progression of COVID-19 are still unclear. Here, we present the results of a mass spectrometry-based targeted metabolomic analysis on a cohort of 52 hospitalized COVID-19 patients, classified according to disease severity as mild, moderate, and severe. Our analysis defines a clear signature of COVID-19 that includes increased serum levels of lactic acid in all the forms of the disease. Pathway analysis revealed dysregulation of energy production and amino acid metabolism. Globally, the variations found in the serum metabolome of COVID-19 patients may reflect a more complex systemic perturbation induced by SARS-CoV-2, possibly affecting carbon and nitrogen liver metabolism.


Asunto(s)
Biomarcadores/sangre , Carbono/metabolismo , Hígado/metabolismo , Metaboloma , Nitrógeno/metabolismo , Aminoácidos/metabolismo , COVID-19/sangre , COVID-19/patología , COVID-19/virología , Citocinas/sangre , Análisis Discriminante , Humanos , Análisis de los Mínimos Cuadrados , Redes y Vías Metabólicas/genética , Metabolómica/métodos , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad
6.
Small ; 16(36): e1907693, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32643290

RESUMEN

Current investigations into hazardous nanoparticles (i.e., nanotoxicology) aim to understand the working mechanisms that drive toxicity. This understanding has been used to predict the biological impact of the nanocarriers as a function of their synthesis, material composition, and physicochemical characteristics. It is particularly critical to characterize the events that immediately follow cell stress resulting from nanoparticle internalization. While reactive oxygen species and activation of autophagy are universally recognized as mechanisms of nanotoxicity, the progression of these phenomena during cell recovery has yet to be comprehensively evaluated. Herein, primary human endothelial cells are exposed to controlled concentrations of polymer-functionalized silica nanoparticles to induce lysosomal damage and achieve cytosolic delivery. In this model, the recovery of cell functions lost following endosomal escape is primarily represented by changes in cell distribution and the subsequent partitioning of particles into dividing cells. Furthermore, multilamellar bodies are found to accumulate around the particles, demonstrating progressive endosomal escape. This work provides a set of biological parameters that can be used to assess cell stress related to nanoparticle exposure and the subsequent recovery of cell processes as a function of endosomal escape.


Asunto(s)
Células Endoteliales , Nanopartículas , Polímeros , Dióxido de Silicio , Línea Celular , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Modelos Biológicos , Nanopartículas/metabolismo , Nanopartículas/toxicidad , Polímeros/química , Dióxido de Silicio/toxicidad
7.
Int J Mol Sci ; 21(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679819

RESUMEN

Methylmalonic acidemia (MMA) is a rare inborn error of metabolism caused by deficiency of the methylmalonyl-CoA mutase (MUT) enzyme. Downstream MUT deficiency, methylmalonic acid accumulates together with toxic metabolites from propionyl-CoA and other compounds upstream of the block in the enzyme pathway. The presentation is with life-threatening acidosis, respiratory distress, brain disturbance, hyperammonemia, and ketosis. Survivors develop poorly understood multi-organ damage, notably to the brain and kidneys. The HEK 293 cell line was engineered by CRISPR/Cas9 technology to knock out the MUT gene (MUT-KO). Shotgun label-free quantitative proteomics and bioinformatics analyses revealed potential damaging biological processes in MUT-deficient cells. MUT-KO induced alteration of cellular architecture and morphology, and ROS overproduction. We found the alteration of proteins involved in cytoskeleton and cell adhesion organization, cell trafficking, mitochondrial, and oxidative processes, as validated by the regulation of VIM, EXT2, SDC2, FN1, GLUL, and CHD1. Additionally, a cell model of MUT-rescuing was developed in order to control the specificity of MUT-KO effects. Globally, the proteomic landscape of MUT-KO suggests the cell model to have an increased susceptibility to propionate- and H2O2-induced stress through an impairment of the mitochondrial functionality and unbalances in the oxidation-reduction processes.


Asunto(s)
Metilmalonil-CoA Mutasa/metabolismo , Estrés Oxidativo , Citoesqueleto/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Propionatos/metabolismo , Proteómica
8.
Medicina (Kaunas) ; 56(9)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878319

RESUMEN

Searching for new cancer-related biomarkers is a key priority for the early detection of solid tumors, such as colorectal cancer (CRC), in clinically relevant biological fluids. The cell line and/or tumor tissue secretome represents a valuable resource for discovering novel protein markers secreted by cancer cells. The advantage of a secretome analysis is the reduction of the large dynamic range characterizing human plasma/serum, and the simultaneous enrichment of low abundance cancer-secreted proteins, thereby overcoming the technical limitations underlying the direct search in blood samples. In this review, we provided a comprehensive overview of recent studies on the CRC secretome for biomarker discovery, focusing both on methodological and technical aspects of secretome proteomic approaches and on biomarker-independent validation in CRC patient samples (blood and tissues). Secretome proteomics are mainly based on LC-MS/MS analyses for which secretome samples are either in-gel or in-solution trypsin-digested. Adequate numbers of biological and technical replicates are required to ensure high reproducibility and robustness of the secretome studies. Moreover, another major challenge is the accuracy of proteomic quantitative analysis performed by label-free or labeling methods. The analysis of differentially expressed proteins in the CRC secretome by using bioinformatic tools allowed the identification of potential biomarkers for early CRC detection. In this scenario, this review may help to follow-up the recent secretome studies in order to select promising circulating biomarkers to be validated in larger screenings, thereby contributing toward a complete translation in clinical practice.


Asunto(s)
Neoplasias Colorrectales , Proteómica , Biomarcadores de Tumor , Cromatografía Liquida , Neoplasias Colorrectales/diagnóstico , Humanos , Proteoma , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
9.
Int J Mol Sci ; 19(8)2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30111747

RESUMEN

The insulin-like growth factor (IGF) system, which is constituted by the IGF-1 and IGF-2 peptide hormones, their corresponding receptors and several IGF binding proteins, is involved in physiological and pathophysiological processes. The IGF system promotes cancer proliferation/survival and its signaling induces the epithelial-mesenchymal transition (EMT) phenotype, which contributes to the migration, invasiveness, and metastasis of epithelial tumors. These cancers share two major IGF-1R signaling transduction pathways, PI3K/AKT and RAS/MEK/ERK. However, as far as we could review at this time, each type of cancer cell undergoes EMT through tumor-specific routes. Here, we review the tumor-specific molecular signatures of IGF-1-mediated EMT in breast, lung, and gastric cancers.


Asunto(s)
Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal , Factor I del Crecimiento Similar a la Insulina/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Gástricas/patología , Animales , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Factor I del Crecimiento Similar a la Insulina/análisis , Neoplasias Pulmonares/metabolismo , Receptor IGF Tipo 1/análisis , Receptor IGF Tipo 1/metabolismo , Transducción de Señal , Neoplasias Gástricas/metabolismo
10.
Int J Mol Sci ; 19(11)2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30428564

RESUMEN

Methylmalonic acidemias (MMAs) are inborn errors of metabolism due to the deficient activity of methylmalonyl-CoA mutase (MUT). MUT catalyzes the formation of succinyl-CoA from methylmalonyl-CoA, produced from propionyl-CoA catabolism and derived from odd chain fatty acids ß-oxidation, cholesterol, and branched-chain amino acids degradation. Increased methylmalonyl-CoA levels allow for the presymptomatic diagnosis of the disease, even though no approved therapies exist. MMA patients show hyperammonemia, ketoacidosis, lethargy, respiratory distress, cognitive impairment, and hepatomegaly. The long-term consequences concern neurologic damage and terminal kidney failure, with little chance of survival. The cellular pathways affected by MUT deficiency were investigated using a quantitative proteomics approach on a cellular model of MUT knockdown. Currently, a consistent reduction of the MUT protein expression was obtained in the neuroblastoma cell line (SH-SY5Y) by using small-interfering RNA (siRNA) directed against an MUT transcript (MUT siRNA). The MUT absence did not affect the cell viability and apoptotic process in SH-SY5Y. In the present study, we evaluate and quantify the alterations in the protein expression profile as a consequence of MUT-silencing by a mass spectrometry-based label-free quantitative analysis, using two different quantitative strategies. Both quantitative methods allowed us to observe that the expression of the proteins involved in mitochondrial oxido-reductive homeostasis balance was affected by MUT deficiency. The alterated functional mitochondrial activity was observed in siRNA_MUT cells cultured with a propionate-supplemented medium. Finally, alterations in the levels of proteins involved in the metabolic pathways, like carbohydrate metabolism and lipid metabolism, were found.


Asunto(s)
Metilmalonil-CoA Mutasa/genética , Neuroblastoma/metabolismo , Proteómica/métodos , Apoptosis/genética , Apoptosis/fisiología , Línea Celular Tumoral , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Biología Computacional , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Citometría de Flujo , Humanos , Cetosis/genética , Cetosis/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Neuroblastoma/genética , ARN Interferente Pequeño/genética
11.
Cell Biosci ; 14(1): 63, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760822

RESUMEN

BACKGROUND: Methylmalonic acidemia (MMA) is a rare inborn error of propionate metabolism caused by deficiency of the mitochondrial methylmalonyl-CoA mutase (MUT) enzyme. As matter of fact, MMA patients manifest impairment of the primary metabolic network with profound damages that involve several cell components, many of which have not been discovered yet. We employed cellular models and patients-derived fibroblasts to refine and uncover new pathologic mechanisms connected with MUT deficiency through the combination of multi-proteomics and bioinformatics approaches. RESULTS: Our data show that MUT deficiency is connected with profound proteome dysregulations, revealing molecular actors involved in lysosome and autophagy functioning. To elucidate the effects of defective MUT on lysosomal and autophagy regulation, we analyzed the morphology and functionality of MMA-lysosomes that showed deep alterations, thus corroborating omics data. Lysosomes of MMA cells present as enlarged vacuoles with low degradative capabilities. Notwithstanding, treatment with an anti-propionigenic drug is capable of totally rescuing lysosomal morphology and functional activity in MUT-deficient cells. These results indicate a strict connection between MUT deficiency and lysosomal-autophagy dysfunction, providing promising therapeutic perspectives for MMA. CONCLUSIONS: Defective homeostatic mechanisms in the regulation of autophagy and lysosome functions have been demonstrated in MUT-deficient cells. Our data prove that MMA triggers such dysfunctions impacting on autophagosome-lysosome fusion and lysosomal activity.

12.
Oncogene ; 42(50): 3670-3683, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37891368

RESUMEN

KMT2A-rearranged (KMT2A-R) is an aggressive and chemo-refractory acute leukemia which mostly affects children. Transcriptomics-based characterization and chemical interrogation identified kinases as key drivers of survival and drug resistance in KMT2A-R leukemia. In contrast, the contribution and regulation of phosphatases is unknown. In this study we uncover the essential role and underlying mechanisms of SET, the endogenous inhibitor of Ser/Thr phosphatase PP2A, in KMT2A-R-leukemia. Investigation of SET expression in acute myeloid leukemia (AML) samples demonstrated that SET is overexpressed, and elevated expression of SET is correlated with poor prognosis and with the expression of MEIS and HOXA genes in AML patients. Silencing SET specifically abolished the clonogenic ability of KMT2A-R leukemic cells and the transcription of KMT2A targets genes HOXA9 and HOXA10. Subsequent mechanistic investigations showed that SET interacts with both KMT2A wild type and fusion proteins, and it is recruited to the HOXA10 promoter. Pharmacological inhibition of SET by FTY720 disrupted SET-PP2A interaction leading to cell cycle arrest and increased sensitivity to chemotherapy in KMT2A-R-leukemic models. Phospho-proteomic analyses revealed that FTY720 reduced the activity of kinases regulated by PP2A, including ERK1, GSK3ß, AURB and PLK1 and led to suppression of MYC, supporting the hypothesis of a feedback loop among PP2A, AURB, PLK1, MYC, and SET. Our findings illustrate that SET is a novel player in KMT2A-R leukemia and they provide evidence that SET antagonism could serve as a novel strategy to treat this aggressive leukemia.


Asunto(s)
Clorhidrato de Fingolimod , Leucemia Mieloide Aguda , Niño , Humanos , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Perfilación de la Expresión Génica , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteómica , Proteína Fosfatasa 2/efectos de los fármacos , Proteína Fosfatasa 2/metabolismo
13.
Biochem J ; 438(1): 121-31, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21574958

RESUMEN

AF4 belongs to a family of proteins implicated in childhood lymphoblastic leukaemia, FRAXE (Fragile X E site) mental retardation and ataxia. AF4 is a transcriptional activator that is involved in transcriptional elongation. Although AF4 has been implicated in MLL (mixed-lineage leukaemia)-related leukaemogenesis, AF4-dependent physiological mechanisms have not been clearly defined. Proteins that interact with AF4 may also play important roles in mediating oncogenesis, and are potential targets for novel therapies. Using a functional proteomic approach involving tandem MS and bioinformatics, we identified 51 AF4-interacting proteins of various Gene Ontology categories. Approximately 60% participate in transcription regulatory mechanisms, including the Mediator complex in eukaryotic cells. In the present paper we report one of the first extensive proteomic studies aimed at elucidating AF4 protein cross-talk. Moreover, we found that the AF4 residues Thr(220) and Ser(212) are phosphorylated, which suggests that AF4 function depends on phosphorylation mechanisms. We also mapped the AF4-interaction site with CDK9 (cyclin-dependent kinase 9), which is a direct interactor crucial for the function and regulation of the protein. The findings of the present study significantly expand the number of putative members of the multiprotein complex formed by AF4, which is instrumental in promoting the transcription/elongation of specific genes in human cells.


Asunto(s)
ADN Polimerasa II/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Proteínas Nucleares/metabolismo , Mapeo de Interacción de Proteínas , Proteómica , Transcripción Genética , Secuencia de Aminoácidos , Western Blotting , Células Cultivadas , Cromatografía de Afinidad , Electroforesis en Gel Bidimensional , Redes Reguladoras de Genes , Humanos , Inmunoprecipitación , Riñón/citología , Riñón/metabolismo , Datos de Secuencia Molecular , Fosforilación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Elongación Transcripcional
14.
iScience ; 25(11): 105230, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36281451

RESUMEN

Chronic kidney disease (CKD) is a major clinical sign of patients with Bardet-Biedl syndrome (BBS), especially in those carrying BBS10 mutations. Twenty-nine patients with BBS and 30 controls underwent a serum-targeted metabolomic analysis. In vitro studies were conducted in two kidney-derived epithelial cell lines, where Bbs10 was stably deleted (IMCD3-Bbs10-/-cells) and over-expressed. The CKD status affected plasmatic metabolite fingerprinting in both patients with BBS and controls. Specific phosphatidylcholine and acylcarnitines discriminated eGFR decline only in patients with BBS. IMCD3-Bbs10-/ cells displayed intracellular lipidaccumulation, reduced mitochondrial potential membrane and citrate synthase staining. Mass-Spectrometry-based analysis revealed that human BBS10 interacted with six mitochondrial proteins, in vitro. In conclusion, renal dysfunction correlated with abnormal phosphatidylcholine and acylcarnitines plasma levels in patients with BBS; in vitro, Bbs10 depletion caused mitochondrial defects while human BBS10 interacted with several mitochondria-related proteins, suggesting an unexplored role of this protein.

15.
Genes (Basel) ; 12(8)2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34440285

RESUMEN

Choroideremia (CHM) is a X-linked recessive chorioretinal dystrophy due to deficiency of the CHM gene product, i.e., Rab escort protein isoform 1 (REP1). To date, gene therapy for CHM has shown variable effectiveness, likely because the underlying pathogenic mechanisms as well as genotype-phenotype correlation are not yet fully known. Small nucleotide variants leading to premature termination codons (PTCs) are a major cause of CHM, but about 20% of patients has CHM gene deletions. To improve understanding of the disease mechanisms, we analyzed molecular features of seven deletions involving the CHM gene sequence. We mapped the deletion breakpoints by using polymerase chain reaction, sequencing and array comparative genomic hybridization; to identify rearrangement-promoting DNA sequences, we analyzed genomic architecture surrounding the breakpoint regions. Moreover, in some CHM patients with different mutation types, we measured transcript level of CHM and of CHML, encoding the REP2 isoform. Scattered along the whole CHM gene and in close proximity to the deletion breakpoints we found numerous repeat elements that generate a locus-specific rearrangement hot spot. Unexpectedly, patients with non-PTC variants had increased expression of the aberrant CHM mRNA; CHML expression was higher than normal in a patient lacking CHM and its putative regulatory sequences. This latest evidence suggests that mechanisms regulating CHM and CHML gene expression are worthy of further study, because their full knowledge could be also useful for developing effective therapies for this hitherto untreatable inherited retinal degeneration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Coroideremia/genética , Eliminación de Gen , Regulación de la Expresión Génica/genética , Transcripción Genética , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
Nanoscale ; 13(10): 5251-5269, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33666624

RESUMEN

Unraveling the proteins interacting with nanoparticles (NPs) in biological fluids, such as blood, is pivotal to rationally design NPs for drug delivery. The protein corona (PrC), formed on the NP surface, represents an interface between biological components and NPs, dictating their pharmacokinetics and biodistribution. PrC composition depends on biological environments around NPs and on their intrinsic physicochemical properties. We generated different formulations of non-ionic surfactant/non-phospholipid vesicles, called niosomes (NIOs), using polysorbates which are biologically safe, cheap, non-toxic and scarcely immunogenic. PrC composition and relative protein abundance for all designed NIOs were evaluated ex vivo in human plasma (HP) by quantitative label-free proteomics. We studied the correlation of the relative protein abundance in the corona with cellular uptake of the PrC-NIOs in healthy and cancer human cell lines. Our results highlight the effects of polysorbates on nano-bio interactions to identify a protein pattern most properly aimed to drive the NIO targeting in vivo, and assess the best conditions of PrC-NIO NP uptake into the cells. This study dissected the biological identity in HP of polysorbate-NIOs, thus contributing to shorten their passage from preclinical to clinical studies and to lay the foundations for a personalized PrC.


Asunto(s)
Nanopartículas , Corona de Proteínas , Sistemas de Liberación de Medicamentos , Humanos , Liposomas , Distribución Tisular
17.
Data Brief ; 33: 106453, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33195772

RESUMEN

Methylmalonic acidemia is a rare inborn error of metabolism with severe clinical complications and poor outcome. The present data article is related to a proteomic investigation conducted on a HEK 293 cell line which has been genetically modified using CRISPR-CAS9 system to knockout the methylmalonyl-CoA mutase enzyme (MUT-KO). Thus, the generated cell model for methylmalonic acidemia was used for a proteomic comparison with respect to HEK 293 wild type cells performing a label-free quantification (LFQ) experiment. A comparison between FASP and S-Trap digestion methods was performed on protein extracts before to proceed with the proteomic analysis of the samples. Four biological replicates were employed for LC-MS/MS analysis and each was run in technical triplicates. MaxQuant and Perseus platforms were used to perform the LFQ of the proteomes and carry out statistical analysis, respectively. Globally, 4341 proteins were identified, and 243 as differentially regulated, of which 150 down-regulated and 93 up-regulated in the MUT-KO condition. MS proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD017977. The information provided in this dataset shed new light on the cellular mechanisms altered in this rare metabolic disorder, highlighting quantitative unbalances in proteins acting in cell structure and architecture organization and response to the stress. This article can be used as a new source of protein actors to be validated and a starting point for the identification of clinically relevant therapeutic targets.

18.
Pharmaceutics ; 12(6)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560359

RESUMEN

Mesoporous silicon microparticles (MSMPs) can incorporate drug-carrying nanoparticles (NPs) into their pores. An NP-loaded MSMP is a multistage vector (MSV) that forms a Matryoshka-like structure that protects the therapeutic cargo from degradation and prevents its dilution in the circulation during delivery to tumor cells. We developed an MSV constituted by 1 µm discoidal MSMPs embedded with PEGylated liposomes containing oxaliplatin (oxa) which is a therapeutic agent for colorectal cancer (CRC). To obtain extra-small liposomes able to fit the 60 nm pores of MSMP, we tested several liposomal formulations, and identified two optimal compositions, with a prevalence of the rigid lipid 1,2-distearoyl-sn-glycero-3-phosphocholine and of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]. To improve the MSV assembly, we optimized the liposome-loading inside the MSMP and achieved a five-fold increase of the payload using an innovative lyophilization approach. This procedure also increased the load and limited dimensional changes of the liposomes released from the MSV in vitro. Lastly, we found that the cytotoxic efficacy of oxa-loaded liposomes and-oxa-liposome-MSV in CRC cell culture was similar to that of free oxa. This study increases knowledge about extra-small liposomes and their loading into porous materials and provides useful hints about alternative strategies for designing drug-encapsulating NPs.

19.
Cell Oncol (Dordr) ; 42(6): 829-845, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31493143

RESUMEN

PURPOSE: The t(4;11)(q21;q23) translocation characterizes a form of acute lymphoblastic leukemia with a poor prognosis. It results in a fusion gene encoding a chimeric transcription factor, MLL-AF4, that deregulates gene expression through a variety of still controversial mechanisms. To provide new insights into these mechanisms, we examined the interaction between AF4, the most common MLL fusion partner, and the scaffold protein 14-3-3θ, in the context of t(4;11)-positive leukemia. METHODS: Protein-protein interactions were analyzed using immunoprecipitation and in vitro binding assays, and by fluorescence microscopy in t(4;11)-positive RS4;11 and MV4-11 leukemia cells and in HEK293 cells. Protein and mRNA expression levels were determined by Western blotting and RT-qPCR, respectively. A 5-bromo-2'-deoxyuridine assay and an annexin V/propidium iodide assay were used to assess proliferation and apoptosis rates, respectively, in t(4;11)-positive and control cells. Chromatin immunoprecipitation was performed to assess binding of 14-3-3θ and AF4 to a specific promoter element. RESULTS: We found that AF4 and 14-3-3θ are nuclear interactors, that 14-3-3θ binds Ser588 of AF4 and that 14-3-3θ forms a complex with MLL-AF4. In addition, we found that in t(4;11)-positive cells, 14-3-3θ knockdown decreased the expression of MLL-AF4 target genes, induced apoptosis and hampered cell proliferation. Moreover, we found that 14-3-3θ knockdown impaired the recruitment of AF4, but not of MLL-AF4, to target chromatin. Overall, our data indicate that the activity of the chimeric transcription factor MLL-AF4 depends on the cellular availability of 14-3-3θ, which triggers the transactivating function and subsequent degradation of AF4. CONCLUSIONS: From our data we conclude that the scaffold protein 14-3-3θ enhances the aberrant activity of the chimeric transcription factor MLL-AF4 and, therefore, represents a new player in the molecular pathogenesis of t(4;11)-positive leukemia and a new promising therapeutic target.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Factores de Elongación Transcripcional/metabolismo , Apoptosis/genética , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular , Supervivencia Celular/genética , ADN Complementario/genética , Proteínas de Unión al ADN/química , Regulación Leucémica de la Expresión Génica , Células HEK293 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Modelos Biológicos , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Serina/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/química , Translocación Genética
20.
Nutrients ; 10(10)2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30308976

RESUMEN

Functional beverages represent a palatable and efficient way to hydrate and reintegrate electrolytes, carbohydrates, and other nutrients employed and/or lost during physical training and/or competitions. Bodily hydration during sporting activity is one of the best indicators of health in athletes and can be a limiting factor for sport performance. Indeed, dehydration strongly decreases athletic performance until it is a risk to health. As for other nutrients, each of them is reported to support athletes' needs both during the physical activity and/or in the post-workout. In this study, we review the current knowledge of macronutrient-enriched functional beverages in sport taking into account the athletes' health, sports performance, and recovery.


Asunto(s)
Rendimiento Atlético/fisiología , Bebidas , Alimentos Funcionales/análisis , Deshidratación/fisiopatología , Ejercicio Físico/fisiología , Humanos , Nutrientes/análisis , Recuperación de la Función , Equilibrio Hidroelectrolítico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA