Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 15(12): 7976-81, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26560203

RESUMEN

Topological insulators (TIs) are a new class of quantum materials that exhibit a current-induced spin polarization due to spin-momentum locking of massless Dirac Fermions in their surface states. This helical spin polarization in three-dimensional (3D) TIs has been observed using photoemission spectroscopy up to room temperatures. Recently, spin polarized surface currents in 3D TIs were detected electrically by potentiometric measurements using ferromagnetic detector contacts. However, these electric measurements are so far limited to cryogenic temperatures. Here we report the room temperature electrical detection of the spin polarization on the surface of Bi2Se3 by employing spin sensitive ferromagnetic tunnel contacts. The current-induced spin polarization on the Bi2Se3 surface is probed by measuring the magnetoresistance while switching the magnetization direction of the ferromagnetic detector. A spin resistance of up to 70 mΩ is measured at room temperature, which increases linearly with current bias, reverses sign with current direction, and decreases with higher TI thickness. The magnitude of the spin signal, its sign, and control experiments, using different measurement geometries and interface conditions, rule out other known physical effects. These findings provide further information about the electrical detection of current-induced spin polarizations in 3D TIs at ambient temperatures and could lead to innovative spin-based technologies.


Asunto(s)
Electricidad , Temperatura
2.
Nano Lett ; 13(9): 4217-23, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23941358

RESUMEN

We show that inspection with an optical microscope allows surprisingly simple and accurate identification of single and multilayer graphene domains in epitaxial graphene on silicon carbide (SiC/G) and is informative about nanoscopic details of the SiC topography, making it ideal for rapid and noninvasive quality control of as-grown SiC/G. As an illustration of the power of the method, we apply it to demonstrate the correlations between graphene morphology and its electronic properties by quantum magneto-transport.

3.
Microbiology (Reading) ; 158(12): 2997-3004, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28206908

RESUMEN

Clustered, regularly interspaced, short palindromic repeats (CRISPRs) are implicated in defence against foreign DNA in various archaeal and bacterial species. They have also been associated with a slower spread of antibiotic resistance. However, experimental and evolutionary studies raise doubts about the role of CRISPRs as a sort of immune system in Escherichia coli. We studied a collection of 263 natural E. coli isolates from human and animal hosts, representative of the phylogenetic and lifestyle diversity of the species and exhibiting various levels of plasmid-encoded antibiotic resistance. We characterized the strains in terms of CRISPRs, performed replicon typing of the plasmids and tested for class 1 integrons to explore the possible association between CRISPRs and the absence of plasmids and mobile antibiotic resistance determinants. We found no meaningful association between the presence/absence of the cas genes, reflecting the activity of the CRISPRs, and the presence of plasmids, integrons or antibiotic resistance. No CRISPR in the collection contained a spacer that matched an antibiotic resistance gene or element involved in antibiotic resistance gene mobilization, and 79.8 % (210/263) of the strains lacked spacers matching sequences in the 2282 plasmid genomes available. Hence, E. coli CRISPRs do not seem to be efficient barriers to the spread of plasmids and antibiotic resistance, consistent with what has been reported for phages, and contrary to reports concerning other species.

4.
Microbiology (Reading) ; 158(Pt 12): 2997-3004, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23059972

RESUMEN

Clustered, regularly interspaced, short palindromic repeats (CRISPRs) are implicated in defence against foreign DNA in various archaeal and bacterial species. They have also been associated with a slower spread of antibiotic resistance. However, experimental and evolutionary studies raise doubts about the role of CRISPRs as a sort of immune system in Escherichia coli. We studied a collection of 263 natural E. coli isolates from human and animal hosts, representative of the phylogenetic and lifestyle diversity of the species and exhibiting various levels of plasmid-encoded antibiotic resistance. We characterized the strains in terms of CRISPRs, performed replicon typing of the plasmids and tested for class 1 integrons to explore the possible association between CRISPRs and the absence of plasmids and mobile antibiotic resistance determinants. We found no meaningful association between the presence/absence of the cas genes, reflecting the activity of the CRISPRs, and the presence of plasmids, integrons or antibiotic resistance. No CRISPR in the collection contained a spacer that matched an antibiotic resistance gene or element involved in antibiotic resistance gene mobilization, and 79.8% (210/263) of the strains lacked spacers matching sequences in the 2282 plasmid genomes available. Hence, E. coli CRISPRs do not seem to be efficient barriers to the spread of plasmids and antibiotic resistance, consistent with what has been reported for phages, and contrary to reports concerning other species.


Asunto(s)
Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Transferencia de Gen Horizontal , Plásmidos , Animales , ADN Bacteriano/genética , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Humanos
5.
J Bacteriol ; 193(10): 2460-7, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21421763

RESUMEN

In order to get further insights into the role of the clustered, regularly interspaced, short palindromic repeats (CRISPRs) in Escherichia coli, we analyzed the CRISPR diversity in a collection of 290 strains, in the phylogenetic framework of the strains represented by multilocus sequence typing (MLST). The set included 263 natural E. coli isolates exposed to various environments and isolated over a 20-year period from humans and animals, as well as 27 fully sequenced strains. Our analyses confirm that there are two largely independent pairs of CRISPR loci (CRISPR1 and -2 and CRISPR3 and -4), each associated with a different type of cas genes (Ecoli and Ypest, respectively), but that each pair of CRISPRs has similar dynamics. Strikingly, the major phylogenetic group B2 is almost devoid of CRISPRs. The majority of genomes analyzed lack Ypest cas genes and contain CRISPR3 with spacers matching Ypest cas genes. The analysis of relatedness between strains in terms of spacer repertoire and the MLST tree shows a pattern where closely related strains (MLST phylogenetic distance of <0.005 corresponding to at least hundreds of thousands of years) often exhibit identical CRISPRs while more distantly related strains (MLST distance of >0.01) exhibit completely different CRISPRs. This suggests rare but radical turnover of spacers in CRISPRs rather than CRISPR gradual change. We found no link between the presence, size, or content of CRISPRs and the lifestyle of the strains. Our data suggest that, within the E. coli species, CRISPRs do not have the expected characteristics of a classical immune system.


Asunto(s)
Escherichia coli/genética , Evolución Molecular , Variación Genética , Selección Genética , Animales , Técnicas de Tipificación Bacteriana , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , Escherichia coli/clasificación , Escherichia coli/aislamiento & purificación , Genotipo , Humanos , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN
6.
Nanoscale ; 10(41): 19595-19602, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30325390

RESUMEN

Many applications of topological insulators (TIs) as well as new phenomena require devices with reduced dimensions. While much progress has been made to realize thin films of TIs with low bulk carrier densities, nanostructures have not yet been reported with similar properties, despite the fact that reduced dimensions should help diminish the contributions from bulk carriers. Here we demonstrate that Bi2Se3 nanoribbons, grown by a simple catalyst-free physical-vapour deposition, have inherently low bulk carrier densities, and can be further made bulk-free by thickness reduction, thus revealing the high mobility topological surface states. Magnetotransport and Hall conductance measurements, in single nanoribbons, show that at thicknesses below 30 nm, the bulk transport is completely suppressed which is supported by self-consistent band-bending calculations. The results highlight the importance of material growth and geometrical confinement to properly exploit the unique properties of topological surface states.

7.
Nat Commun ; 9(1): 137, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29305576

RESUMEN

The original version of this Article omitted the following from the Acknowledgements:"This work was partly supported by the Research Council of Norway through its Centres of Excellence funding scheme, project number 262633, QuSpin."This has now been corrected in both the PDF and HTML versions of the article.

8.
Nat Commun ; 9(1): 474, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29382837

RESUMEN

The original version of this Article contained an error in Fig. 6b. In the top scattering process, while the positioning of both arrows was correct, the colours were switched: the first arrow was red and the second arrow was blue, rather than the correct order of blue then red.

9.
Nat Commun ; 8(1): 2019, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29222507

RESUMEN

Topological superconductivity is central to a variety of novel phenomena involving the interplay between topologically ordered phases and broken-symmetry states. The key ingredient is an unconventional order parameter, with an orbital component containing a chiral p x + ip y wave term. Here we present phase-sensitive measurements, based on the quantum interference in nanoscale Josephson junctions, realized by using Bi2Te3 topological insulator. We demonstrate that the induced superconductivity is unconventional and consistent with a sign-changing order parameter, such as a chiral p x + ip y component. The magnetic field pattern of the junctions shows a dip at zero externally applied magnetic field, which is an incontrovertible signature of the simultaneous existence of 0 and π coupling within the junction, inherent to a non trivial order parameter phase. The nano-textured morphology of the Bi2Te3 flakes, and the dramatic role played by thermal strain are the surprising key factors for the display of an unconventional induced order parameter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA