Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(23): 12606-12610, 2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32444485

RESUMEN

We studied the electrical transport of Fe4+δSe5 single-crystal nanowires exhibiting √5 × âˆš5 Fe-vacancy order and mixed valence of Fe. Fe4+δSe5 compound has been identified as the parent phase of FeSe superconductor. A first-order metal-insulator (MI) transition of transition temperature T MI ∼ 28 K is observed at zero magnetic fields (B). Colossal positive magnetoresistance emerges, resulting from the magnetic field-dependent MI transition. T MI demonstrates anisotropic magnetic field dependence with the preferred orientation along the c axis. At temperature T < ∼17 K, the state of near-magnetic field-independent resistance, which is due to spin polarized even at zero fields, preserves under magnetic fields up to B = 9 T. The Arrhenius law shift of the transition on the source-drain frequency dependence reveals that it is a nonoxide compound with the Verwey-like electronic correlation. The observation of the magnetic field-independent magnetoresistance at low temperature suggests it is in a charge-ordered state below T ∼ 17 K. The results of the field orientation measurements indicate that the spin-orbital coupling is crucial in √5 × âˆš5 Fe vacancy-ordered Fe4+δSe5 at low temperatures. Our findings provide valuable information to better understand the orbital nature and the interplay between the MI transition and superconductivity in FeSe-based materials.

2.
Sensors (Basel) ; 22(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36236317

RESUMEN

In this study, we explored the potential of applying biosensors based on silicon nanowire field-effect transistors (bio-NWFETs) as molecular absorption sensors. Using quercetin and Copper (Cu2+) ion as an example, we demonstrated the use of an opto-FET approach for the detection of molecular interactions. We found that photons with wavelengths of 450 nm were absorbed by the molecular complex, with the absorbance level depending on the Cu2+ concentration. Quantitative detection of the molecular absorption of metal complexes was performed for Cu2+ concentrations ranging between 0.1 µM and 100 µM, in which the photon response increased linearly with the copper concentration under optimized bias parameters. Our opto-FET approach showed an improved absorbance compared with that of a commercial ultraviolet-visible spectrophotometry.


Asunto(s)
Técnicas Biosensibles , Complejos de Coordinación , Nanocables , Cobre , Quercetina , Silicio , Transistores Electrónicos
3.
ACS Appl Mater Interfaces ; 16(10): 13029-13040, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38422346

RESUMEN

Surface modification is a highly effective strategy for addressing issues in lithium-rich layered oxide (LLO) cathodes, including phase transformation, particle cracking, oxygen gas release, and transition-metal ion dissolution. Existing single-/double-layer coating strategies face drawbacks such as poor component contact and complexity. Herein, we present the results of a low-temperature atomic layer deposition (ALD) process for creating a TiO2/Al2O3 bilayer on composite cathodes made of AS200 (Li1.08Ni0.34Co0.08Mn0.5O2). Electrochemical analysis demonstrates that TiO2/Al2O3-coated LLO electrodes exhibit improved discharge capacities and enhanced capacity retention compared with uncoated samples. The TAA-5/AS200 bilayer-coated electrode, in particular, demonstrates exceptional capacity retention (∼90.4%) and a specific discharge capacity of 146 mAh g-1 after 100 cycles at 1C within the voltage range of 2.2 to 4.6 V. The coated electrodes also show reduced voltage decay, lower surface film resistance, and improved interfacial charge transfer resistances, contributing to enhanced stability. The ALD-deposited TiO2/Al2O3 bilayer coatings exhibit promising potential for advancing the electrochemical performance of lithium-rich layered oxide cathodes in lithium-ion batteries.

4.
Nanomaterials (Basel) ; 13(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37110895

RESUMEN

This research presents the optimization and proposal of P- and N-type 3-stacked Si0.8Ge0.2/Si strained super-lattice FinFETs (SL FinFET) using Low-Pressure Chemical Vapor Deposition (LPCVD) epitaxy. Three device structures, Si FinFET, Si0.8Ge0.2 FinFET, and Si0.8Ge0.2/Si SL FinFET, were comprehensively compared with HfO2 = 4 nm/TiN = 80 nm. The strained effect was analyzed using Raman spectrum and X-ray diffraction reciprocal space mapping (RSM). The results show that Si0.8Ge0.2/Si SL FinFET exhibited the lowest average subthreshold slope (SSavg) of 88 mV/dec, the highest maximum transconductance (Gm, max) of 375.2 µS/µm, and the highest ON-OFF current ratio (ION/IOFF), approximately 106 at VOV = 0.5 V due to the strained effect. Furthermore, with the super-lattice FinFETs as complementary metal-oxide-semiconductor (CMOS) inverters, a maximum gain of 91 v/v was achieved by varying the supply voltage from 0.6 V to 1.2 V. The simulation of a Si0.8Ge0.2/Si super-lattice FinFET with the state of the art was also investigated. The proposed Si0.8Ge0.2/Si strained SL FinFET is fully compatible with the CMOS technology platform, showing promising flexibility for extending CMOS scaling.

5.
Nanotechnology ; 23(16): 165201, 2012 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-22470086

RESUMEN

The photo-response of a ZnO nanoparticle embedded in a nanopore made on a silicon nitride membrane is investigated. The ZnO nanoparticle is manipulated onto the nanopore and sandwiched between aluminum contact electrodes from both the top and bottom. The asymmetric device structure facilitates current-voltage rectification that enables photovoltaic capacity. Under illumination, the device shows open-circuit voltage as well as short-circuit current. The fill factor is found to increase at low temperatures and reaches 48.6% at 100 K. The nanopore structure and the manipulation technique provide a solid platform for exploring the electrical properties of single nanoparticles.

6.
Nanomaterials (Basel) ; 12(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35957105

RESUMEN

Nanomechanical resonators made from van der Waals materials (vdW NMRs) provide a new tool for sensing absorbed laser power. The photothermal response of vdW NMRs, quantified from the resonant frequency shifts induced by optical absorption, is enhanced when incorporated in a Fabry-Pérot (FP) interferometer. Along with the enhancement comes the dependence of the photothermal response on NMR displacement, which lacks investigation. Here, we address the knowledge gap by studying electromotively driven niobium diselenide drumheads fabricated on highly reflective substrates. We use a FP-mediated absorptive heating model to explain the measured variations of the photothermal response. The model predicts a higher magnitude and tuning range of photothermal responses on few-layer and monolayer NbSe2 drumheads, which outperform other clamped vdW drum-type NMRs at a laser wavelength of 532 nm. Further analysis of the model shows that both the magnitude and tuning range of NbSe2 drumheads scale with thickness, establishing a displacement-based framework for building bolometers using FP-mediated vdW NMRs.

7.
Nanoscale Adv ; 4(2): 502-509, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36132699

RESUMEN

One of the challenges in integrating nanomechanical resonators made from van der Waals materials in optoelectromechanical technologies is characterizing their dynamic properties from vibrational displacement. Multiple calibration schemes using optical interferometry have tackled this challenge. However, these techniques are limited only to optically thin resonators with an optimal vacuum gap height and substrate for interferometric detection. Here, we address this limitation by implementing a modeling-based approach via multilayer thin-film interference for in situ, non-invasive determination of the resonator thickness, gap height, and motional amplitude. This method is demonstrated on niobium diselenide drumheads that are electromotively driven in their linear regime of motion. The laser scanning confocal configuration enables a resolution of hundreds of picometers in motional amplitude for circular and elliptical devices. The measured thickness and spacer height, determined to be in the order of tens and hundreds of nanometers, respectively, are in excellent agreement with profilometric measurements. Moreover, the transduction factor estimated from our method agrees with the result of other studies that resolved Brownian motion. This characterization method, which applies to both flexural and acoustic wave nanomechanical resonators, is robust because of its scalability to thickness and gap height, and any form of reflecting substrate.

8.
PNAS Nexus ; 1(4): pgac127, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36714876

RESUMEN

Pectin polymers are considered for lithium-ion battery electrodes. To understand the performance of pectin as an applied buffer layer, the electrical, magnetic, and optical properties of pectin films are investigated. This work describes a methodology for creating pectin films, including both pristine pectin and Fe-doped pectin, which are optically translucent, and explores their potential for lithium-ion battery application. The transmission response is found extended in optimally Fe-doped pectin, and prominent modes for cation bonding are identified. Fe doping enhances the conductivity observed in electrochemical impedance spectroscopy, and from the magnetic response of pectin evidence for Fe3+ is identified. The Li-ion half-cell prepared with pectin as binder for anode materials such as graphite shows stable charge capacity over long cycle life, and with slightly higher specific capacity compare with the cell prepared using polyvinylidene fluoride (PVDF) as binder. A novel enhanced charging specific capacity at a high C-rate is observed in cells with pectin binder, suggesting that within a certain rate (∼5 C), pectin has higher capacity at faster charge rates. The pectin system is found as a viable base material for organic-inorganic synthesis studies.

9.
Adv Sci (Weinh) ; 8(13): 2005041, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34258159

RESUMEN

Observation of resonance modes is the most straightforward way of studying mechanical oscillations because these modes have maximum response to stimuli. However, a deeper understanding of mechanical motion can be obtained by also looking at modal responses at frequencies in between resonances. Here, an imaging of the modal responses for a nanomechanical drum driven off resonance is presented. By using the frequency modal analysis, these shapes are described as a superposition of resonance modes. It is found that the spatial distribution of the oscillating component of the driving force, which is affected by both the shape of the actuating electrode and inherent device properties such as asymmetry and initial slack, greatly influences the modal weight or participation. This modal superposition analysis elucidates the dynamics of any nanomechanical system through modal weights. This aids in optimizing mode-specific designs for force sensing and integration with other systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA