Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
FASEB J ; 38(15): e23855, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39096134

RESUMEN

Astrocytes and microglia undergo dynamic and complex morphological and functional changes following ischemic stroke, which are instrumental in both inflammatory responses and neural repair. While gene expression alterations poststroke have been extensively studied, investigations into posttranscriptional regulatory mechanisms, specifically alternative splicing (AS), remain limited. Utilizing previously reported Ribo-Tag-seq data, this study analyzed AS alterations in poststroke astrocytes and microglia from young adult male and female mice. Our findings reveal that in astrocytes, compared to the sham group, 109 differential alternative splicing (DAS) events were observed at 4 h poststroke, which increased to 320 at day 3. In microglia, these numbers were 316 and 266, respectively. Interestingly, the disparity between DAS genes and differentially expressed genes is substantial, with fewer than 10 genes shared at both poststroke time points in astrocytes and microglia. Gene ontology enrichment analysis revealed the involvement of these DAS genes in diverse functions, encompassing immune response (Adam8, Ccr1), metabolism (Acsl6, Pcyt2, Myo5a), and developmental cell growth (App), among others. Selective DAS events were further validated by semiquantitative RT-PCR. Overall, this study comprehensively describes the AS alterations in astrocytes and microglia during the hyperacute and acute phases of ischemic stroke and underscores the significance of certain hub DAS events in neuroinflammatory processes.


Asunto(s)
Empalme Alternativo , Astrocitos , Accidente Cerebrovascular Isquémico , Microglía , Animales , Astrocitos/metabolismo , Astrocitos/patología , Microglía/metabolismo , Microglía/patología , Ratones , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Masculino , Femenino , Ratones Endogámicos C57BL
2.
J Transl Med ; 22(1): 302, 2024 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-38521921

RESUMEN

BACKGROUND: Myasthenia gravis (MG) is a chronic autoimmune disorder characterized by fluctuating muscle weakness. Despite the availability of established therapies, the management of MG symptoms remains suboptimal, partially attributed to lack of efficacy or intolerable side-effects. Therefore, new effective drugs are warranted for treatment of MG. METHODS: By employing an analytical framework that combines Mendelian randomization (MR) and colocalization analysis, we estimate the causal effects of blood druggable expression quantitative trait loci (eQTLs) and protein quantitative trait loci (pQTLs) on the susceptibility of MG. We subsequently investigated whether potential genetic effects exhibit cell-type specificity by utilizing genetic colocalization analysis to assess the interplay between immune-cell-specific eQTLs and MG risk. RESULTS: We identified significant MR results for four genes (CDC42BPB, CD226, PRSS36, and TNFSF12) using cis-eQTL genetic instruments and three proteins (CTSH, PRSS8, and CPN2) using cis-pQTL genetic instruments. Six of these loci demonstrated evidence of colocalization with MG susceptibility (posterior probability > 0.80). We next undertook genetic colocalization to investigate cell-type-specific effects at these loci. Notably, we identified robust evidence of colocalization, with a posterior probability of 0.854, linking CTSH expression in TH2 cells and MG risk. CONCLUSIONS: This study provides crucial insights into the genetic and molecular factors associated with MG susceptibility, singling out CTSH as a potential candidate for in-depth investigation and clinical consideration. It additionally sheds light on the immune-cell regulatory mechanisms related to the disease. However, further research is imperative to validate these targets and evaluate their feasibility for drug development.


Asunto(s)
Predisposición Genética a la Enfermedad , Miastenia Gravis , Humanos , Multiómica , Estudio de Asociación del Genoma Completo , Miastenia Gravis/genética , Sitios de Carácter Cuantitativo/genética , Polimorfismo de Nucleótido Simple/genética
3.
Angew Chem Int Ed Engl ; : e202407439, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807433

RESUMEN

The reversibility and stability of aqueous zinc-ion batteries (AZIBs) are largely limited by water-induced interfacial parasitic reactions. Here, dimethyl(3,3-difluoro-2-oxoheptyl)phosphonate (DP) is introduced to tailor primary solvation sheath and inner-Helmholtz configurations for robust zinc anode. Informed by theoretical guidance on solvation process, DP with high permanent dipole moments can effectively substitute the coordination of H2O with charge carriers through relatively strong ion-dipolar interactions, resulting in a water-lean environment of solvated Zn2+. Thus, interfacial side reactions can be suppressed through a shielding effect. Meanwhile, lone-pair electrons of oxygen and fluorinated features of DP also reinforce the interfacial affinity of metallic zinc, associated with exclusion of neighboring water to facilitate reversible zinc planarized deposition. Thus, these merits endow the Zn anode with a high-stability performance exceeds 3800 hours at 0.5 mA cm-2 and 0.5 mAh cm-2 for Zn||Zn batteries and a high average Coulombic efficiency of 99.8 % at 4 mA cm-2 and 1 mAh cm-2 for Zn||Cu batteries. Benefiting from the stable zinc anode, the Zn||NH4V4O10 cell maintains 80.3 % of initial discharge capacity after 3000 cycles at 5 A g-1 and exhibits a high retention rate of 99.4 % against to the initial capacity during the self-discharge characterizations.

4.
Adv Sci (Weinh) ; : e2404513, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937993

RESUMEN

Zinc anodes of zinc metal batteries suffer from unsatisfactory plating/striping reversibility due to interfacial parasitic reactions and poor Zn2+ mass transfer kinetics. Herein, methoxy polyethylene glycol-phosphate (mPEG-P) is introduced as an electrolyte additive to achieve long anti-calendar aging and high-rate capabilities. The polyanionic of mPEG-P self-assembles via noncovalent-interactions on electrode surface to form polyether-based cation channels and in situ organic-inorganic hybrid solid electrolyte interface layer, which ensure rapid Zn2+ mass transfer and suppresses interfacial parasitic reactions, realizing outstanding cycling/calendar aging stability. As a result, the Zn//Zn symmetric cells with mPEG-P present long lifespans over 9000 and 2500 cycles at ultrahigh current densities of 120 and 200 mA cm-2, respectively. Besides, the coulombic efficiency (CE) of the Zn//Cu cell with mPEG-P additive (88.21%) is much higher than that of the cell (36.4%) at the initial cycle after the 15-day calendar aging treatment, presenting excellent anti-static corrosion performance. Furthermore, after 20-day aging, the Zn//MnO2 cell exhibits a superior capacity retention of 89% compared with that of the cell without mPEG-P (28%) after 150 cycles. This study provides a promising avenue for boosting the development of high efficiency and durable metallic zinc based stationary energy storage system.

5.
ACS Appl Mater Interfaces ; 16(32): 42109-42117, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39088819

RESUMEN

The electrochemical CO2 reduction reaction (ECO2RR) is a promising strategy for converting CO2 into high-value chemical products. However, the synthesis of effective and stable electrocatalysts capable of transforming CO2 into a specified product remains a huge challenge. Herein, we report a template-regulated strategy for the preparation of a Bi2O3-derived nanosheet catalyst with abundant porosity to achieve the expectantly efficient CO2-to-formate conversion. The resultant porous bismuth nanosheet (p-Bi) not only exhibited marked Faradaic efficiency of formate (FEformate), beyond 91% in a broad potential range from -0.75 to -1.1 V in the H-type cell, but also demonstrated an appreciable FEformate of 94% at a high current density of 262 mA cm-2 in the commercially important gas diffusion cell. State-of-the-art X-ray absorption near edge structure spectroscopy (XANES) and theoretical calculation unraveled the distinct formate production performance of the p-Bi catalyst, which was cocontributed by its smaller size, plentiful porous structure, and stronger Bi-O bond, thus accelerating the absorption of CO2 and promoting the subsequent formation of intermediates. This work provides an avenue to fabricate bismuth-based catalysts with high planar and porous morphologies for a broad portfolio of applications.

6.
CNS Neurosci Ther ; 30(6): e14815, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38922778

RESUMEN

AIMS: Colony stimulating factor 1 receptor (CSF1R)-related leukoencephalopathy is a rapidly progressing neurodegenerative disease caused by CSF1R gene mutations. This study aimed to identify and investigate the effect of a novel intronic mutation (c.1754-3C>G) of CSF1R on splicing. METHODS: A novel intronic mutation was identified using whole-exome sequencing. To investigate the impact of this mutation, we employed various bioinformatics tools to analyze the transcription of the CSF1R gene and the three-dimensional structure of its encoded protein. Furthermore, reverse transcription polymerase chain reaction (RT-PCR) was performed to validate the findings. RESULTS: A novel mutation (c.1754-3C>G) in CSF1R was identified, which results in exon 13 skipping due to the disruption of the 3' splice site consensus sequence NYAG/G. This exon skipping event was further validated in the peripheral blood of the mutation carrier through RT-PCR and Sanger sequencing. Protein structure prediction indicated a disruption in the tyrosine kinase domain, with the truncated protein showing significant structural alterations. CONCLUSIONS: Our findings underscore the importance of intronic mis-splicing mutations in the diagnosis and management of CSF1R-related leukoencephalopathy.


Asunto(s)
Intrones , Leucoencefalopatías , Mutación , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Humanos , Leucoencefalopatías/genética , Mutación/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Intrones/genética , Femenino , Masculino , Adulto , Empalme del ARN/genética , Receptor de Factor Estimulante de Colonias de Macrófagos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA