Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Genomics ; 21(1): 185, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32106818

RESUMEN

BACKGROUND: Growth regulation is a complex process influenced by genetic and environmental factors. We examined differences between growth hormone (GH) transgenic (T) and non-transgenic (NT) coho salmon to elucidate whether the same loci were involved in controlling body size and gene expression phenotypes, and to assess whether physiological transformations occurring from GH transgenesis were under the influence of alternative pathways. The following genomic techniques were used to explore differences between size classes within and between transgenotypes (T vs. NT): RNA-Seq/Differentially Expressed Gene (DEG) analysis, quantitative PCR (qPCR) and OpenArray analysis, Genotyping-by-Sequencing, and Genome-Wide Association Study (GWAS). RESULTS: DEGs identified in comparisons between the large and small tails of the size distributions of T and NT salmon (NTLarge, NTSmall, TLarge and TSmall) spanned a broad range of biological processes, indicating wide-spread influence of the transgene on gene expression. Overexpression of growth hormone led to differences in regulatory loci between transgenotypes and size classes. Expression levels were significantly greater in T fish at 16 of 31 loci and in NT fish for 10 loci. Eleven genes exhibited different mRNA levels when the interaction of size and transgenotype was considered (IGF1, IGFBP1, GH, C3-4, FAS, FAD6, GLUT1, G6PASE1, GOGAT, MID1IP1). In the GWAS, 649 unique SNPs were significantly associated with at least one study trait, with most SNPs associated with one of the following traits: C3_4, ELA1, GLK, IGF1, IGFBP1, IGFII, or LEPTIN. Only 1 phenotype-associated SNP was found in common between T and NT fish, and there were no SNPs in common between transgenotypes when size was considered. CONCLUSIONS: Multiple regulatory loci affecting gene expression were shared between fast-growing and slow-growing fish within T or NT groups, but no such regulatory loci were found to be shared between NT and T groups. These data reveal how GH overexpression affects the regulatory responses of the genome resulting in differences in growth, physiological pathways, and gene expression in T fish compared with the wild type. Understanding the complexity of regulatory gene interactions to generate phenotypes has importance in multiple fields ranging from applications in selective breeding to quantifying influences on evolutionary processes.


Asunto(s)
Proteínas de Peces/genética , Hormona del Crecimiento/genética , Polimorfismo de Nucleótido Simple , Salmón/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Tamaño Corporal , Cruzamiento , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , Hormona del Crecimiento/metabolismo , Sitios de Carácter Cuantitativo , Salmón/genética , Salmón/metabolismo , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
2.
BMC Cancer ; 14: 814, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25373319

RESUMEN

BACKGROUND: Pancreatic adenocarcinoma is one of the most lethal cancers, yet it remains understudied and poorly understood. Hyperinsulinemia has been reported to be a risk factor of pancreatic cancer, and the rapid rise of hyperinsulinemia associated with obesity and type 2 diabetes foreshadows a rise in cancer incidence. However, the actions of insulin at the various stages of pancreatic cancer progression remain poorly defined. METHODS: Here, we examined the effects of a range of insulin doses on signalling, proliferation and survival in three human cell models meant to represent three stages in pancreatic cancer progression: primary pancreatic duct cells, the HPDE immortalized pancreatic ductal cell line, and the PANC1 metastatic pancreatic cancer cell line. Cells were treated with a range of insulin doses, and their proliferation/viability were tracked via live cell imaging and XTT assays. Signal transduction was assessed through the AKT and ERK signalling pathways via immunoblotting. Inhibitors of AKT and ERK signalling were used to determine the relative contribution of these pathways to the survival of each cell model. RESULTS: While all three cell types responded to insulin, as indicated by phosphorylation of AKT and ERK, we found that there were stark differences in insulin-dependent proliferation, cell viability and cell survival among the cell types. High concentrations of insulin increased PANC1 and HPDE cell number, but did not alter primary duct cell proliferation in vitro. Cell survival was enhanced by insulin in both primary duct cells and HPDE cells. Moreover, we found that primary cells were more dependent on AKT signalling, while HPDE cells and PANC1 cells were more dependent on RAF/ERK signalling. CONCLUSIONS: Our data suggest that excessive insulin signalling may contribute to proliferation and survival in human immortalized pancreatic ductal cells and metastatic pancreatic cancer cells, but not in normal adult human pancreatic ductal cells. These data suggest that signalling pathways involved in cell survival may be rewired during pancreatic cancer progression.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Transformación Celular Neoplásica/metabolismo , Insulina/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias Pancreáticas/metabolismo , Bencilaminas/farmacología , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Progresión de la Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Indoles/farmacología , Modelos Biológicos , Conductos Pancreáticos , Neoplasias Pancreáticas/patología , Fenoles/farmacología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-raf/efectos de los fármacos , Quinoxalinas/farmacología
3.
G3 (Bethesda) ; 13(4)2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36759939

RESUMEN

Coho salmon (Oncorhynchus kisutch) are a culturally and economically important species that return from multiyear ocean migrations to spawn in rivers that flow to the Northern Pacific Ocean. Southern stocks of coho salmon in Canada and the United States have significantly declined over the past quarter century, and unfortunately, conservation efforts have not reversed this trend. To assist in stock management and conservation efforts, we generated a chromosome-level genome assembly. We also resequenced the genomes of 83 coho salmon across the North American range to identify nucleotide variants and understand the demographic histories of these salmon by modeling effective population size from genome-wide data. From demographic history modeling, we observed reductions in effective population sizes between 3,750 and 8,000 years ago for several northern sampling sites, which may correspond to bottleneck events during recolonization after glacial retreat.


Asunto(s)
Oncorhynchus kisutch , Animales , Oncorhynchus kisutch/genética , Densidad de Población , Genoma
4.
Mar Biotechnol (NY) ; 23(1): 140-148, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33481139

RESUMEN

Growth hormone (GH) transgenic fish often exhibit remarkable transformations in growth rate and other phenotypes relative to wild-type. The 5750A transgenic coho salmon strain exhibits strong sexually dimorphic growth, with females possessing growth stimulation at a level typical of that seen for both sexes in other strains harbouring the same gene construct (e.g. M77), while males display a modest level of growth stimulation. GH mRNA levels were significantly higher in females than in males of the 5750A strain but equivalent in the M77 strain, indicating sex and transgene insertion locus altered transgene expression. We found that acute estradiol treatments did not influence GH expression in either strain (5750A and M77) or the transgene promoter (metallothionein-B), suggesting that estradiol level was not a significant factor influencing transgene activity. The feminization of XX and XY fish of the 5750A and M77 strains generated all-female groups and resulted in equalized growth of the two genetic sexes, suggesting that the presence of the Y chromosome was not directly capable of influencing the GH transgene-mediated growth in a physiological female conditions. These data suggest that the difference in growth rate seen between the sexes in the 5750A strain arises from non-estradiol-mediated sex influences on gene regulation at the transgene locus. This study shows how genetic factors and transgene insertion sites can influence transgene expression with significant consequent effects on phenotype.


Asunto(s)
Hormona del Crecimiento/genética , Oncorhynchus kisutch/crecimiento & desarrollo , Oncorhynchus kisutch/genética , Animales , Animales Modificados Genéticamente , Estradiol/farmacología , Femenino , Feminización , Masculino , Metalotioneína/farmacología , ARN Mensajero , Caracteres Sexuales
5.
G3 (Bethesda) ; 11(2)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33712817

RESUMEN

Genotype-by-environment (GxE) interactions are non-parallel reaction norms among individuals with different genotypes in response to different environmental conditions. GxE interactions are an extension of phenotypic plasticity and consequently studying such interactions improves our ability to predict effects of different environments on phenotype as well as the fitness of genetically distinct organisms and their capacity to interact with ecosystems. Growth hormone transgenic coho salmon grow much faster than non-transgenics when raised in tank environments, but show little difference in growth when reared in nature-like streams. We used this model system to evaluate potential mechanisms underlying this growth rate GxE interaction, performing RNA-seq to measure gene transcription and whole-genome bisulfite sequencing to measure gene methylation in liver tissue. Gene ontology (GO) term analysis revealed stress as an important biological process potentially influencing growth rate GxE interactions. While few genes with transcription differences also had methylation differences, in promoter or gene regions, many genes were differentially methylated between tank and stream environments. A GO term analysis of differentially methylated genes between tank and stream environments revealed increased methylation in the stream environment of more than 95% of the differentially methylated genes, many with biological processes unrelated to liver function. The lower nutritional condition of the stream environment may cause increased negative regulation of genes less vital for liver tissue function than when fish are reared in tanks with unlimited food availability. These data show a large effect of rearing environment both on gene expression and methylation, but it is less clear that the detected epigenetic marks are responsible for the observed altered growth and physiological responses.


Asunto(s)
Ecosistema , Oncorhynchus kisutch , Animales , Epigénesis Genética , Interacción Gen-Ambiente , Genotipo , Oncorhynchus kisutch/genética , Fenotipo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA