Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cochrane Database Syst Rev ; 6: CD005105, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37345841

RESUMEN

BACKGROUND: The prevalence of obesity is increasing worldwide, yet nutritional management remains contentious. It has been suggested that low glycaemic index (GI) or low glycaemic load (GL) diets may stimulate greater weight loss than higher GI/GL diets or other weight reduction diets. The previous version of this review, published in 2007, found mainly short-term intervention studies. Since then, randomised controlled trials (RCTs) with longer-term follow-up have become available, warranting an update of this review. OBJECTIVES: To assess the effects of low glycaemic index or low glycaemic load diets on weight loss in people with overweight or obesity. SEARCH METHODS: We searched CENTRAL, MEDLINE, one other database, and two clinical trials registers from their inception to 25 May 2022. We did not apply any language restrictions. SELECTION CRITERIA: We included RCTs with a minimum duration of eight weeks comparing low GI/GL diets to higher GI/GL diets or any other diets in people with overweight or obesity. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. We conducted two main comparisons: low GI/GL diets versus higher GI/GL diets and low GI/GL diets versus any other diet. Our main outcomes included change in body weight and body mass index, adverse events, health-related quality of life, and mortality. We used GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS: In this updated review, we included 10 studies (1210 participants); nine were newly-identified studies. We included only one study from the previous version of this review, following a revision of inclusion criteria. We listed five studies as 'awaiting classification' and one study as 'ongoing'. Of the 10 included studies, seven compared low GI/GL diets (233 participants) with higher GI/GL diets (222 participants) and three studies compared low GI/GL diets (379 participants) with any other diet (376 participants). One study included children (50 participants); one study included adults aged over 65 years (24 participants); the remaining studies included adults (1136 participants). The duration of the interventions varied from eight weeks to 18 months. All trials had an unclear or high risk of bias across several domains.  Low GI/GL diets versus higher GI/GL diets Low GI/GL diets probably result in little to no difference in change in body weight compared to higher GI/GL diets (mean difference (MD) -0.82 kg, 95% confidence interval (CI) -1.92 to 0.28; I2 = 52%; 7 studies, 403 participants; moderate-certainty evidence). Evidence from four studies reporting change in body mass index (BMI) indicated low GI/GL diets may result in little to no difference in change in BMI compared to higher GI/GL diets (MD -0.45 kg/m2, 95% CI -1.02 to 0.12; I2 = 22%; 186 participants; low-certainty evidence)at the end of the study periods. One study assessing participants' mood indicated that low GI/GL diets may improve mood compared to higher GI/GL diets, but the evidence is very uncertain (MD -3.5, 95% CI -9.33 to 2.33; 42 participants; very low-certainty evidence). Two studies assessing adverse events did not report any adverse events; we judged this outcome to have very low-certainty evidence. No studies reported on all-cause mortality.    For the secondary outcomes, low GI/GL diets may result in little to no difference in fat mass compared to higher GI/GL diets (MD -0.86 kg, 95% CI -1.52 to -0.20; I2 = 6%; 6 studies, 295 participants; low certainty-evidence). Similarly, low GI/GL diets may result in little to no difference in fasting blood glucose level compared to higher GI/GL diets (MD 0.12 mmol/L, 95% CI 0.03 to 0.21; I2 = 0%; 6 studies, 344 participants; low-certainty evidence).  Low GI/GL diets versus any other diet Low GI/GL diets probably result in little to no difference in change in body weight compared to other diets (MD -1.24 kg, 95% CI -2.82 to 0.34; I2 = 70%; 3 studies, 723 participants; moderate-certainty evidence). The evidence suggests that low GI/GL diets probably result in little to no difference in change in BMI compared to other diets (MD -0.30 kg in favour of low GI/GL diets, 95% CI -0.59 to -0.01; I2 = 0%; 2 studies, 650 participants; moderate-certainty evidence). Two adverse events were reported in one study: one was not related to the intervention, and the other, an eating disorder, may have been related to the intervention. Another study reported 11 adverse events, including hypoglycaemia following an oral glucose tolerance test. The same study reported seven serious adverse events, including kidney stones and diverticulitis. We judged this outcome to have low-certainty evidence. No studies reported on health-related quality of life or all-cause mortality. For the secondary outcomes, none of the studies reported on fat mass. Low GI/GL diets probably do not reduce fasting blood glucose level compared to other diets (MD 0.03 mmol/L, 95% CI -0.05 to 0.12; I2 = 0%; 3 studies, 732 participants; moderate-certainty evidence).  AUTHORS' CONCLUSIONS: The current evidence indicates there may be little to no difference for all main outcomes between low GI/GL diets versus higher GI/GL diets or any other diet. There is insufficient information to draw firm conclusions about the effect of low GI/GL diets on people with overweight or obesity. Most studies had a small sample size, with only a few participants in each comparison group. We rated the certainty of the evidence as moderate to very low. More well-designed and adequately-powered studies are needed. They should follow a standardised intervention protocol, adopt objective outcome measurement since blinding may be difficult to achieve, and make efforts to minimise loss to follow-up. Furthermore, studies in people from a wide range of ethnicities and with a wide range of dietary habits, as well as studies in low- and middle-income countries, are needed.


Asunto(s)
Carga Glucémica , Sobrepeso , Adulto , Niño , Humanos , Glucemia , Peso Corporal , Dieta , Índice Glucémico , Obesidad , Anciano
2.
Foods ; 11(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35741952

RESUMEN

A randomised controlled trial to measure the effects of integrating real-time continuous glucose monitor (rtCGM) into a low glycaemic index (GI) and glycaemic load (GL) dietary intervention on dietary intake, body composition and specific metabolic parameters was carried out. A total of 40 overweight young adults [(means ± SD) age: 26.4 ± 5.3 years, BMI: 29.4 ± 4.7 kg/m2] were randomised into an intervention and control groups for a period of eight weeks. Both groups received nutrition education on low GI and GL foods. The intervention group also received an rtCGM system to monitor their glucose levels 24 h a day. While controlling for physical activities and GI and GL nutrition knowledge, the results indicated that the rtCGM system further improved body weight, BMI, fat mass, fasting plasma glucose, HbA1c, total cholesterol, HDL cholesterol and LDL cholesterol in the intervention group (p < 0.05). This trial unveils the robustness of the rtCGM where non-diabetic overweight and obese young adults can benefit from this device and utilise it as a management tool for overweight and obesity and a primary prevention tool for type 2 diabetes, as it provides real-time and personalised information on physiological changes.

3.
Foods ; 11(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35407070

RESUMEN

Postprandial hyperglycaemia is associated with an increased risk of type-2 diabetes. This study aims to determine the glycaemic index (GI) of three varieties of rice-based mixed meals and their effects on glycaemic variability (GV), 24 h mean glucose levels and target ranges, and rice variety preferences among overweight and obese young adults using real-time continuous glucose monitoring (rtCGM). In a randomised controlled crossover design, 14 participants (22.8 ± 4.6 years, 32.9 ± 5.8 kg/m2) were randomly assigned to receive 3 rice-based mixed meals containing 50 g of available carbohydrates (white rice meal = WRM; brown rice meal = BRM; and parboiled basmati rice meal = PBRM) and 50 g of a glucose reference drink on alternate days. GI, GV, 24 h mean glucose levels and target ranges were measured. Rice variety preferences were compared with those of baseline data and determined at the end of the study period. Results: The analysis found that PBRM was low in GI (45.35 ± 2.06), BRM medium in GI (56.44 ± 2.34), and WRM high in GI (83.03 ± 2.19). PBRM had a significantly (p < 0.05) lower 24 h mean glucose level, higher in-target 24 h glucose level percentage and non-significantly (p > 0.05) lower GV compared to WRM. Prior to observing their postprandial glucose levels generated by rtCGM, the participants preferred WRM (64.3%) over other meals, whereas this preference changed significantly (p < 0.05) at the endpoint (PBRM, 71.4%). PBRM reduced 24 h glucose level and GV of overweight and obese young adults. The rtCGM is proven to be reliable in measuring GI, while providing robust continuous glycaemic information. This may serve as an educational tool that motivates eating behaviour changes among overweight and obese young adults.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA