Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Neurochem ; 134(1): 86-96, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25772995

RESUMEN

Reversible post-translation modifications of proteins are common in all cells and appear to regulate many processes. Nevertheless, the enzyme(s) responsible for the alterations and the significance of the modification are largely unknown. Succinylation of proteins occurs and causes large changes in the structure of proteins; however, the source of the succinyl groups, the targets, and the consequences of these modifications on other proteins remain unknown. These studies focused on succinylation of mitochondrial proteins. The results demonstrate that the α-ketoglutarate dehydrogenase complex (KGDHC) can serve as a trans-succinylase that mediates succinylation in an α-ketoglutarate-dependent manner. Inhibition of KGDHC reduced succinylation of both cytosolic and mitochondrial proteins in cultured neurons and in a neuronal cell line. Purified KGDHC can succinylate multiple proteins including other enzymes of the tricarboxylic acid cycle leading to modification of their activity. Inhibition of KGDHC also modifies acetylation by modifying the pyruvate dehydrogenase complex. The much greater effectiveness of KGDHC than succinyl-CoA suggests that the catalysis owing to the E2k succinyltransferase is important. Succinylation appears to be a major signaling system and it can be mediated by KGDHC. Reversible post-translation modifications of proteins are common and may regulate many processes. Succinylation of proteins occurs and causes large changes in the structure of proteins. However, the source of the succinyl groups, the targets, and the consequences of these modifications on other proteins remains unknown. The results demonstrate that the mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC) can succinylate multiple mitochondrial proteins and alter their function. Succinylation appears to be a major signaling system and it can be mediated by KGDHC.


Asunto(s)
Acilcoenzima A/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Sirtuinas/metabolismo
2.
Metab Brain Dis ; 29(4): 1083-93, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24748364

RESUMEN

Thiamine dependent enzymes are diminished in Alzheimer's disease (AD). Thiamine deficiency in vitro and in rodents is a useful model of this reduction. Thiamine interacts with cellular calcium stores. To directly test the relevance of the thiamine dependent changes to dynamic processes in AD, the interactions must be studied in cells from patients with AD. These studies employed fibroblasts. Mitochondrial dysfunction including reductions in thiamine dependent enzymes and abnormalities in calcium homeostasis and oxidative processes occur in fibroblasts from Alzheimer's Disease (AD) patients. Bombesin-releasable calcium stores (BRCS) from the endoplasmic reticulum (ER) are exaggerated in fibroblasts from patients with AD bearing a presenilin-1 (PS-1) mutation and in control fibroblasts treated with oxidants. ER calcium regulates calcium entry into the cell through capacitative calcium entry (CCE), which is reduced in fibroblasts and neurons from mice bearing PS-1 mutations. Under physiological conditions, mitochondria and ER play important and interactive roles in the regulation of Ca(2+) homeostasis. Thus, the interactions of mitochondria and oxidants with CCE were tested. Inhibition of ER Ca(2+)-ATPase by cyclopiazonic acid (CPA) stimulates CCE. CPA-induced CCE was diminished by inhibition of mitochondrial Ca(2+) export (-60%) or import (-40%). Different aspects of mitochondrial Ca(2+) coupled to CPA-induced-CCE were sensitive to select oxidants. The effects were very different when CCE was examined in the presence of InsP3, a physiological regulator of ER calcium release, and subsequent CCE. CCE under these conditions was only mildly reduced (20-25%) by inhibition of mitochondrial Ca(2+) export, and inhibition of mitochondrial Ca(2+) uptake exaggerated CCE (+53%). However, t-BHP reversed both abnormalities. The results suggest that in the presence of InsP3, mitochondria buffer the local Ca(2+) released from ER following rapid activation of InsP3R and serve as a negative feedback to the CCE. The results suggest that mitochondrial Ca(2+) modifies the depletion and refilling mechanism of ER Ca(2+) stores.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Tiamina/fisiología , Enfermedad de Alzheimer/patología , Animales , Células Cultivadas , Fibroblastos/metabolismo , Homeostasis , Humanos , Indoles/farmacología , Inositol 1,4,5-Trifosfato/fisiología , Receptores de Inositol 1,4,5-Trifosfato/fisiología , Transporte Iónico , Masculino , Ratones , Ratones Mutantes Neurológicos , Neuronas/metabolismo
3.
Neurochem Res ; 35(12): 2107-16, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20734230

RESUMEN

Diminished thiamine (vitamin B1) dependent processes and oxidative stress accompany Alzheimer's disease (AD). Thiamine deficiency in animals leads to oxidative stress. These observations suggest that thiamin may act as an antioxidant. The current experiments first tested directly whether thiamin could act as an antioxidant, and then examined the physiological relevance of the antioxidant properties on oxidant sensitive, calcium dependent processes that are altered in AD. The first group of experiments examined whether thiamin could diminish reactive oxygen species (ROS) or reactive nitrogen species (RNS) produced by two very divergent paradigms. Dose response curves determined the concentrations of t-butyl-hydroperoxide (t-BHP) (ROS production) or 3-morpholinosydnonimine ((SIN-1) (RNS production) to induce oxidative stress within cells. Concentrations of thiamine that reduced the RNS in cells did not diminish the ROS. The second group of experiments tested whether thiamine alters oxidant sensitive aspects of calcium regulation including endoplasmic reticulum (ER) calcium stores and capacitative calcium entry (CCE). Thiamin diminished ER calcium considerably, but did not alter CCE. Thiamine did not alter the actions of ROS on ER calcium or CCE. On the other hand, thiamine diminished the effect of RNS on CCE. These data are consistent with thiamine diminishing the actions of the RNS, but not ROS, on physiological targets. Thus, both experimental approaches suggest that thiamine selectively alters RNS. Additional experiments are required to determine whether diminished thiamine availability promotes oxidative stress in AD or whether the oxidative stress in AD brain diminishes thiamine availability to thiamine dependent processes.


Asunto(s)
Calcio/metabolismo , Oxidantes/farmacología , Tiamina/farmacología , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Especies Reactivas de Oxígeno/metabolismo
4.
Neurochem Int ; 54(2): 111-8, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19041676

RESUMEN

Resveratrol, a polyphenol found in red wine, peanuts, soy beans, and pomegranates, possesses a wide range of biological effects. Since resveratrol's properties seem ideal for treating neurodegenerative diseases, its ability to diminish amyloid plaques was tested. Mice were fed clinically feasible dosages of resveratrol for forty-five days. Neither resveratrol nor its conjugated metabolites were detectable in brain. Nevertheless, resveratrol diminished plaque formation in a region specific manner. The largest reductions in the percent area occupied by plaques were observed in medial cortex (-48%), striatum (-89%) and hypothalamus (-90%). The changes occurred without detectable activation of SIRT-1 or alterations in APP processing. However, brain glutathione declined 21% and brain cysteine increased 54%. The increased cysteine and decreased glutathione may be linked to the diminished plaque formation. This study supports the concept that onset of neurodegenerative disease may be delayed or mitigated with use of dietary chemo-preventive agents that protect against beta-amyloid plaque formation and oxidative stress.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Antioxidantes/uso terapéutico , Suplementos Dietéticos , Placa Amiloide/genética , Placa Amiloide/patología , Estilbenos/uso terapéutico , Animales , Antioxidantes/farmacocinética , Ácido Ascórbico/metabolismo , Benzotiazoles , Western Blotting , Encéfalo/metabolismo , Ventrículos Cerebrales/patología , Cisteína/metabolismo , Femenino , Glutatión/metabolismo , Hipocampo/patología , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Resveratrol , Sirtuina 1 , Sirtuinas/metabolismo , Estilbenos/farmacocinética , Tiazoles , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Neurochem Int ; 96: 32-45, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26923918

RESUMEN

Brain activities of the mitochondrial enzyme α-ketoglutarate dehydrogenase complex (KGDHC) are reduced in Alzheimer's disease and other age-related neurodegenerative disorders. The goal of the present study was to test the consequences of mild impairment of KGDHC on the structure, protein signaling and dynamics (mitophagy, fusion, fission, biogenesis) of the mitochondria. Inhibition of KGDHC reduced its in situ activity by 23-53% in human neuroblastoma SH-SY5Y cells, but neither altered the mitochondrial membrane potential nor the ATP levels at any tested time-points. The attenuated KGDHC activity increased translocation of dynamin-related protein-1 (Drp1) and microtubule-associated protein 1A/1B-light chain 3 (LC3) from the cytosol to the mitochondria, and promoted mitochondrial cytochrome c release. Inhibition of KGDHC also increased the negative surface charges (anionic phospholipids as assessed by Annexin V binding) on the mitochondria. Morphological assessments of the mitochondria revealed increased fission and mitophagy. Taken together, our results suggest the existence of the regulation of the mitochondrial dynamism including fission and fusion by the mitochondrial KGDHC activity via the involvement of the cytosolic and mitochondrial protein signaling molecules. A better understanding of the link among mild impairment of metabolism, induction of mitophagy/autophagy and altered protein signaling will help to identify new mechanisms of neurodegeneration and reveal potential new therapeutic approaches.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Autofagia/fisiología , Líquido Intracelular/enzimología , Complejo Cetoglutarato Deshidrogenasa/antagonistas & inhibidores , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Mitocondrias/enzimología , Enfermedad de Alzheimer/patología , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Humanos , Líquido Intracelular/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Organofosfonatos/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Succinatos/farmacología
6.
Free Radic Biol Med ; 39(8): 979-89, 2005 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16198225

RESUMEN

Abnormalities in calcium homeostasis and oxidative processes occur in fibroblasts from patients with Alzheimer disease (AD) and in fibroblasts and neurons from transgenic mice bearing a presenilin-1 (PS-1) mutation. Bombesin-releasable endoplasmic reticulum Ca2+ stores (BRCS) are exaggerated in all of these cells. Our previous studies show that H2O2 exaggerates BRCS. The goal of the present study was to determine whether select reactive species exaggerate BRCS in cultured human fibroblasts and to determine if the ability of fibroblasts to handle these specific oxidant species is altered in cells from AD patients. Two fluorescent indicators were used to distinguish different reactive oxygen species (ROS): 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate, di(acetoxymethyl ester) (c-DCF) and 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM). ROS were produced by a variety of oxidants, including tert-butyl-hydroxyperoxide (t-BHP), hypoxanthine/xanthine oxidase, S-nitroso-N-acetylpenicillamine, 3-morpholinosydnonimine, and sodium nitroprusside. Different oxidants selectively induced various ROS in distinct patterns. These oxidants also induced selective modification in [Ca2+]i and/or BRCS. Of the several oxidants tested, t-BHP was most specific for exaggerating BRCS without affecting basal [Ca2+]i and inducing only c-DCF-detectable ROS. On the other hand, the results show that NO that reacted with DAF-FM was not responsible for alterations in BRCS. Furthermore, the c-DCF-detectable ROS production induced by t-BHP was higher in fibroblasts from AD patients bearing a PS-1 mutation (n = 7) than in those from aged controls (n = 8). The higher production of c-DCF-detectable ROS may underlie the exaggeration of BRCS in fibroblasts from AD patients. Thus, these results are consistent with the hypothesis that abnormalities in selective cellular ROS cause AD-related changes in intracellular calcium regulation.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Oxidantes/farmacología , Bombesina/metabolismo , Células Cultivadas , Retículo Endoplásmico/metabolismo , Fibroblastos/efectos de los fármacos , Fluoresceínas/análisis , Humanos , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , terc-Butilhidroperóxido/farmacología
7.
Ann N Y Acad Sci ; 1042: 272-8, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15965072

RESUMEN

The alpha-ketoglutarate dehydrogenase complex (KGDHC) is a mitochondrial enzyme in the TCA cycle. Inhibition of KGDHC activity by alpha-keto-beta-methyl-n-valeric acid (KMV) is associated with neuron death. However, the effect of KMV in microglia is unclear. Therefore, we investigated the effect of KMV on BV-2 microglial cells exposed to hypoxia or oxidative stress. The results showed that KMV (1-20 mM) enhanced the cell viability under hypoxia. KMV dose-dependently reduced ROS and LDH releases from hypoxic BV-2 cells. KMV also reduced ROS production and enhanced the cell viability under H2O2 but failed to reduce the SIN-1 and sodium nitroprusside (SNP) toxicity. KMV also reduced caspase-3 and -9 activation under stress. These results suggest that KMV protects BV-2 cells from stress and acts by reducing ROS production through inhibition of KDGHC.


Asunto(s)
Hipoxia de la Célula/fisiología , Citoprotección/efectos de los fármacos , Cetoácidos/farmacología , Microglía/efectos de los fármacos , Estrés Oxidativo , Apoptosis/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Línea Celular , Humanos , Peróxido de Hidrógeno/farmacología , Microglía/citología , Microglía/metabolismo , Especies Reactivas de Oxígeno/metabolismo
8.
J Neuroimmunol ; 146(1-2): 50-62, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14698847

RESUMEN

Lower molecular weight of hyaluronan (HA) fragments are capable of activating macrophages to express a number of inflammatory mediators through the interaction with the HA receptor CD44. Recent evidence has demonstrated that concomitant induction of CD44 and HA synthase 2 (HAS-2) mRNA in microglia of the ischemic brain. However, the influence of HA fragments on the activation of microglia is poorly understood. In this study, we demonstrated that HA fragments induced inducible NO synthase (iNOS) expression in BV-2 microglia in a dose-dependent manner and was synergized with interferon-gamma (IFN-gamma). Moreover, HA fragments could induce the activation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK1/ERK2), and c-Jun N-terminal kinase (JNK) in a time and dose-dependent fashion. The HA fragments-induced iNOS expression was suppressed by the selective inhibitors of JNK and, to a lesser extent, p38 MAPK. These results suggest that the induction of iNOS by HA fragments is significantly dependent on JNK than on p38 MAPK signaling pathways and support the hypothesis that HA fragments may be an important regulator in the activation of microglia at sites of ischemic brain.


Asunto(s)
Ácido Hialurónico/farmacología , Microglía/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/fisiología , Óxido Nítrico Sintasa/biosíntesis , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Ácido Hialurónico/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos , Microglía/enzimología , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa de Tipo II , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas p38 Activadas por Mitógenos
9.
Neuroreport ; 14(14): 1815-9, 2003 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-14534426

RESUMEN

Sesame antioxidants have been shown to inhibit lipid peroxidation and regulate cytokine production. In this study, we focused on the effect of sesamin and sesamolin, on nitric oxide (NO) induction by lipopolysaccharides (LPS) in the murine microglial cell line BV-2 and rat primary microglia. The results showed that sesamin and sesamolin significantly inhibited NO production, iNOS mRNA and protein expression in LPS-stimulated BV-2 cells. Sesamin or sesamolin significantly reduced LPS-activated p38 MAPK of BV-2 cells. Furthermore, SB203580, a specific inhibitor of p38 MAP kinase, dose-dependently inhibited NO production in LPS-stimulated BV-2 cells. Taken together, the inhibition of NO production might be due to the reduction of LPS-induced p38 MAPK signal pathway by sesamin and sesamolin.


Asunto(s)
Antioxidantes/farmacología , Microglía/efectos de los fármacos , Óxido Nítrico/metabolismo , Aceite de Sésamo/química , Animales , Western Blotting , Células Cultivadas , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Femenino , Proteínas HSP70 de Choque Térmico/metabolismo , Imidazoles/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos , Lipopolisacáridos/farmacología , Microglía/enzimología , Microglía/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo II , Embarazo , Piridinas/farmacología , ARN Mensajero/biosíntesis , Ratas , Ratas Endogámicas F344 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , gamma-Tocoferol/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos
10.
Neurobiol Aging ; 33(6): 1121.e13-24, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22169199

RESUMEN

Understanding the molecular sequence of events that culminate in multiple abnormalities in brains from patients that died with Alzheimer's disease (AD) will help to reveal the mechanisms of the disease and identify upstream events as therapeutic targets. The activity of the mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC) in homogenates from autopsy brain declines with AD. Experimental reductions in KGDHC in mouse models of AD promote plaque and tangle formation, the hallmark pathologies of AD. We hypothesize that deficits in KGDHC also lead to the abnormalities in endoplasmic reticulum (ER) calcium stores and cytosolic calcium following K(+) depolarization that occurs in cells from AD patients and transgenic models of AD. The activity of the mitochondrial enzyme KGDHC was diminished acutely (minutes), long-term (days), or chronically (weeks). Acute inhibition of KGDHC produced effects on calcium opposite to those in AD, while the chronic or long-term inhibition of KGDHC mimicked the AD-related changes in calcium. Divergent changes in proteins released from the mitochondria that affect endoplasmic reticulum calcium channels may underlie the selective cellular consequences of acute versus longer term inhibition of KGDHC. The results suggest that the mitochondrial abnormalities in AD can be upstream of those in calcium.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Calcio/fisiología , Complejo Cetoglutarato Deshidrogenasa/deficiencia , Mitocondrias/enzimología , Proteínas Mitocondriales/deficiencia , Enfermedad de Alzheimer/fisiopatología , Animales , Línea Celular Tumoral , Células Cultivadas , Complejo Cetoglutarato Deshidrogenasa/antagonistas & inhibidores , Complejo Cetoglutarato Deshidrogenasa/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética
11.
J Biol Chem ; 280(12): 10888-96, 2005 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-15649899

RESUMEN

The activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC) declines in brains of patients with several neurodegenerative diseases. KGDHC consists of multiple copies of E1k, E2k, and E3. E1k and E2k are unique to KGDHC and may have functions independent of the complex. The present study tested the consequences of different levels of diminished E2k mRNA on protein levels of the subunits, KGDHC activity, and physiological responses. Human embryonic kidney cells were stably transfected with an E2k sense or antisense expression vector. Sense control (E2k-mRNA-100) was compared with two clones in which the mRNA was reduced to 67% of control (E2k-mRNA-67) or to 30% of control (E2k-mRNA-30). The levels of the E2k protein in clones paralleled the reduction in mRNA, and E3 proteins were unaltered. Unexpectedly, the clone with the greatest reduction in E2k protein (E2k-mRNA-30) had a 40% increase in E1k protein. The activity of the complex was only 52% of normal in E2k-mRNA-67 clone, but was near normal (90%) in E2k-mRNA-30 clone. Subsequent experiments tested whether the physiological consequences of a reduction in E2k mRNA correlated more closely to E2k protein or to KGDHC activity. Growth rate, increased DCF-detectable reactive oxygen species, and cell death in response to added oxidant were proportional to E2k proteins, but not complex activity. These results were not predicted because subunits unique to KGDHC have never been manipulated in mammalian cells. These results suggest that in addition to its essential role in metabolism, the E2k component of KGDHC may have other novel roles.


Asunto(s)
Aciltransferasas/fisiología , Complejo Cetoglutarato Deshidrogenasa/fisiología , Línea Celular , Proliferación Celular , Supervivencia Celular , Humanos , Complejo Cetoglutarato Deshidrogenasa/química , NAD/metabolismo , Subunidades de Proteína , ARN sin Sentido/fisiología , Especies Reactivas de Oxígeno
12.
J Neurosci Res ; 74(2): 309-17, 2003 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-14515360

RESUMEN

Mitochondrial dysfunction has been implicated in cell death in many neurodegenerative diseases. Diminished activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), a key and arguably rate-limiting enzyme of the Krebs cycle, occurs in these disorders and may underlie decreased brain metabolism. The present studies used alpha-keto-beta-methyl-n-valeric acid (KMV), a structural analogue of alpha-ketoglutarate, to inhibit KGDHC activity to test effects of reduced KGDHC on mitochondrial function and cell death cascades in PC12 cells. KMV decreased in situ KGDHC activity by 52 +/- 7% (1 hr) or 65 +/- 4% (2 hr). Under the same conditions, KMV did not alter the mitochondrial membrane potential (MMP), as assessed with a method that detects changes as small as 5%. KMV also did not alter production of reactive oxygen species (ROS). However, KMV increased lactate dehydrogenase (LDH) release from cells by 100 +/- 4.7%, promoted translocation of mitochondrial cytochrome c to the cytosol, and activated caspase-3. Inhibition of the mitochondrial permeability transition pore (MPTP) by cyclosporin A (CsA) partially blocked this KMV-induced change in cytochrome c (-40%) and LDH (-15%) release, and prevented necrotic cell death. Thus, impairment of this key mitochondrial enzyme in PC12 cells may lead to cytochrome c release and caspase-3 activation by partial opening of the MPTP before the loss of mitochondrial membrane potentials.


Asunto(s)
Complejo Cetoglutarato Deshidrogenasa/antagonistas & inhibidores , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Mitocondrias/enzimología , Enfermedades Neurodegenerativas/enzimología , Neuronas/enzimología , Animales , Caspasa 3 , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/fisiología , Cromatina/efectos de los fármacos , Cromatina/metabolismo , Ciclosporina/farmacología , Citocromos c/metabolismo , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/metabolismo , Cetoácidos/farmacología , L-Lactato Deshidrogenasa/metabolismo , Metaloproteinasas de la Matriz/efectos de los fármacos , Metaloproteinasas de la Matriz/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Necrosis , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/patología , Células PC12 , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Ratas , Especies Reactivas de Oxígeno/metabolismo
13.
J Biomed Sci ; 11(4): 472-81, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15153782

RESUMEN

Nicotinamide (vitamin B(3)) reduces the infarct volume following focal cerebral ischemia in rats; however, its mechanism of action has not been reported. After cerebral ischemia and/or reperfusion, reactive oxygen species (ROS) and reactive nitrogen species may be generated by inflammatory cells through several cellular pathways, which can lead to intracellular calcium influx and cell damage. Therefore, we investigated the mechanisms of action of nicotinamide in neuroprotection under conditions of hypoxia/reoxygenation. Results showed that nicotinamide significantly protected rat primary cortical cells from hypoxia by reducing lactate dehydrogenase release with 1 h of oxygen-glucose deprivation (OGD) stress. ROS production and calcium influx in neuronal cells during OGD were dose-dependently diminished by up to 10 mM nicotinamide (p < 0.01). This effect was further examined with OGD/reoxygenation (H/R). Cells were stained with the fluorescent dye 4,6-diamidino-2-phenylindole (DAPI) or antibodies against anti-microtubule-associated protein-2 and cleaved caspase-3. Apoptotic cells were studied using Western blotting of cytochrome c and cleaved caspase-3. Results showed that vitamin B(3) reduced cell injury, caspase-3 cleavage and nuclear condensation (DAPI staining) in neuronal cells under H/R. In addition, nicotinamide diminished c-fos and zif268 immediate-early gene expressions following OGD. Taken together, these results indicate that the neuroprotective effect of nicotinamide might occur through these mechanisms in this in vitro ischemia/reperfusion model.


Asunto(s)
Isquemia Encefálica/prevención & control , Hipoxia , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Niacinamida/farmacología , Animales , Apoptosis , Calcio/metabolismo , Caspasa 3 , Caspasas/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Glucosa/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Modelos Biológicos , Neuronas/patología , Oxígeno/metabolismo , Sustancias Protectoras/farmacología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Reperfusión
14.
Eur J Neurosci ; 16(11): 2103-12, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12473078

RESUMEN

An inflammatory response in the central nervous system mediated by activation of microglia is a key event in the early stages of the development of neurodegenerative diseases. Silymarin is a polyphenolic flavanoid derived from milk thistle that has anti-inflammatory, cytoprotective and anticarcinogenic effects. In this study, we first investigated the neuroprotective effect of silymarin against lipopolysaccharide (LPS)-induced neurotoxicity in mesencephalic mixed neuron-glia cultures. The results showed that silymarin significantly inhibited the LPS-induced activation of microglia and the production of inflammatory mediators, such as tumour necrosis factor-alpha and nitric oxide (NO), and reduced the damage to dopaminergic neurons. Therefore, the inhibitory mechanisms of silymarin on microglia activation were studied further. The production of inducible nitric oxide synthase (iNOS) was studied in LPS-stimulated BV-2 cells as a model of microglia activation. Silymarin significantly reduced the LPS-induced nitrite, iNOS mRNA and protein levels in a dose-dependent manner. Moreover, LPS could induce the activation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase but not extracellular signal-regulated kinase. The LPS-induced production of NO was inhibited by the selective p38 MAPK inhibitor SB203580. These results indicated that the p38 MAPK signalling pathway was involved in the LPS-induced NO production. However, the activation of p38 MAPK was not inhibited by silymarin. Nevertheless, silymarin could effectively reduce LPS-induced superoxide generation and nuclear factor kappaB (NF-kappaB) activation. It suggests that the inhibitory effect of silymarin on microglia activation is mediated through the inhibition of NF-kappaB activation.


Asunto(s)
Encefalitis/tratamiento farmacológico , Gliosis/tratamiento farmacológico , Microglía/efectos de los fármacos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neurotoxinas/antagonistas & inhibidores , Sustancias Protectoras/farmacología , Silimarina/farmacología , Animales , Células Cultivadas , Técnicas de Cocultivo , Dopamina/metabolismo , Relación Dosis-Respuesta a Droga , Encefalitis/metabolismo , Encefalitis/fisiopatología , Feto , Gliosis/metabolismo , Gliosis/fisiopatología , Proteínas Quinasas JNK Activadas por Mitógenos , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Mesencéfalo/citología , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Microglía/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neurotoxinas/metabolismo , Neurotoxinas/farmacología , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas F344 , Proteínas Quinasas p38 Activadas por Mitógenos
15.
J Cell Biochem ; 84(2): 367-76, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11787066

RESUMEN

The neuroprotective effect of MK801 against hypoxia and/or reoxygenation-induced neuronal cell injury and its relationship to neuronal nitric oxide synthetase (nNOS) expression were examined in cultured rat cortical cells. Treatment of cortical neuronal cells with hypoxia (95% N(2)/5% CO(2)) for 2 h followed by reoxygenation for 24 h induced a release of lactate dehydrogenase (LDH) into the medium, and reduced the protein level of MAP-2 as well. MK801 attenuated the release of LDH and the reduction of the MAP-2 protein by hypoxia, suggesting a neuroprotective role of MK801. MK801 also diminished the number of nuclear condensation by hypoxia/reoxygenation. The NOS inhibitors 7-nitroindazole (7-NI) and N (G)-nitro-L-arginine methyl ester (L-NAME), as well as the Ca(2+) channel blocker nimodipine, reduced hypoxia-induced LDH, suggesting that nitric oxide (NO) and calcium homeostasis contribute to hypoxia and/or the reoxygenation-induced cell injury. The levels of nNOS immunoactivities and mRNA by RT-PCR were enhanced by hypoxia with time and, down regulated following 24 h reoxygenation after hypoxia, and were attenuated by MK801. In addition, the reduction of nNOS mRNA levels by hypoxia/reoxygenation was also diminished by MK801. Further delineation of the mechanisms of NO production and nNOS regulation are needed and may lead to additional strategies to protect neuronal cells against hypoxic/reoxygenation insults.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Maleato de Dizocilpina/farmacología , Hipoxia/enzimología , Fármacos Neuroprotectores/farmacología , Óxido Nítrico Sintasa/metabolismo , Daño por Reperfusión/enzimología , Animales , Apoptosis/efectos de los fármacos , Secuencia de Bases , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/enzimología , Cartilla de ADN , Óxido Nítrico Sintasa de Tipo I , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA