Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 626(7997): 105-110, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297175

RESUMEN

Silicon solar cells are a mainstay of commercialized photovoltaics, and further improving the power conversion efficiency of large-area and flexible cells remains an important research objective1,2. Here we report a combined approach to improving the power conversion efficiency of silicon heterojunction solar cells, while at the same time rendering them flexible. We use low-damage continuous-plasma chemical vapour deposition to prevent epitaxy, self-restoring nanocrystalline sowing and vertical growth to develop doped contacts, and contact-free laser transfer printing to deposit low-shading grid lines. High-performance cells of various thicknesses (55-130 µm) are fabricated, with certified efficiencies of 26.06% (57 µm), 26.19% (74 µm), 26.50% (84 µm), 26.56% (106 µm) and 26.81% (125 µm). The wafer thinning not only lowers the weight and cost, but also facilitates the charge migration and separation. It is found that the 57-µm flexible and thin solar cell shows the highest power-to-weight ratio (1.9 W g-1) and open-circuit voltage (761 mV) compared to the thick ones. All of the solar cells characterized have an area of 274.4 cm2, and the cell components ensure reliability in potential-induced degradation and light-induced degradation ageing tests. This technological progress provides a practical basis for the commercialization of flexible, lightweight, low-cost and highly efficient solar cells, and the ability to bend or roll up crystalline silicon solar cells for travel is anticipated.

2.
Opt Express ; 30(4): 5304-5313, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209497

RESUMEN

A new plasmonic nanofocusing metalens based on aperiodic silica grating arrays was designed and investigated. Assisted by the graphene surface plasmon, the infrared polarized light can be focused in a nanospot with a dynamically controlled focal length by varying the dielectric strip width or the graphene Fermi level Ef. For instance, with λ0 = 8 µm and Ef at 0.3, 0.6 and 0.9 eV, focal lengths of 4.5, 3.8 and 3.5 µm with its corresponding FWHM of 64, 232 and 320 nm, respectively, can be realized. The variation of the focusing efficiency with respect to the incident wavelength and the Fermi level were also investigated. The results of theoretical analysis based on light differential equations agree well with the finite element analysis simulation, which further validate the model.

3.
Nanotechnology ; 30(30): 305401, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-30970328

RESUMEN

Colloidal Au nanoparticles (NPs) were decorated on stainless steel for surface plasmon enhanced laser ablation. A comparative study of the laser ablation efficiency was carried out on stainless steel samples with and without the Au NPs decoration at a variable pulsed laser fluence and laser pulse number. Higher ablation efficiency was clearly demonstrated in the former as illustrated from the larger diameter, maximum depth and the cross-sectional area of the crater generated by the laser ablation under the same conditions. Additionally, both the maximum depth and efficiency enhancement were found to depend on the laser fluence and pulse number. The maximum enhanced ablation efficiency of 36% based on the cross-sectional area of the crater was obtained at 1 pulse number of laser fluence 1.53 J cm-2. The efficiency enhancement of laser ablation is attributed to the highly enhanced surface plasmon field at the interface between Au NPs and stainless steel.

4.
ACS Omega ; 9(15): 17458-17466, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38645310

RESUMEN

The flow field design of the proton exchange membrane fuel cell (PEMFC) had a great impact on the performance and lifespan of the cell. To improve the uniformity of the substance component inside the PEMFC, referring to the serpentine flow field, a kind of compensating flow field is designed and investigated. Under the same conditions, the homogeneity of the two flow field structures is compared, and the influence of the homogeneity of two flow field distributions on the performance of the PEMFC is further analyzed. The polarization curve, maximum pressure difference at the inlet and outlet of the flow channel, and thermal stress generated by temperature gradients are used as performance indicators for evaluating the performance of the cell. The results show that after compensation, the distribution uniformity of each component in the flow field is improved, and the power density, water management, and thermal management capabilities are better than those in the traditional flow field design. Furthermore, the thermal performance of the single-layer cell and five-layer stack was compared. The results show that the more fuel cell layers, the greater the temperature difference within the cell, which will result in greater thermal stress. In the compensation flow field, the thermal stress of a single-layer unit is 14% lower than that of a serpentine flow field, and the thermal stress of a five-layer stack is 20% lower.

5.
J Colloid Interface Sci ; 661: 629-661, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38310771

RESUMEN

When the anodic oxygen evolution reaction (OER) of water splitting is replaced by the urea oxidation reaction (UOR), the electrolyzer can fulfill hydrogen generation in an energy-economic manner for urea electrolysis as well as sewage purification. However, owing to the sluggish kinetics from a six-electron process for UOR, it is in great demand to design and fabricate high-performance and affordable electrocatalysts. Over the past years, numerous non-precious materials (especially nickel-involved samples) have offered huge potential as catalysts for urea electrolysis under alkaline conditions, even in comparison with frequently used noble-metal ones. In this review, recent efforts and progress in these high-efficiency noble-metal-free electrocatalysts are comprehensively summarized. The fundamentals and principles of UOR are first described, followed by highlighting UOR mechanism progress, and then some discussion about density functional theory (DFT) calculations and operando investigations is given to disclose the real reaction mechanism. Afterward, aiming to improve or optimize UOR electrocatalytic properties, various noble-metal-free catalytic materials are introduced in detail and classified into different classes, highlighting the underlying activity-structure relationships. Furthermore, new design trends are also discussed, including targetedly designing nanostructured materials, manipulating anodic products, combining theory and in situ experiments, and constructing bifunctional catalysts. Ultimately, we point out the outlook and explore the possible future opportunities by analyzing the remaining challenges in this booming field.

6.
Front Chem ; 10: 1121482, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36688038
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA