Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Brain Mapp ; 45(1): e26537, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38140712

RESUMEN

Synaptic plasticity relies on the balance between excitation and inhibition in the brain. As the primary inhibitory and excitatory neurotransmitters, gamma-aminobutyric acid (GABA) and glutamate (Glu), play critical roles in synaptic plasticity and learning. However, the role of these neurometabolites in motor learning is still unclear. Furthermore, it remains to be investigated which neurometabolite levels from the regions composing the sensorimotor network predict future learning outcome. Here, we studied the role of baseline neurometabolite levels in four task-related brain areas during different stages of motor skill learning under two different feedback (FB) conditions. Fifty-one healthy participants were trained on a bimanual motor task over 5 days while receiving either concurrent augmented visual FB (CA-VFB group, N = 25) or terminal intrinsic visual FB (TA-VFB group, N = 26) of their performance. Additionally, MRS-measured baseline GABA+ (GABA + macromolecules) and Glx (Glu + glutamine) levels were measured in the primary motor cortex (M1), primary somatosensory cortex (S1), dorsolateral prefrontal cortex (DLPFC), and medial temporal cortex (MT/V5). Behaviorally, our results revealed that the CA-VFB group outperformed the TA-VFB group during task performance in the presence of augmented VFB, while the TA-VFB group outperformed the CA-VFB group in the absence of augmented FB. Moreover, baseline M1 GABA+ levels positively predicted and DLPFC GABA+ levels negatively predicted both initial and long-term motor learning progress in the TA-VFB group. In contrast, baseline S1 GABA+ levels positively predicted initial and long-term motor learning progress in the CA-VFB group. Glx levels did not predict learning progress. Together, these findings suggest that baseline GABA+ levels predict motor learning capability, yet depending on the FB training conditions afforded to the participants.


Asunto(s)
Ácido Glutámico , Aprendizaje , Humanos , Aprendizaje/fisiología , Inhibición Psicológica , Destreza Motora , Ácido gamma-Aminobutírico
2.
Psychol Med ; 53(3): 805-813, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34165068

RESUMEN

BACKGROUND: Little is known about the neural correlates of dissociative amnesia, a transdiagnostic symptom mostly present in the dissociative disorders and core characteristic of dissociative identity disorder (DID). Given the vital role of the hippocampus in memory, a prime candidate for investigation is whether total and/or subfield hippocampal volume can serve as biological markers of dissociative amnesia. METHODS: A total of 75 women, 32 with DID and 43 matched healthy controls (HC), underwent structural magnetic resonance imaging (MRI). Using Freesurfer (version 6.0), volumes were extracted for bilateral global hippocampus, cornu ammonis (CA) 1-4, the granule cell molecular layer of the dentate gyrus (GC-ML-DG), fimbria, hippocampal-amygdaloid transition area (HATA), parasubiculum, presubiculum and subiculum. Analyses of covariance showed volumetric differences between DID and HC. Partial correlations exhibited relationships between the three factors of the dissociative experience scale scores (dissociative amnesia, absorption, depersonalisation/derealisation) and traumatisation measures with hippocampal global and subfield volumes. RESULTS: Hippocampal volumes were found to be smaller in DID as compared with HC in bilateral global hippocampus and bilateral CA1, right CA4, right GC-ML-DG, and left presubiculum. Dissociative amnesia was the only dissociative symptom that correlated uniquely and significantly with reduced bilateral hippocampal CA1 subfield volumes. Regarding traumatisation, only emotional neglect correlated negatively with bilateral global hippocampus, bilateral CA1, CA4 and GC-ML-DG, and right CA3. CONCLUSION: We propose decreased CA1 volume as a biomarker for dissociative amnesia. We also propose that traumatisation, specifically emotional neglect, is interlinked with dissociative amnesia in having a detrimental effect on hippocampal volume.


Asunto(s)
Trastorno Disociativo de Identidad , Humanos , Femenino , Trastorno Disociativo de Identidad/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Imagen por Resonancia Magnética/métodos , Amnesia/diagnóstico por imagen , Amnesia/patología , Biomarcadores
3.
J Neurosci ; 41(2): 331-341, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33214318

RESUMEN

In complex everyday environments, action selection is critical for optimal goal-directed behavior. This refers to the process of choosing a proper action from the range of possible alternatives. The neural mechanisms underlying action selection and how these are affected by normal aging remain to be elucidated. In the present cross-sectional study, we studied processes of effector selection during a multilimb reaction time task in a lifespan sample of healthy human adults (N = 89; 20-75 years; 48 males, 41 females). Participants were instructed to react as quickly and accurately as possible to visually cued stimuli representing single-limb or combined upper and/or lower limb motions. Diffusion MRI was used to study structural connectivity between prefrontal and striatal regions as critical nodes for action selection. Behavioral findings revealed that increasing age was associated with slowing of action selection performance. At the neural level, aging had a negative impact on prefronto-striatal connectivity. Importantly, mediation analyses revealed that the negative association between action selection performance and age was mediated by prefronto-striatal connectivity, specifically the connections between left rostral medial frontal gyrus and left nucleus accumbens as well as right frontal pole and left caudate. These results highlight the potential role of prefronto-striatal white matter decline in poorer action selection performance of older adults.SIGNIFICANCE STATEMENT As a result of enhanced life expectancy, researchers have devoted increasing attention to the study of age-related alterations in cognitive and motor functions. Here we study associations between brain structure and behavior to reveal the impact of central neural white matter changes as a function of normal aging on action selection performance. We demonstrate the critical role of a reduction in prefronto-striatal structural connectivity in accounting for action selection performance deficits in healthy older adults. Preserving this cortico-subcortical pathway may be critical for behavioral flexibility and functional independence in older age.


Asunto(s)
Neostriado/anatomía & histología , Neostriado/fisiología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/fisiología , Adulto , Anciano , Envejecimiento/fisiología , Núcleo Caudado/fisiología , Estudios Transversales , Señales (Psicología) , Toma de Decisiones , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Movimiento/fisiología , Neostriado/crecimiento & desarrollo , Vías Nerviosas/crecimiento & desarrollo , Núcleo Accumbens/fisiología , Estimulación Luminosa , Corteza Prefrontal/crecimiento & desarrollo , Tiempo de Reacción/fisiología , Adulto Joven
4.
J Psycholinguist Res ; 51(1): 17-32, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34125312

RESUMEN

It is unknown how self-relevance is dependent on emotional salience. Emotional salience encompasses an individual's degree of attraction or aversion to emotionally-valenced information. The current study investigated the interconnection between self and salience through the evaluation of emotional valence and self-relevance. 56 native Dutch participants completed a questionnaire assessing valence, intensity, and self-relevance of 552 Dutch nouns and verbs. One-way repeated-measures ANCOVA investigated the relationship between valence and self, age and gender. Repeated-measures ANCOVA also tested the relationship between valence and self with intensity ratings and effects of gender and age. Results showed a significant main effect of valence for self-relevant words. Intensity analyses showed a main effect of valence but not of self-relevance. There were no significant effects of gender and age. The most important finding presents that self-relevance is dependent on valence. These findings concerning the relationship between self and salience opens avenues to study an individual's self-definition.


Asunto(s)
Afecto , Emociones , Humanos , Lenguaje , Encuestas y Cuestionarios
5.
Neuroimage ; 226: 117536, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33186716

RESUMEN

Healthy aging is associated with mechanistic changes in gamma-aminobutyric acid (GABA), the most abundant inhibitory neurotransmitter in the human brain. While previous work mainly focused on magnetic resonance spectroscopy (MRS)-based GABA+ levels and transcranial magnetic stimulation (TMS)-based GABAA receptor (GABAAR) activity in the primary sensorimotor (SM1) cortex, the aim of the current study was to identify age-related differences in positron emission tomography (PET)-based GABAAR availability and its relationship with GABA+ levels (i.e. GABA with the contribution of macromolecules) and GABAAR activity. For this purpose, fifteen young (aged 20-28 years) and fifteen older (aged 65-80 years) participants were recruited. PET and MRS images were acquired using simultaneous time-of-flight PET/MR to evaluate age-related differences in GABAAR availability (distribution volume ratio with pons as reference region) and GABA+ levels. TMS was applied to identify age-related differences in GABAAR activity by measuring short-interval intracortical inhibition (SICI). Whereas GABAAR availability was significantly higher in the SM cortex of older as compared to young adults (18.5%), there were neither age-related differences in GABA+ levels nor SICI. A correlation analysis revealed no significant associations between GABAAR availability, GABAAR activity and GABA+ levels. Although the exact mechanisms need to be further elucidated, it is possible that a higher GABAAR availability in older adults is a compensatory mechanism to ensure optimal inhibitory functionality during the aging process.


Asunto(s)
Envejecimiento/metabolismo , Imagen Multimodal/métodos , Receptores de GABA-A/metabolismo , Corteza Sensoriomotora/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Tomografía de Emisión de Positrones/métodos , Estimulación Magnética Transcraneal/métodos , Adulto Joven
6.
Cereb Cortex ; 30(8): 4346-4360, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32133505

RESUMEN

Aging is accompanied by marked changes in motor behavior and its neural correlates. At the behavioral level, age-related declines in motor performance manifest, for example, as a reduced capacity to inhibit interference between hands during bimanual movements, particularly when task complexity increases. At the neural level, aging is associated with reduced differentiation between distinct functional systems. Functional connectivity (FC) dedifferentiation is characterized by more homogeneous connectivity patterns across various tasks or task conditions, reflecting a reduced ability of the aging adult to modulate brain activity according to changing task demands. It is currently unknown, however, how whole-brain dedifferentiation interacts with increasing task complexity. In the present study, we investigated age- and task-related FC in a group of 96 human adults across a wide age range (19.9-74.5 years of age) during the performance of a bimanual coordination task of varying complexity. Our findings indicated stronger task complexity-related differentiation between visuomotor- and nonvisuomotor-related networks, though modulation capability decreased with increasing age. Decreased FC modulation mediated larger complexity-related increases in between-hand interference, reflective of worse bimanual coordination. Thus, the ability to maintain high motor performance levels in older adults is related to the capability to properly segregate and modulate functional networks.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiología , Vías Nerviosas/fisiología , Desempeño Psicomotor/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad
7.
Neuroimage ; 209: 116530, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31931154

RESUMEN

Age-related differences in bimanual motor performance have been extensively documented, but their underlying neural mechanisms remain less clear. Studies applying diffusion MRI in the aging population have revealed evidence for age-related white matter variations in the corpus callosum (CC) which are related to bimanual motor performance. However, the diffusion tensor model used in those studies is confounded by partial volume effects in voxels with complex fiber geometries which are present in up to 90% of white matter voxels, including the bilateral projections of the CC. A recently developed whole-brain analysis framework, known as fixel-based analysis (FBA), enables comprehensive statistical analyses of white matter quantitative measures in the presence of such complex fiber geometries. To investigate the contribution of age-related fiber-specific white matter variations to age-related differences in bimanual performance, a cross-sectional lifespan sample of healthy human adults (N â€‹= â€‹95; 20-75 years of age) performed a bimanual tracking task. Furthermore, diffusion MRI data were acquired and the FBA metrics associated with fiber density, cross-section, and combined fiber density and cross-section were estimated. Whole-brain FBA revealed significant negative associations between age and fiber density, cross-section, and combined metrics of multiple white matter tracts, including the bilateral projections of the CC, indicative of white matter micro- and macrostructural degradation with age. More importantly, mediation analyses demonstrated that age-related variations in the combined (fiber density and cross-section) metric of the genu, but not splenium, of the CC contributed to the observed age-related differences in bimanual coordination performance. These findings highlight the contribution of variations in interhemispheric communication between prefrontal (non-motor) cortices to age-related differences in motor performance.


Asunto(s)
Envejecimiento/patología , Envejecimiento/fisiología , Cuerpo Calloso/patología , Actividad Motora/fisiología , Desempeño Psicomotor/fisiología , Adulto , Anciano , Brazo/fisiología , Cuerpo Calloso/diagnóstico por imagen , Estudios Transversales , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
8.
J Neurosci ; 38(13): 3333-3345, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29483284

RESUMEN

Motor performance deteriorates with age. Hence, studying the effects of different training types on performance improvement is particularly important. Here, we investigated the neural correlates of the contextual interference (CI) effect in 32 young (YA; 16 female) and 28 older (OA; 12 female) human adults. Participants were randomly assigned to either a blocked or a random practice schedule, practiced three variations of a bimanual visuomotor task over 3 d, and were retested 6 d later. Functional magnetic resonance imaging data were acquired during the first and last training days and during retention. Although the overall performance level was lower in OA than YA, the typical CI effects were observed in both age groups, i.e., inferior performance during acquisition but superior performance during retention for random relative to blocked practice. At the neural level, blocked practice showed higher brain activity in motor-related brain regions compared with random practice across both age groups. However, although activity in these regions decreased with blocked practice in both age groups, it was either preserved (YA) or increased (OA) as a function of random practice. In contrast, random compared with blocked practice resulted in greater activations in visual processing regions across age groups. Interestingly, in OA, the more demanding random practice schedule triggered neuroplastic changes in areas of the default mode network, ultimately leading to better long-term retention. Our findings may have substantial implications for the optimization of practice schedules, and rehabilitation settings in particular.SIGNIFICANCE STATEMENT In aging societies, it is critically important to understand how motor skills can be maintained or enhanced in older adults, with the ultimate goal to prolong functional independence. Here, we demonstrated that a more challenging random as opposed to a blocked practice environment temporarily reduced performance during the acquisition phase but resulted in lasting benefits for skill retention. In older adults, learning success was critically dependent on reduction of activation in areas of the default mode network, pointing to plastic functional changes in brain regions that are vulnerable to aging effects. The random practice context led to increased economy of brain activity and better skill retention. This provides new perspectives for reversing the negative consequences of aging.


Asunto(s)
Envejecimiento/fisiología , Aprendizaje , Desempeño Psicomotor , Adolescente , Adulto , Anciano , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Distribución Aleatoria , Percepción Visual
9.
Neuroimage ; 202: 116050, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31349070

RESUMEN

Aging is associated with gradual alterations in the neurochemical characteristics of the brain, which can be assessed in-vivo with proton-magnetic resonance spectroscopy (1H-MRS). However, the impact of these age-related neurochemical changes on functional motor behavior is still poorly understood. Here, we address this knowledge gap and specifically focus on the neurochemical integrity of the left sensorimotor cortex (SM1) and the occipital lobe (OCC), as both regions are main nodes of the visuomotor network underlying bimanual control. 1H-MRS data and performance on a set of bimanual tasks were collected from a lifespan (20-75 years) sample of 86 healthy adults. Results indicated that aging was accompanied by decreased levels of N-acetylaspartate (NAA), glutamate-glutamine (Glx), creatine â€‹+ â€‹phosphocreatine (Cr) and myo-inositol (mI) in both regions, and decreased Choline (Cho) in the OCC region. Lower NAA and Glx levels in the SM1 and lower NAA levels in the OCC were related to poorer performance on a visuomotor bimanual coordination task, suggesting that NAA could serve as a potential biomarker for the integrity of the motor system supporting bimanual control. In addition, lower NAA, Glx, and mI levels in the SM1 were found to be correlates of poorer dexterous performance on a bimanual dexterity task. These findings highlight the role for 1H-MRS to study neurochemical correlates of motor performance across the adult lifespan.


Asunto(s)
Envejecimiento/metabolismo , Actividad Motora/fisiología , Corteza Sensoriomotora/metabolismo , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Espectroscopía de Protones por Resonancia Magnética , Adulto Joven
10.
Br J Psychiatry ; 215(3): 536-544, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30523772

RESUMEN

BACKGROUND: A diagnosis of dissociative identity disorder (DID) is controversial and prone to under- and misdiagnosis. From the moment of seeking treatment for symptoms to the time of an accurate diagnosis of DID individuals received an average of four prior other diagnoses and spent 7 years, with reports of up to 12 years, in mental health services. AIM: To investigate whether data-driven pattern recognition methodologies applied to structural brain images can provide biomarkers to aid DID diagnosis. METHOD: Structural brain images of 75 participants were included: 32 female individuals with DID and 43 matched healthy controls. Individuals with DID were recruited from psychiatry and psychotherapy out-patient clinics. Probabilistic pattern classifiers were trained to discriminate cohorts based on measures of brain morphology. RESULTS: The pattern classifiers were able to accurately discriminate between individuals with DID and healthy controls with high sensitivity (72%) and specificity (74%) on the basis of brain structure. These findings provide evidence for a biological basis for distinguishing between DID-affected and healthy individuals. CONCLUSIONS: We propose a pattern of neuroimaging biomarkers that could be used to inform the identification of individuals with DID from healthy controls at the individual level. This is important and clinically relevant because the DID diagnosis is controversial and individuals with DID are often misdiagnosed. Ultimately, the application of pattern recognition methodologies could prevent unnecessary suffering of individuals with DID because of an earlier accurate diagnosis, which will facilitate faster and targeted interventions. DECLARATION OF INTEREST: The authors declare no competing financial interests.


Asunto(s)
Trastorno Disociativo de Identidad/diagnóstico , Trastorno Disociativo de Identidad/patología , Sustancia Gris/patología , Sustancia Blanca/patología , Adulto , Experiencias Adversas de la Infancia , Biomarcadores , Mapeo Encefálico/métodos , Estudios de Casos y Controles , Diagnóstico Diferencial , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Sensibilidad y Especificidad , Trastornos por Estrés Postraumático/diagnóstico , Trastornos por Estrés Postraumático/patología
11.
Cereb Cortex ; 28(2): 459-473, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27909002

RESUMEN

Skill acquisition capabilities vary substantially from one individual to another. Volumetric brain studies have demonstrated that global volume of several subcortical structures predicts variations in learning outcome in young adults (YA) and older adults (OA). In this study, for the first time, we utilized shape analysis, which offers a more sensitive detection of subregional brain anatomical deformations, to investigate whether subregional anatomy of subcortical structures is associated with training-induced performance improvement on a bimanual task in YA and OA, and whether this association is age-dependent. Compared with YA, OA showed poorer performance, greater performance improvement, and smaller global volume and compressed subregional shape in subcortical structures. In OA, global volume of the right nucleus accumbens and subregional shape of the right thalamus, caudate, putamen and nucleus accumbens were positively correlated with acquisition of difficult (non-preferred) but not easy (preferred) task conditions. In YA, global volume and subregional shape of the right hippocampus were negatively correlated with performance improvement in both the easy and difficult conditions. We argue that pre-existing neuroanatomical measures of subcortical structures involved in motor learning differentially predict skill acquisition potential in YA and OA.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Aprendizaje/fisiología , Destreza Motora/fisiología , Desempeño Psicomotor/fisiología , Anciano , Encéfalo/anatomía & histología , Femenino , Predicción , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Estimulación Luminosa/métodos , Adulto Joven
12.
Eur J Neurosci ; 47(5): 446-459, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29363832

RESUMEN

The ability to learn new motor skills is crucial for activities of daily living, especially in older adults. Previous work in younger adults has indicated fast and slow stages for motor learning that were associated with changes in functional interactions within and between brain hemispheres. However, the impact of the structural scaffolds of these functional interactions on different stages of motor learning remains elusive. Using diffusion-weighted imaging and probabilistic constrained spherical deconvolution-based tractography, we reconstructed transcallosal white matter pathways between the left and right primary motor cortices (M1-M1), left dorsal premotor cortex and right primary motor cortex (LPMd-RM1) and right dorsal premotor cortex and left primary motor cortex (RPMd-LM1) in younger and older adults trained in a set of bimanual coordination tasks. We used fractional anisotropy (FA) to assess microstructural organisation of the reconstructed white matter pathways. Older adults showed lower behavioural performance than younger adults and improved their performance more in the fast but less in the slow stage of learning. Linear mixed models predicted that individuals with higher FA of M1-M1 pathways improve more in the fast but less in the slow stage of bimanual learning. Individuals with higher FA of RPMd-LM1 improve more in the slow but less in the fast stage of bimanual learning. These predictions did not differ significantly between younger and older adults suggesting that, in both younger and older adults, the M1-M1 and RPMd-LM1 pathways are important for the fast and slow stage of bimanual learning, respectively.


Asunto(s)
Aprendizaje , Corteza Motora/fisiología , Desempeño Psicomotor/fisiología , Sustancia Blanca/fisiología , Actividades Cotidianas , Adulto , Factores de Edad , Anciano , Potenciales Evocados Motores/fisiología , Femenino , Lateralidad Funcional/fisiología , Humanos , Masculino , Destreza Motora/fisiología , Movimiento/fisiología , Estimulación Magnética Transcraneal/métodos
13.
Hum Brain Mapp ; 39(9): 3652-3662, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29722142

RESUMEN

Levels of GABA, the main inhibitory neurotransmitter in the brain, can be regionally quantified using magnetic resonance spectroscopy (MRS). Although GABA is crucial for efficient neuronal functioning, little is known about age-related differences in GABA levels and their relationship with age-related changes in brain structure. Here, we investigated the effect of age on GABA levels within the left sensorimotor cortex and the occipital cortex in a sample of 85 young and 85 older adults using the MEGA-PRESS sequence. Because the distribution of GABA varies across different brain tissues, various correction methods are available to account for this variation. Considering that these correction methods are highly dependent on the tissue composition of the voxel of interest, we examined differences in voxel composition between age groups and the impact of these various correction methods on the identification of age-related differences in GABA levels. Results indicated that, within both voxels of interest, older (as compared to young adults) exhibited smaller gray matter fraction accompanied by larger fraction of cerebrospinal fluid. Whereas uncorrected GABA levels were significantly lower in older as compared to young adults, this age effect was absent when GABA levels were corrected for voxel composition. These results suggest that age-related differences in GABA levels are at least partly driven by the age-related gray matter loss. However, as alterations in GABA levels might be region-specific, further research should clarify to what extent gray matter changes may account for age-related differences in GABA levels within other brain regions.


Asunto(s)
Envejecimiento/metabolismo , Química Encefálica , Ácido gamma-Aminobutírico/análisis , Adolescente , Adulto , Anciano , Líquido Cefalorraquídeo/química , Líquido Cefalorraquídeo/diagnóstico por imagen , Femenino , Sustancia Gris/química , Sustancia Gris/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Sustancia Blanca/química , Sustancia Blanca/diagnóstico por imagen , Adulto Joven , Ácido gamma-Aminobutírico/líquido cefalorraquídeo
15.
Hum Brain Mapp ; 38(11): 5628-5647, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28782899

RESUMEN

For successful motor control, the central nervous system is required to combine information from the environment and the current body state, which is provided by vision and proprioception respectively. We investigated the relative contribution of visual and proprioceptive information to upper limb motor control and the extent to which structural brain measures predict this performance in youth (n = 40; age range 9-18 years). Participants performed a manual tracking task, adopting in-phase and anti-phase coordination modes. Results showed that, in contrast to older participants, younger participants performed the task with lower accuracy in general and poorer performance in anti-phase than in-phase modes. However, a proprioceptive advantage was found at all ages, that is, tracking accuracy was higher when proprioceptive information was available during both in- and anti-phase modes at all ages. The microstructural organization of interhemispheric connections between homologous dorsolateral prefrontal cortices, and the cortical thickness of the primary motor cortex were associated with sensory-specific accuracy of tracking performance. Overall, the findings suggest that manual tracking performance in youth does not only rely on brain regions involved in sensorimotor processing, but also on prefrontal regions involved in attention and working memory. Hum Brain Mapp 38:5628-5647, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/diagnóstico por imagen , Destreza Motora/fisiología , Propiocepción , Percepción del Tacto , Percepción Visual , Adolescente , Encéfalo/crecimiento & desarrollo , Niño , Imagen de Difusión Tensora , Electromiografía , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/crecimiento & desarrollo , Humanos , Modelos Lineales , Masculino , Músculo Esquelético/fisiología , Pruebas Neuropsicológicas , Tamaño de los Órganos , Propiocepción/fisiología , Percepción del Tacto/fisiología , Percepción Visual/fisiología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/crecimiento & desarrollo , Muñeca/fisiología , Adulto Joven
17.
Hum Brain Mapp ; 37(12): 4629-4639, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27585251

RESUMEN

There is a convergence in the literature toward a critical role for the basal ganglia in action selection. However, which substructures within the basal ganglia fulfill this role is still unclear. Here we used shape analyses of structural magnetic resonance imaging data to determine the extent to which basal ganglia structures predict performance in easy and complex multilimb reaction-time tasks in young and old adults. Results revealed that inward deformation (i.e., local atrophy) of the nucleus accumbens and caudate were predictive of longer action selection times in complex conditions, but not in easy conditions. Additionally, when assessing the relation between behavioral performance and the shape of the left nucleus accumbens in the two age groups separately, we found a significant performance-structure association in old, but not young adults. This result suggests that the relevance of the nucleus accumbens for the process of action selection increases with age. Hum Brain Mapp 37:4629-4639, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Envejecimiento/patología , Núcleo Caudado/diagnóstico por imagen , Conducta de Elección , Actividad Motora , Núcleo Accumbens/diagnóstico por imagen , Tiempo de Reacción , Anciano , Envejecimiento/fisiología , Envejecimiento/psicología , Atrofia , Conducta de Elección/fisiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Actividad Motora/fisiología , Tamaño de los Órganos , Tiempo de Reacción/fisiología , Adulto Joven
18.
Hum Brain Mapp ; 36(5): 1692-704, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25545784

RESUMEN

Smaller hippocampal volume has been reported in individuals with post-traumatic stress disorder (PTSD) and dissociative identity disorder (DID), but the regional specificity of hippocampal volume reductions and the association with severity of dissociative symptoms and/or childhood traumatization are still unclear. Brain structural magnetic resonance imaging scans were analyzed for 33 outpatients (17 with DID and 16 with PTSD only) and 28 healthy controls (HC), all matched for age, sex, and education. DID patients met criteria for PTSD (PTSD-DID). Hippocampal global and subfield volumes and shape measurements were extracted. We found that global hippocampal volume was significantly smaller in all 33 patients (left: 6.75%; right: 8.33%) compared with HC. PTSD-DID (left: 10.19%; right: 11.37%) and PTSD-only with a history of childhood traumatization (left: 7.11%; right: 7.31%) had significantly smaller global hippocampal volume relative to HC. PTSD-DID had abnormal shape and significantly smaller volume in the CA2-3, CA4-DG and (pre)subiculum compared with HC. In the patient groups, smaller global and subfield hippocampal volumes significantly correlated with higher severity of childhood traumatization and dissociative symptoms. These findings support a childhood trauma-related etiology for abnormal hippocampal morphology in both PTSD and DID and can further the understanding of neurobiological mechanisms involved in these disorders.


Asunto(s)
Maltrato a los Niños , Trastorno Disociativo de Identidad/patología , Trastorno Disociativo de Identidad/psicología , Hipocampo/patología , Trastornos por Estrés Postraumático/patología , Adulto , Niño , Maltrato a los Niños/psicología , Femenino , Lateralidad Funcional , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Tamaño de los Órganos , Escalas de Valoración Psiquiátrica , Trastornos por Estrés Postraumático/psicología
19.
Sci Rep ; 14(1): 3251, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331950

RESUMEN

We aimed to investigate transfer of learning, whereby previously acquired skills impact new task learning. While it has been debated whether such transfer may yield positive, negative, or no effects on performance, very little is known about the underlying neural mechanisms, especially concerning the role of inhibitory (GABA) and excitatory (Glu) (measured as Glu + glutamine (Glx)) neurometabolites, as measured by magnetic resonance spectroscopy (MRS). Participants practiced a bimanual coordination task across four days. The Experimental group trained a task variant with the right hand moving faster than the left (Task A) for three days and then switched to the opposite variant (Task B) on Day4. The control group trained Task B across four days. MRS data were collected before, during, and after task performance on Day4 in the somatosensory (S1) and visual (MT/V5) cortex. Results showed that both groups improved performance consistently across three days. On Day4, the Experimental group experienced performance decline due to negative task transfer while the control group continuously improved. GABA and Glx concentrations obtained during task performance showed no significant group-level changes. However, individual Glx levels during task performance correlated with better (less negative) transfer performance. These findings provide a first window into the neurochemical mechanisms underlying task transfer.


Asunto(s)
Glutamina , Transferencia de Experiencia en Psicología , Humanos , Espectroscopía de Resonancia Magnética/métodos , Aprendizaje , Ácido gamma-Aminobutírico , Ácido Glutámico
20.
J Psychiatr Res ; 174: 220-229, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653030

RESUMEN

INTRODUCTION: Dissociative identity disorder (DID) is characterised by, among others, subjectively reported inter-identity amnesia, reflecting compromised information transfer between dissociative identity states. Studies have found conflicting results regarding memory transfer between dissociative identity states. Here, we investigated inter-identity amnesia in individuals with DID using self-relevant, subject specific stimuli, and behavioural and neural measures. METHODS: Data of 46 matched participants were included; 14 individuals with DID in a trauma-avoidant state, 16 trauma-avoiding DID simulators, and 16 healthy controls. Reaction times and neural activation patterns related to three types of subject specific words were acquired and statistically analysed, namely non-self-relevant trauma-related words (NSt), self-relevant trauma-related words from a trauma-avoidant identity state (St), and trauma-related words from a trauma-related identity state (XSt). RESULTS: We found no differences in reaction times between XSt and St words and faster reaction times for XSt over NSt. Reaction times of the diagnosed DID group were the longest. Increased brain activation to XSt words was found in the frontal and parietal regions, while decreased brain activity was found in the anterior cingulate cortex in the diagnosed DID group. DISCUSSION: The current study reproduces and amalgamates previous behavioural reports as well as brain activation patterns. Our finding of increased cognitive control over self-relevant trauma-related knowledge processing has important clinical implications and calls for the redefinition of "inter-identity amnesia" to "inter-identity avoidance".


Asunto(s)
Amnesia , Trastorno Disociativo de Identidad , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Adulto , Amnesia/fisiopatología , Trastorno Disociativo de Identidad/fisiopatología , Adulto Joven , Tiempo de Reacción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA