Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nature ; 621(7977): 105-111, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612501

RESUMEN

The critical temperature beyond which photosynthetic machinery in tropical trees begins to fail averages approximately 46.7 °C (Tcrit)1. However, it remains unclear whether leaf temperatures experienced by tropical vegetation approach this threshold or soon will under climate change. Here we found that pantropical canopy temperatures independently triangulated from individual leaf thermocouples, pyrgeometers and remote sensing (ECOSTRESS) have midday peak temperatures of approximately 34 °C during dry periods, with a long high-temperature tail that can exceed 40 °C. Leaf thermocouple data from multiple sites across the tropics suggest that even within pixels of moderate temperatures, upper canopy leaves exceed Tcrit 0.01% of the time. Furthermore, upper canopy leaf warming experiments (+2, 3 and 4 °C in Brazil, Puerto Rico and Australia, respectively) increased leaf temperatures non-linearly, with peak leaf temperatures exceeding Tcrit 1.3% of the time (11% for more than 43.5 °C, and 0.3% for more than 49.9 °C). Using an empirical model incorporating these dynamics (validated with warming experiment data), we found that tropical forests can withstand up to a 3.9 ± 0.5 °C increase in air temperatures before a potential tipping point in metabolic function, but remaining uncertainty in the plasticity and range of Tcrit in tropical trees and the effect of leaf death on tree death could drastically change this prediction. The 4.0 °C estimate is within the 'worst-case scenario' (representative concentration pathway (RCP) 8.5) of climate change predictions2 for tropical forests and therefore it is still within our power to decide (for example, by not taking the RCP 6.0 or 8.5 route) the fate of these critical realms of carbon, water and biodiversity3,4.


Asunto(s)
Aclimatación , Calor Extremo , Bosques , Fotosíntesis , Árboles , Clima Tropical , Aclimatación/fisiología , Australia , Brasil , Calor Extremo/efectos adversos , Calentamiento Global , Fotosíntesis/fisiología , Puerto Rico , Desarrollo Sostenible/legislación & jurisprudencia , Desarrollo Sostenible/tendencias , Árboles/fisiología , Hojas de la Planta/fisiología , Incertidumbre
2.
New Phytol ; 243(2): 648-661, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38757766

RESUMEN

Elevated air temperature (Tair) and vapour pressure deficit (VPDair) significantly influence plant functioning, yet their relative impacts are difficult to disentangle. We examined the effects of elevated Tair (+6°C) and VPDair (+0.7 kPa) on the growth and physiology of six tropical tree species. Saplings were grown under well-watered conditions in climate-controlled glasshouses for 6 months under three treatments: (1) low Tair and low VPDair, (2) high Tair and low VPDair, and (3) high Tair and high VPDair. To assess acclimation, physiological parameters were measured at a set temperature. Warm-grown plants grown under elevated VPDair had significantly reduced stomatal conductance and increased instantaneous water use efficiency compared to plants grown under low VPDair. Photosynthetic biochemistry and thermal tolerance (Tcrit) were unaffected by VPDair, but elevated Tair caused Jmax25 to decrease and Tcrit to increase. Sapling biomass accumulation for all species responded positively to an increase in Tair, but elevated VPDair limited growth. This study shows that stomatal limitation caused by even moderate increases in VPDair can decrease productivity and growth rates in tropical species independently from Tair and has important implications for modelling the impacts of climate change on tropical forests.


Asunto(s)
Hojas de la Planta , Estomas de Plantas , Bosque Lluvioso , Temperatura , Árboles , Presión de Vapor , Árboles/fisiología , Árboles/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo , Estomas de Plantas/fisiología , Clima Tropical , Fotosíntesis , Especificidad de la Especie , Agua/metabolismo , Transpiración de Plantas/fisiología , Biomasa , Gases/metabolismo
3.
New Phytol ; 241(3): 1047-1061, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38087814

RESUMEN

Woody biomass is a large carbon store in terrestrial ecosystems. In calculating biomass, tree stems are assumed to be solid structures. However, decomposer agents such as microbes and insects target stem heartwood, causing internal wood decay which is poorly quantified. We investigated internal stem damage across five sites in tropical Australia along a precipitation gradient. We estimated the amount of internal aboveground biomass damaged in living trees and measured four potential stem damage predictors: wood density, stem diameter, annual precipitation, and termite pressure (measured as termite damage in downed deadwood). Stem damage increased with increasing diameter, wood density, and termite pressure and decreased with increasing precipitation. High wood density stems sustained less damage in wet sites and more damage in dry sites, likely a result of shifting decomposer communities and their differing responses to changes in tree species and wood traits across sites. Incorporating stem damage reduced aboveground biomass estimates by > 30% in Australian savannas, compared to only 3% in rainforests. Accurate estimates of carbon storage across woody plant communities are critical for understanding the global carbon budget. Future biomass estimates should consider stem damage in concert with the effects of changes in decomposer communities and abiotic conditions.


Asunto(s)
Ecosistema , Bosques , Biomasa , Australia , Árboles , Madera , Carbono , Clima Tropical
4.
Am J Bot ; 107(8): 1165-1176, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32864740

RESUMEN

PREMISE: Within closed-canopy forests, vertical gradients of light and atmospheric CO2 drive variations in leaf carbon isotope ratios, leaf mass per area (LMA), and the micromorphology of leaf epidermal cells. Variations in traits observed in preserved or fossilized leaves could enable inferences of past forest canopy closure and leaf function and thereby habitat of individual taxa. However, as yet no calibration study has examined how isotopic, micro- and macromorphological traits, in combination, reflect position within a modern closed-canopy forest or how these could be applied to the fossil record. METHODS: Leaves were sampled from throughout the vertical profile of the tropical forest canopy using the 48.5 m crane at the Daintree Rainforest Observatory, Queensland, Australia. Carbon isotope ratios, LMA, petiole metric (i.e., petiole-width2 /leaf area, a proposed proxy for LMA that can be measured from fossil leaves), and leaf micromorphology (i.e., undulation index and cell area) were compared within species across a range of canopy positions, as quantified by leaf area index (LAI). RESULTS: Individually, cell area, δ13 C, and petiole metric all correlated with both LAI and LMA, but the use of a combined model provided significantly greater predictive power. CONCLUSIONS: Using the observed relationships with leaf carbon isotope ratio and morphology to estimate the range of LAI in fossil floras can provide a measure of canopy closure in ancient forests. Similarly, estimates of LAI and LMA for individual taxa can provide comparative measures of light environment and growth strategy of fossil taxa from within a flora.


Asunto(s)
Bosque Lluvioso , Árboles , Australia , Calibración , Fósiles , Fotosíntesis , Hojas de la Planta , Queensland
5.
Rapid Commun Mass Spectrom ; 32(12): 1008-1014, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-29603458

RESUMEN

RATIONALE: Continuous measurement of stable O and H isotope compositions in water vapour requires automated calibration for remote field deployments. We developed a new low-cost device for calibration of both water vapour mole fraction and isotope composition. METHODS: We coupled a commercially available dew point generator (DPG) to a laser spectrometer and developed hardware for water and air handling along with software for automated operation and data processing. We characterised isotopic fractionation in the DPG, conducted a field test and assessed the influence of critical parameters on the performance of the device. RESULTS: An analysis time of 1 hour was sufficient to achieve memory-free analysis of two water vapour standards and the δ18 O and δ2 H values were found to be independent of water vapour concentration over a range of ≈20,000-33,000 ppm. The reproducibility of the standard vapours over a 10-day period was better than 0.14 ‰ and 0.75 ‰ for δ18 O and δ2 H values, respectively (1 σ, n = 11) prior to drift correction and calibration. The analytical accuracy was confirmed by the analysis of a third independent vapour standard. The DPG distillation process requires that isotope calibration takes account of DPG temperature, analysis time, injected water volume and air flow rate. CONCLUSIONS: The automated calibration system provides high accuracy and precision and is a robust, cost-effective option for long-term field measurements of water vapour isotopes. The necessary modifications to the DPG are minor and easily reversible.

6.
Plant Cell Environ ; 39(5): 1087-102, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26715126

RESUMEN

Leaf water contains naturally occurring stable isotopes of oxygen and hydrogen in abundances that vary spatially and temporally. When sufficiently understood, these can be harnessed for a wide range of applications. Here, we review the current state of knowledge of stable isotope enrichment of leaf water, and its relevance for isotopic signals incorporated into plant organic matter and atmospheric gases. Models describing evaporative enrichment of leaf water have become increasingly complex over time, reflecting enhanced spatial and temporal resolution. We recommend that practitioners choose a model with a level of complexity suited to their application, and provide guidance. At the same time, there exists some lingering uncertainty about the biophysical processes relevant to patterns of isotopic enrichment in leaf water. An important goal for future research is to link observed variations in isotopic composition to specific anatomical and physiological features of leaves that reflect differences in hydraulic design. New measurement techniques are developing rapidly, enabling determinations of both transpired and leaf water δ(18) O and δ(2) H to be made more easily and at higher temporal resolution than previously possible. We expect these technological advances to spur new developments in our understanding of patterns of stable isotope fractionation in leaf water.


Asunto(s)
Hojas de la Planta/fisiología , Plantas/metabolismo , Agua/metabolismo , Isótopos de Oxígeno , Transpiración de Plantas/fisiología
7.
Ann Bot ; 118(6): 1113-1125, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27582361

RESUMEN

BACKGROUND AND AIMS: Conifers dominated wet lowland tropical forests 100 million years ago (MYA). With a few exceptions in the Podocarpaceae and Araucariaceae, conifers are now absent from this biome. This shift to angiosperm dominance also coincided with a large decline in atmospheric CO2 concentration (ca). We compared growth and physiological performance of two lowland tropical angiosperms and conifers at ca levels representing pre-industrial (280 ppm), ambient (400 ppm) and Eocene (800 ppm) conditions to explore how differences in ca affect the growth and water-use efficiency (WUE) of seedlings from these groups. METHODS: Two conifers (Araucaria heterophylla and Podocarpus guatemalensis) and two angiosperm trees (Tabebuia rosea and Chrysophyllum cainito) were grown in climate-controlled glasshouses in Panama. Growth, photosynthetic rates, nutrient uptake, and nutrient use and water-use efficiencies were measured. KEY RESULTS: Podocarpus seedlings showed a stronger (66 %) increase in relative growth rate with increasing ca relative to Araucaria (19 %) and the angiosperms (no growth enhancement). The response of Podocarpus is consistent with expectations for species with conservative growth traits and low mesophyll diffusion conductance. While previous work has shown limited stomatal response of conifers to ca, we found that the two conifers had significantly greater increases in leaf and whole-plant WUE than the angiosperms, reflecting increased photosynthetic rate and reduced stomatal conductance. Foliar nitrogen isotope ratios (δ15N) and soil nitrate concentrations indicated a preference in Podocarpus for ammonium over nitrate, which may impact nitrogen uptake relative to nitrate assimilators under high ca SIGNIFICANCE: Podocarps colonized tropical forests after angiosperms achieved dominance and are now restricted to infertile soils. Although limited to a single species, our data suggest that higher ca may have been favourable for podocarp colonization of tropical South America 60 MYA, while plasticity in photosynthetic capacity and WUE may help account for their continued persistence under large changes in ca since the Eocene.


Asunto(s)
Tracheophyta/fisiología , Dióxido de Carbono/metabolismo , Sapotaceae/genética , Sapotaceae/crecimiento & desarrollo , Sapotaceae/fisiología , Plantones/crecimiento & desarrollo , Tabebuia/genética , Tabebuia/crecimiento & desarrollo , Tabebuia/fisiología , Tracheophyta/genética , Tracheophyta/crecimiento & desarrollo , Clima Tropical , Agua/metabolismo
8.
Rapid Commun Mass Spectrom ; 28(20): 2151-61, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25178719

RESUMEN

RATIONALE: Traditionally, stable isotope analysis of plant and soil water has been a technically challenging, labour-intensive and time-consuming process. Here we describe a rapid single-step technique which combines Microwave Extraction with Isotope Ratio Infrared Spectroscopy (ME-IRIS). METHODS: Plant, soil and insect water is extracted into a dry air stream by microwave irradiation within a sealed vessel. The water vapor thus produced is carried to a cooled condensation chamber, which controls the water vapor concentration and flow rate to the spectrometer. Integration of the isotope signals over the whole analytical cycle provides quantitative δ(18)O and δ(2) H values for the initial liquid water contained in the sample. Calibration is carried out by the analysis of water standards using the same apparatus. Analysis of leaf and soil water by cryogenic vacuum distillation and IRMS was used to validate the ME-IRIS data. RESULTS: Comparison with data obtained by cryogenic distillation and IRMS shows that the new technique provides accurate water isotope data for leaves from a range of field-grown tropical plant species. However, two exotic nursery plants were found to suffer from spectral interferences from co-extracted organic compounds. The precision for extracted leaf, stem, soil and insect water was typically better than ±0.3 ‰ for δ(18)O and ±2 ‰ for δ(2) H values, and better than ±0.1 ‰ for δ(18)O and ±1 ‰ for δ(2) H values when analyzing water standards. The effects of sample size, microwave power and duration and sample-to-sample memory on isotope values were assessed. CONCLUSIONS: ME-IRIS provides rapid and low-cost extraction and analysis of δ(18)O and δ(2) H values in plant, soil and insect water (≈10-15 min for samples yielding ≈ 0.3 mL of water). The technique can accommodate whole leaves of many plant species.


Asunto(s)
Hormigas/química , Deuterio/análisis , Isótopos de Oxígeno/análisis , Plantas/química , Suelo/química , Espectrofotometría Infrarroja/métodos , Animales , Deuterio/aislamiento & purificación , Microondas , Isótopos de Oxígeno/aislamiento & purificación , Reproducibilidad de los Resultados , Temperatura , Agua/química
9.
New Phytol ; 197(4): 1185-1192, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23278464

RESUMEN

Increased night-time temperatures, through their influence on dark respiration, have been implicated as a reason behind decreasing growth rates in tropical trees in the face of contemporary climate change. Seedlings of two neo-tropical tree species (Ficus insipida and Ochroma pyramidale) were grown in controlled-environment chambers at a constant daytime temperature (33°C) and a range of increasing night-time temperatures (22, 25, 28, 31°C) for between 39 d and 54 d. Temperature regimes were selected to represent a realistic baseline condition for lowland Panama, and a rise in night-time temperatures far in excess of those predicted for Central America in the coming decades. Experiments were complemented by an outdoor open-top chamber study in which night-time temperatures were elevated by 2.4°C above ambient. Increasing night-time temperatures resulted in > 2-fold increase in biomass accumulation in growth-chamber studies despite an increase in leaf-level dark respiration. Similar trends were seen in open-top chambers, in which elevated night-time temperatures resulted in stimulation of growth. These findings challenge simplistic considerations of photosynthesis-directed growth, highlighting the role of temperature-dependent night-time processes, including respiration and leaf development as drivers of plant performance in the tropics.


Asunto(s)
Bombacaceae/crecimiento & desarrollo , Ficus/crecimiento & desarrollo , Temperatura , Bombacaceae/fisiología , Cambio Climático , Ficus/fisiología , Fotoperiodo , Fotosíntesis , Plantones/crecimiento & desarrollo , Plantones/fisiología , Factores de Tiempo , Clima Tropical
10.
J Exp Bot ; 64(12): 3817-28, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23873999

RESUMEN

Predictions of how tropical forests will respond to future climate change are constrained by the paucity of data on the performance of tropical species under elevated growth temperatures. In particular, little is known about the potential of tropical species to acclimate physiologically to future increases in temperature. Seedlings of 10 neo-tropical tree species from different functional groups were cultivated in controlled-environment chambers under four day/night temperature regimes between 30/22 °C and 39/31 °C. Under well-watered conditions, all species showed optimal growth at temperatures above those currently found in their native range. While non-pioneer species experienced catastrophic failure or a substantially reduced growth rate under the highest temperature regime employed (i.e. daily average of 35 °C), growth in three lowland pioneers showed only a marginal reduction. In a subsequent experiment, three species (Ficus insipida, Ormosia macrocalyx, and Ochroma pyramidale) were cultivated at two temperatures determined as sub- and superoptimal for growth, but which resulted in similar biomass accumulation despite a 6°C difference in growth temperature. Through reciprocal transfer and temperature adjustment, the role of thermal acclimation in photosynthesis and respiration was investigated. Acclimation potential varied among species, with two distinct patterns of respiration acclimation identified. The study highlights the role of both inherent temperature tolerance and thermal acclimation in determining the ability of tropical tree species to cope with enhanced temperatures.


Asunto(s)
Dióxido de Carbono/metabolismo , Cambio Climático , Fotosíntesis , Árboles/fisiología , Clima Tropical , Aclimatación , Panamá , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Plantones/crecimiento & desarrollo , Plantones/fisiología , Especificidad de la Especie , Temperatura , Árboles/crecimiento & desarrollo
11.
Funct Plant Biol ; 50(12): 1073-1085, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37899004

RESUMEN

Tropospheric ozone (O3 ) is a global air pollutant that adversely affects plant growth. Whereas the impacts of O3 have previously been examined for some tropical commodity crops, no information is available for the pantropical crop, banana (Musa spp.). To address this, we exposed Australia's major banana cultivar, Williams, to a range of [O3 ] in open top chambers. In addition, we examined 46 diverse Musa lines growing in a common garden for variation in three traits that are hypothesised to shape responses to O3 : (1) leaf mass per area; (2) intrinsic water use efficiency; and (3) total antioxidant capacity. We show that O3 exposure had a significant effect on the biomass of cv. Williams, with significant reductions in both pseudostem and sucker biomass with increasing [O3 ]. This was accompanied by a significant increase in total antioxidant capacity and phenolic concentrations in older, but not younger, leaves, indicating the importance of cumulative O3 exposure. Using the observed trait diversity, we projected O3 tolerance among the 46 Musa lines growing in the common garden. Of these, cv. Williams ranked as one of the most O3 -tolerant cultivars. This suggests that other genetic lines could be even more susceptible, with implications for banana production and food security throughout the tropics.


Asunto(s)
Musa , Ozono , Antioxidantes , Ozono/toxicidad , Hojas de la Planta , Productos Agrícolas
12.
Sci Total Environ ; 904: 166817, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37673248

RESUMEN

Sugarcane is a vital commodity crop often grown in (sub)tropical regions which have been experiencing a recent deterioration in air quality. Unlike for other commodity crops, the risk of air pollution, specifically ozone (O3), to this C4 crop has not yet been quantified. Yet, recent work has highlighted both the potential risks of O3 to C4 bioenergy crops, and the emergence of O3 exposure across the tropics as a vital factor determining global food security. Given the large extent, and planned expansion of sugarcane production in places like Brazil to meet global demand for biofuels, there is a pressing need to characterize the risk of O3 to the industry. In this study, we sought to a) derive sugarcane O3 dose-response functions across a range of realistic O3 exposure and b) model the implications of this across a globally important production area. We found a significant impact of O3 on biomass allocation (especially to leaves) and production across a range of sugarcane genotypes, including two commercially relevant varieties (e.g. CTC4, Q240). Using these data, we calculated dose-response functions for sugarcane and combined them with hourly O3 exposure across south-central Brazil derived from the UK Earth System Model (UKESM1) to simulate the current regional impact of O3 on sugarcane production using a dynamic global vegetation model (JULES vn 5.6). We found that between 5.6 % and 18.3 % of total crop productivity is likely lost across the region due to the direct impacts of current O3 exposure. However, impacts depended critically on the substantial differences in O3 susceptibility observed among sugarcane genotypes and how these were implemented in the model. Our work highlights not only the urgent need to fully elucidate the impacts of O3 in this important bioenergetic crop, but the potential implications air quality may have upon tropical food production more generally.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Saccharum , Ozono/análisis , Grano Comestible/química , Productos Agrícolas , Contaminantes Atmosféricos/análisis
13.
Environ Sci Technol ; 46(9): 4994-5002, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22489788

RESUMEN

The inositol phosphates are an abundant but poorly understood group of organic phosphorus compounds found widely in the environment. Four stereoisomers of inositol hexakisphosphate (IP(6)) occur, although for three of these (scyllo, neo, and D-chiro) the origins, dynamics, and biological function remain unknown, due in large part to analytical limitations in their measurement in environmental samples. We synthesized authentic neo- and D-chiro-IP(6) and used them to identify signals from these compounds in three soils from the Falkland Islands. Both compounds resisted hypobromite oxidation and gave quantifiable (31)P NMR signals at δ = 6.67 ppm (equatorial phosphate groups of the 4-equatorial/2-axial conformer of neo-IP(6)) and δ = 6.48 ppm (equatorial phosphate groups of the 2-equatorial/4-axial conformer of D-chiro-IP(6)) in soil extracts. Inositol hexakisphosphate accounted for 46-54% of the soil organic phosphorus, of which the four stereoisomers constituted, on average, 55.9% (myo), 32.8% (scyllo), 6.1% (neo), and 5.2% (D-chiro). Reappraisal of the literature based on the new signal assignments revealed that neo- and D-chiro-IP(6) occur widely in both terrestrial and aquatic ecosystems. These results confirm that the inositol phosphates can constitute a considerable fraction of the organic phosphorus in soils and reveal the prevalence of neo- and D-chiro-IP(6) in the environment. The hypobromite oxidation and solution (31)P NMR spectroscopy procedure allows the simultaneous quantification of all four IP(6) stereoisomers in environmental samples and provides a platform for research into the origins and ecological significance of these enigmatic compounds.


Asunto(s)
Ácido Fítico/análisis , Suelo/análisis , Bromo , Ácido Edético , Espectroscopía de Resonancia Magnética , Oxidación-Reducción , Isótopos de Fósforo , Ácido Fítico/síntesis química , Estereoisomerismo
14.
Environ Sci Technol ; 46(9): 4775-82, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22423890

RESUMEN

Phosphorus sequestration in wetland soils is a prerequisite for long-term maintenance of water quality in downstream aquatic systems, but can be compromised if phosphorus is released following changes in nutrient status or hydrological regimen. The association of phosphorus with relatively refractory natural organic matter (e.g., humic substances) might protect soil phosphorus from such changes. Here we used hydrofluoric acid (HF) pretreatment to remove phosphorus associated with metals or anionic sorption sites, allowing us to isolate a pool of phosphorus associated with the soil organic fraction. Solution (31)P and solid state (13)C NMR spectra for wetland soils were acquired before and after hydrofluoric acid pretreatment to assess quantitatively and qualitatively the changes in phosphorus and carbon functional groups. Organic phosphorus was largely unaffected by HF treatment in soils dominated by refractory alkyl and aromatic carbon groups, indicating association of organic phosphorus with stable, humified soil organic matter. Conversely, a considerable decrease in organic phosphorus following HF pretreatment was detected in soils where O-alkyl groups represented the major fraction of the soil carbon. These correlations suggest that HF treatment can be used as a method to distinguish phosphorus fractions that are bound to the inorganic soil components from those fractions that are stabilized by incorporation into soil organic matter.


Asunto(s)
Compuestos Orgánicos/química , Compuestos de Fósforo/química , Fósforo/química , Suelo/análisis , Humedales , Ácido Fluorhídrico , Espectroscopía de Resonancia Magnética
15.
Science ; 377(6613): 1440-1444, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36137034

RESUMEN

Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)-even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth's surface.


Asunto(s)
Bosques , Calentamiento Global , Isópteros , Madera , Animales , Ciclo del Carbono , Temperatura , Clima Tropical , Madera/microbiología
16.
Sci Data ; 8(1): 254, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593819

RESUMEN

We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.


Asunto(s)
Bases de Datos Factuales , Fenotipo , Plantas , Australia , Fenómenos Fisiológicos de las Plantas
18.
Environ Sci Technol ; 44(24): 9265-71, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21090603

RESUMEN

The microbially mediated transformation of detrital P entering wetlands has important implications for the cycling and long-term sequestration of P in wetland soils. We investigated changes in P forms in sawgrass (Cladium jamaicense Crantz) and cattail (Typha domingensis Pers.) leaf litter during 15 months of decomposition at two sites of markedly different nutrient status within a hard-water subtropical wetland (Water Conservation Area 2A, Florida). Leaf litter decomposition at the nutrient enriched site resulted in net sequestration of P from the environment in forms characteristic of microbial cells (i.e., phosphodiesters and pyrophosphate). In contrast, low P concentrations at the unenriched site resulted in little or no net sequestration of P, with changes in P forms limited to the loss of compounds present in the initial leaf litter. We conclude that under nutrient-rich conditions, P sequestration occurs through the accumulation of microbially derived compounds and the presumed concentration of endogenous macrophyte P. Under nutrient-poor conditions, standing P pools within wetland soils appear to be independent of the heterotrophic decomposition of macrophyte leaf litter. These conclusions have important implications for our ability to predict the nature, stability, and rates of P sequestration in wetlands in response to changes in nutrient loading.


Asunto(s)
Fósforo/metabolismo , Contaminantes del Suelo/metabolismo , Humedales , Biodegradación Ambiental , Biotransformación , Cyperaceae/química , Espectroscopía de Resonancia Magnética , Fósforo/análisis , Plantas , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis , Typhaceae/química
19.
J Environ Qual ; 39(4): 1517-25, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20830938

RESUMEN

Newly created and restored wetlands play an important role in sequestering excess nutrients at the landscape scale. In evaluating the long-term efficacy of nutrient management strategies to increase wetland capacity for sequestering P, information is needed on the forms of P found across the upland-wetland transition. To assess this, we studied soils (0-10 cm) from four wetlands within cow-calf pastures north of Lake Okeechobee, FL. Wetlands contained significantly (P < 0.05) greater concentrations of organic matter (219 g C kg(-1)), total P (371 mg P kg(-1)), and metals (Al, Fe) relative to surrounding pasture. When calculated on an aerial basis, wetland surface soils contained significantly greater amounts of total P (236 kg ha(-1)) compared with upland soils (114 kg ha(-1)), which was linked to the concomitant increase in organic matter with increasing hydroperiod. The concentration of P forms, determined by extraction with anion exchange membranes, 1 mol L(-1) HCl, and an alkaline extract (0.25 mol L(-1) NaOH and 50 mmol L(-1) ethylenediaminetetraacetic acid [EDTA]) showed significant differences between uplands and wetlands but did not alter as a proportion of total P. Speciation of NaOH-EDTA extracts by solution 31P nuclear magnetic resonance spectroscopy revealed that organic P was dominated by phosphomonoesters in both wetland and pasture soils but that myo-inositol hexakisphosphate was not detected in any sample. The tight coupling of total C and P in the sandy soils of the region suggests that the successful management of historically isolated wetlands for P sequestration depends on the long-term accumulation and stabilization of soil organic matter.


Asunto(s)
Agricultura , Fósforo/química , Suelo/análisis , Humedales , Espectroscopía de Resonancia Magnética , Agua/química
20.
Tree Physiol ; 40(6): 810-821, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32159813

RESUMEN

Conifers are, for the most part, competitively excluded from tropical rainforests by angiosperms. Where they do occur, conifers often occupy sites that are relatively infertile. To gain insight into the physiological mechanisms by which angiosperms outcompete conifers in more productive sites, we grew seedlings of a tropical conifer (Podocarpus guatemalensis Standley) and an angiosperm pioneer (Ficus insipida Willd.) with and without added nutrients, supplied in the form of a slow-release fertilizer. At the conclusion of the experiment, the dry mass of P. guatemalensis seedlings in fertilized soil was approximately twofold larger than that of seedlings in unfertilized soil; on the other hand, the dry mass of F. insipida seedlings in fertilized soil was ~20-fold larger than seedlings in unfertilized soil. The higher relative growth rate of F. insipida was associated with a larger leaf area ratio and a higher photosynthetic rate per unit leaf area. Higher overall photosynthetic rates in F. insipida were associated with an approximately fivefold larger stomatal conductance than in P. guatemalensis. We surmise that a higher whole-plant hydraulic conductance in the vessel bearing angiosperm F. insipida enabled higher leaf area ratio and higher stomatal conductance per unit leaf area than in the tracheid bearing P. guatemalensis, which enabled F. insipida to capitalize on increased photosynthetic capacity driven by higher nitrogen availability in fertilized soil.


Asunto(s)
Ficus , Magnoliopsida , Tracheophyta , Fotosíntesis , Hojas de la Planta , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA